XXVI

ON SOME PROPERTIES OF A RIEMANNIAN SPACE VA WITH CONSTANT SCALAR CURVATURE

BY

W. SLÓSARSKA AND Z. ZEKANOWSKI (WARSZAWA)

· 1. Introduction. Let V_n be an n-dimensional Riemannian space of class C4 with a non-singular fundamental quadratic differential form $ds^2 = g_{ij}(x) dx^i dx^j.$

Denote the curvature tensor, Ricci tensor and scalar curvature of the space by R_{hijk} , R_{ij} and $\kappa = R_{ij} \cdot g^{ij}/n(n-1)$, respectively.

A tensor $a_{i_1...i_p j_1...j_p l}$, where $2 \leqslant p \leqslant n$, is called a $1/p \times p$ tensor (cf. [5]) if

$$a_{i_1...i_p j_1...j_p l} = a_{j_1...j_p i_1...i_p l}$$
 and $a_{i_1...i_p [j_1...j_p] l} = a_{i_1...i_p j_1...j_p l}$

If $n \geqslant 4$ and $2 \leqslant p \leqslant n-2$, the tensor

$$(1) \quad {}^{0}a_{i_{1}...i_{p}j_{1}...j_{p}l} = \frac{\varrho^{2}}{(p!)^{2}}I^{a_{1}...a_{n-p}}{}_{i_{1}...i_{p}}a_{a_{1}...a_{n-p}\beta_{1}...\beta_{n-p}l}I^{\beta_{1}...\beta_{n-p}}{}_{j_{1}...j_{p}},$$

where $I_{i_1...i_n}$ is a unit n-vector and $\varrho = (-1)^{p(n-p)/2}$, is called the dual of the tensor $a_{i_1...i_{n-p}j_1...j_{n-p}l}$ (cf. [5]).

If n = 2p, a $1/p \times p$ tensor $a_{i_1...i_pj_1...j_pl}$ which satisfies the identities

$$\Theta a_{i_1\ldots i_p j_1\ldots j_p l} = {}^{\scriptscriptstyle{0}}a_{i_1\ldots i_p j_1\ldots j_p l},$$

where $\Theta = \pm 1$, is called a self-dual $1/p \times p$ tensor. Moreover, if $\Theta = 1$, the tensor $a_{i_1...i_p j_1...j_p l}$ is called a self-dual $1/p \times p$ tensor of the first kind, and if $\Theta = -1 - of$ the second kind (cf. [5]).

2. A necessary and sufficient condition for a Riemannian space V_{\bullet} to have constant scalar curvature. Consider a 4-dimensional Riemannian space of class C^4 with a non-singular metric tensor g_{ii} .

Let B_{hijk} be a tensor field of class C^1 of the form

(2)
$$B_{hijk} \stackrel{\text{df}}{=} a(R_{hk}g_{ij} - R_{hj}g_{ik} + R_{ij}g_{hk} - R_{ik}g_{hj}) + bR(g_{hk}g_{ij} - g_{hj}g_{ik}),$$

where $a \neq -2b$ are arbitrary constants.

THEOREM 1. A Riemannian space V_{\bullet} has constant scalar curvature if and only if the covariant derivative of tensor field B_{hijk} is a self-dual $1/2 \times 2$ tensor field of the second kind.

Proof. From (1) and (2) as well as from the formula (cf. [2] and [4])

$$I^{i_1...i_m j_{m+1}...j_n}I_{i_1...i_m k_{m+1}...k_n} = m!(n-m)!A_{k_{m+1}...k_n}^{[j_{m+1}...j_n]}$$

it follows that

$$\begin{split} {}^{0}B_{hijk;\varrho} &= \frac{a}{4} (I_{hia\beta} I_{jk\gamma\delta} R^{a\delta}{}_{;\varrho} g^{\beta\gamma} - I_{hia\beta} I_{jk\gamma\delta} R^{a\gamma}{}_{;\varrho} g^{\beta\delta} + \\ &+ I_{hia\beta} I_{jk\gamma\delta} R^{\beta\gamma}{}_{;\varrho} g^{a\delta} - I_{hia\beta} I_{jk\gamma\delta} R^{\beta\delta}{}_{;\varrho} g^{a\gamma}) + \\ &+ \frac{bR;\,\varrho}{4} \, (I_{hia\beta} I_{jk\gamma\delta} g^{a\delta} g^{\beta\gamma} - I_{hia\beta} I_{jk\gamma\delta} g^{a\gamma} g^{\beta\delta}) \\ &= -a \, (R_{;\varrho} g_{hj} g_{ik} + R_{hk;\varrho} g_{ij} + R_{ij;\varrho} g_{hk} - R_{ik;\varrho} g_{hj} - \\ &- R_{hj;\varrho} g_{ik} - R_{;\varrho} g_{hk} g_{ij}) - bR_{;\varrho} (g_{hj} g_{ik} - g_{hk} g_{ij}). \end{split}$$

Hence

$$(3) \qquad {}^{0}B_{hijk;\varrho} = -a(R_{hk;\varrho}g_{ij} - R_{hj;\varrho}g_{ik} + R_{ij;\varrho}g_{hk} - R_{ik;\varrho}g_{hj}) + (a+b)R_{i\varrho}(g_{hk}g_{ij} - g_{hj}g_{ik}),$$

where semicolon denotes the covariant derivative.

Now, if the covariant derivative of tensor field B_{hijk} is a self-dual $1/2 \times 2$ tensor field of the second kind, i.e., if $B_{hijk;a} = -{}^{0}B_{hijk;a}$, then we infer from (2) and (3) that

$$R_{;a}(g_{hk}g_{ij}-g_{hj}g_{ik}) = 0.$$

Multiplying the last identity by $g^{hk}g^{ij}$ and summing for the indices i, j, h, k, we obtain $R_{:a} = 0$ or, equivalently, R = const.

Conversely, if R = const, then from (2) and (3) it follows that

$$B_{hijk;a} = a(R_{hk;a}g_{ij} - R_{hj;a}g_{ik} + R_{ij;a}g_{hk} - R_{ik;a}g_{hj})$$

and

$${}^{0}B_{hijk;a} = -a(R_{hk;a}g_{ij} - R_{hj;a}g_{ik} + R_{ij;a}g_{hk} - R_{ik;a}g_{hj}),$$

hence

$$B_{hijk;a} = -{}^{0}B_{hijk;a}.$$

Thus $B_{hijk;a}$ is a self-dual $1/2 \times 2$ tensor field of the second kind.

3. Some properties of a conformal-symmetric space V_4 . As is known, the conformal curvature tensor C_{hijk} of a V_n is defined by the formula

$$egin{aligned} C_{hijk} &= R_{hijk} - rac{1}{n-2} \left(R_{ij} g_{hk} - R_{ik} g_{hj} + R_{hk} g_{ij} - R_{hj} g_{ih}
ight) + \\ &+ rac{1}{(n-1)(n-2)} \, R(g_{ij} g_{hk} - g_{ik} g_{hj}) \,. \end{aligned}$$

Chaki and Gupta [1] have called a Riemannian space V_n conformal-symmetric if the conformal curvature tensor of this space satisfies identities $C_{hijk;a} = 0$.

Hence, if V_n is a conformal-symmetric space, then there is

$$(4) \qquad R_{hijk;a} = \frac{1}{n-2} \left(R_{hk;a} g_{ij} - R_{hj;a} g_{ik} + R_{ij;a} g_{hk} - R_{ik;a} g_{hj} \right) + \\ + \frac{1}{(n-1)(n-2)} R_{;a} (g_{hj} g_{ik} - g_{hk} g_{ij}).$$

By virtue of theorem 1 and formula (4) we have

THEOREM 2. A conformal-symmetric space V_4 has constant scalar curvature if and only if the covariant derivative of the curvature tensor of this space is a self-dual $1/2 \times 2$ tensor of the second kind.

If a Riemannian space V_n is a conformal to flat space, i.e., $C_{hijk} = 0$, then V_n is a conformal-symmetric space and, consequently, the curvature tensor of this space satisfies identities (4). In particular, we have

THEOREM 3. A conformal to flat space V_{\bullet} has constant scalar curvature if and only if the convariat derivative of the curvature tensor of this space is a self-dual $1/2 \times 2$ tensor of the second kind.

Let f^{ij} be an arbitrary self-dual bi-vector field. Then, by the definition (cf. [3]), there is

$$f^{ij} = \Theta \cdot \frac{1}{2} I^{ij}_{\alpha\beta} f^{\alpha\beta},$$

where $\Theta = \pm 1$.

It is easy to show (cf. [5]) that for an arbitrary pair of self-dual bi-vector fields of the same kind hold the identities

$$f^{i(j}h_i^{k)} = \frac{1}{4}g^{jk}f^{\alpha\beta}h_{\alpha\beta}.$$

If a Riemannian space V_4 is a conformal-symmetric space, then from (4) and (5) it follows that

$$R_{hijk;l}f^{hi}h^{jk} = -\frac{1}{6}R_{;l}f^{a\beta}h_{a\beta}$$

or, equivalently,

(6)
$$(R_{hijk;l} + \frac{1}{6} R_{;l} g_{[h|j} g_{i]k]}) f^{hi} h^{jk} = 0,$$

where

$$g_{[h[j}g_{i]k]} \stackrel{\mathrm{df}}{=} \frac{1}{2} (g_{h[j}g_{|i|k]} - g_{i[j}g_{|h|k]}).$$

Now, if we put

(7)
$$F_{hijk} \stackrel{\mathrm{df}}{=} R_{hijk} + \frac{1}{6} R g_{[h[j} g_{i]k]},$$

then, by (6) and (7), we get

$$F_{hijk;l}f^{hi}h^{jk}=0.$$

This identity implies, as is easy to show (cf. [5]), that

$$F_{hijk;l} = -{}^{\scriptscriptstyle 0}F_{hijk;l}.$$

Therefore, we have

COROLLARY 1. If a Riemannian space V_4 is a conformal symmetric space, then the covariant derivative of tensor F_{hijk} defined by formula (7) is a self-dual $1/2 \times 2$ tensor of the second kind.

In particular,

COROLLARY 2. If a Riemannian space V_4 is a conformal to flat space, then the covariant derivative of tensor F_{hijk} defined by formula (7) is a self-dual $1/2 \times 2$ tensor of the second kind.

REFERENCES

- [1] M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian Journal of Mathematics 5 (1963), p. 113-122.
- [2] S. Golab, Rachunek tensorowy, IInd ed., Warszawa 1966.
- [3] J. Haantjes und W. Wrona, Über konformeuklidische und Einsteinsche Räume gerader Dimension, Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen 42 (1939), p. 626-636.
- [4] W. Wrona, On multivectors in a V_n , ibidem 51 (1948), p. 435-445.
- [5] Z. Żekanowski, On certain generalization of the concept of a self-dual tensor, a harmonic tensor and a Killing tensor in a V_n , Demonstratio Mathematica 1. 3, Politechnika Warszawska 1969.

Rècu par la Rédaction le 12. 7. 1971