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Mean value theorems for linear and
semi-linear rotation invariant operators

by BOGDAN ZIEMIAN (Warszawa)

Zdzislaw Opial in memoriam

Abstract. We establish a non-linear mean value theorem for bounded rotation invariant
solutions to a semi-linear Laplace equation. We also prove some (apparently well known) mean
value theorems for smooth solutions of the harmonic, polyharmonic and metaharmonic equations.

1. Introduction. The purpose of this note is to underline the fact that the
mean value theorems for solutions to linear rotation invariant equations (e.g.
for harmonic, polyharmonic, metaharmonic functions) express very simple
properties of the corresponding ordinary radial part operators. Those mean
value theorems (presented below) are apparently well known, although the
author could not find any reference for them (except for the standard mean
value theorem for harmonic functions).

The “hard” part of the note is devoted to establishing non-linear mean
value theorems for solutions to semi-linear Laplace equations. The methods
rely on the Wazewski-type theorems concerning the asymptotic behaviour of
solutions of perturbed linear systems. Unfortunately, only the case of bounded
rotation invariant solutions has been settled.

2. Linear case. To see how easy things are, we first consider the case of
a harmonic function.

THEOREM 1. Let u be a bounded measurable function satisfying Au =0 in
a neighbourhood of the closed ball {x: |x—y| < R} < R". Then

1
(1) u(y) = s RT ” fl u(x)ds,,
n— x—y| =R

where a,_, is the measure of the unit sphere S in R” and dS, denotes the surface
measure in variable x.
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Proof. By translation invariance and rescaling we may assume that
y =0, R=1. We have to prove that

L fu(s,.

O.n—ls

(2) u(0) =

As we show below, it is enough to prove (2) only for rotation invariant
harmonic functions u. Indeed, for every A € SO,(n) (= the identity component
of the group of orthogonal transformations in R"} we have

fu(x)ds, = [uo A(x)ds,.
S S

Thus, if y is the normalized Haar measure on SO,(n), we have

fux)dS, = {( | uoA(x)du)ds,.

S SOo(n)
Write

&) i) = [ uoA(xdp.

SO0 (m

The function # is harmonic since the Laplace operator commutes with
rotations. Further, @ is rotation invariant and hence is of the form

ii(x) = g(lIx[|*)

with g(s) bounded on [0,1], since u was so.
To prove (2), it is enough to show that

g(0) = g(1).
We have

Aid(x) =2 25£+ni (||x||2)
wx = a2 "ds)? '

The general solution of the equation

d? d .
ZSF+ nﬁ gis)=0 for s>0,
is of the form
gs) =c;s " ¢, if n>2,
gs)=c,Ins+c, ifn=2.

Since in our case g should be bounded at zero, we must have ¢, = 0 in both
cases.

Remark 1. Note that we have proved that the only invariant harmonic
function in a neighbourhood of zero is the constant function.

As another example we consider the polyharmonic functions.
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THEOREM 2. Suppose u is a (smooth) function in a neighbourhood of the
closed ball B = {|x| < 1} = R", fulfilling there the equation

A™u =0,

where m = 1. Then the followmg mean value formula holds for u:

Ju(x)ds.,

1 .
u(0)+ —A’u 0) =
9 Z w0 =5
where w(k) = 2k(2k+n—2).
Proof As in Theorem 1 we consider the function

()= | uoA()du,

SOo(n)

which solves the equation 4™i =0 and is of the form

a(x) = g(Ix)?).
Write
2
d
L= 4s—d—+2n—
ds
We have

Amg(|x1?) = (L"g(3)|s= 2

Let W(a)= 2a(2a+n—2) be the characteristic polynomial for L. Then the
characteristic polynomial for L™ equals

w, (@) = w@)w(a—1)... wl@—m+1).

Hence there are m non-negative characteristic roots a, =0, a,
=1,..., a, = m—1. The remaining roots are negative if n > 2m or they give
rise to solutions of the equation

4 L"g(s)=0, s>0,

which contain logarithmic terms. Therefore a general smooth solution of
equation (4) must be of the form

g(s) =ci+cs+ ... +e,sm !
for some constants c,, ..., ¢,,. Observe that
9(0) =c,,

©) (Lg)0) = w(l) ... w(j)cjuy, j=1,...,m—1.

We have
g(1)=C1+C2+ cee +Cm
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and from (5) we get

m—1
o) = 90+ 3, s (LO)

This ends the proof, since

1
9(1) = —— [u()ds,
n—198
and
g(0) = u(0),
(Ligh0) = 4%(0) = 4'( | u0A()dWx=0= [ (4wAO)dp = 47u(0)
SOq(n) 500(n)

forj=1,...,m—-1.
Remark 2. In a similar way, if ‘we replace (5) by
gl)=cy+c,+ ... ¢,
(Lig)1) = i cwk—1)...wk-)), j=1,,....,m—1,
k=j+1
we get the following mean value formula for a polyharmonic function u:

m—1

u0) = ) § Au(x)ds,

j=0 On-15

Cj

for some (explicit) constants ¢;.
THEOREM 3. For a (smooth) solution u of the metaharmonic equation

Au+iu=0, AeC,
we have

! fu(x)ds, = (i l—(l’L)u(O).

On-15 j=ow(1) ... w(j)

Proof We see that the function g(s) such that
g(Ix|*)= [ uocA(x)du

500(n)

satisfies the equation

2sd—2+ni+i ®)=0 for s> 0;
ds* ds g = ’

and, being smooth, it must be of the form
> (—Asy )
S)=¢ — = b
9(s) (,-;,wu) i)
which immediately gives the assertion.
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Remark 3. The technique of deriving mean value theorems presented
above should also apply to invariant Laplace-Beltrami operators on symmet-
ric spaces and to partially rotation invariant operators.

3. Semi-linear case. We are concerned here with bounded rotation
invariant (distributional) solutions of the equation

du+u* =0

for some fixed a > 0.
Writing u(x) = g(||x|/?), we have for g

2(2sE i nl (5)+g*(s) =0
Sdsz ndsgs g*(s) = 0.

Multiplying both sides by s and using the identity

ds?  \'ds ds’

2(2(51)2 +(n— 2)31) g(s)+sg°(s) = 0.
ds ds

After the substitution s =e™* we get for the function h(—Ins)=g(s) the
equation

we get

n—2 e’!

which can be written in the matrix form
(6) '=A0+F(t,0), (=, ()=(h,H),

where

01 n—2 e !
A=(0 a), a=T, F(t, C)=(O,—TC1)

After the change of variables

{ = Bg,
11
(0.

¢1= e4_a(‘51+€2)¢» 2= afz_e“__a(‘f1+‘fz)a-

where

the system (6) goes to



346 B. Ziemian

Adjoining the equation

513 = _62’
we obtain the following system in R3:
(7 &' =E{+G(t, 0),

where

00 O e ! . N
E= 8 g _(1) , G, &) =4—a((é1 +&)— (8 +&,)%, 0)'

We are interested in bounded (at infinity) solutions {(t) of (7) (it is enough to
assume that only {,(tf) be bounded, since it can be shown that then
{(t)—>{, < o as t — o). Hence, only the values of F for bounded { (and
consequently of G for bounded &) are important. Therefore in the sequel we
shall assume that, for large ||£[l, G(t, £) = 0. Thus we have for some ¢ > 0 the
estimate

1G@, Ol <ce'I¢ll, EeR% t>0.

Writing ¥, (f) = ce™* we see that for every >0

a0

@®) Py (t)dt < o0

0
hence from Theorems 13.1 and 13.2 in [1] we get

PROPOSITION 1. For every fixed ¢, #0 and every B > 0 there exists
a one-parameter family of solutions £(t) of (7) defined for large t and satisfying as
t - oo the conditions

9) E,=c +o(t™), & =o0(07F), &E=o(7h.

Conversely, if E(t)#0 is a solution of (7) such that t 'In||&(t)]| -0,
t — 00, then there exists ¢, # 0 such that £(t) satisfies (9).

The function ¢, (t) also fulfils the condition

sup(l+s—1)~' [y,(rdr—-0 as t > co.

sZt t

Thus from Theorem 11.1 in [1] we get

PROPOSITION 2. There exist 6, >0 and T > 0 such that if 0 < |§°1| <é,,
there exists &, for which the initial value problem

(10) L) =&, &Hl) =&, &) =0
Jor (7) has for t > t, a solution satisfying the conditions £,(t) # O and

(11) &, =o(4,(t) as t— o0, &5() =0,
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(12) lim t~!n [ £(¢)|| = O.

t— 0

Moreover, since

1G(t, &—G(¢, O < v, IE=E],

it follows from Theorem 8.2 that 52 = g(t,, g ,) is uniquely determined by ¢ , and
the solution (t) satisfying conditions (10) is unique. Further, the function
&, = g(ty, &,) is smooth on its domain.

Theorem 11.2 of [1] implies

PROPOSITION 3. Let &(t) be an arbitrary bounded non-zero solution of (7)
satisfying (10). Then conditions (11) and (12) hold.

Since for every 8 > 0 (8) holds, it follows from Theorem 13.1 in [1] that
(11) may be replaced by

(11) E@)=c,+o™h), &@=01"P, &@)=0

for some constant c; # 0 and every fixed f > 0. From Proposition 3 and
Theorem 13.2 in [1] we get

PROPOSITION 3'. Let £(t) be an arbitrary non-zero solution of (7) satisfying
(10). Then conditions (11) and (12) hold.

Combining the above theorems, we get

THEOREM 4. Let H be the function which to a point Co L assigns c, such that

lim &,(t) = c;,

[ gl ¢)

where E(t) is a bounded solution of (7) satisfying (10) with qu =g(ty, &,). Then
there exist t, = 0 and open neighbourhoods U ,, U, of zero in R such that H is
a diffeomorphism.

Now, from Theorem 4 we obtain in a standard way

THEOREM 5. There exists R > 0 such that for every bounded rotation
invariant solution u of the equation

Au+u* =0

on sufficiently small open set containing the closed ball {|x| < R} the following
non-linear maximum principle holds:

H"‘(; | u(x)de)=u(0),

n—1
0a—1R""7 1=k

where H is the diffeomorphism from Theorem 4.
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