Z. CYLKOWSKI (Wrocław)

REMARKS ON THE EVALUATION OF THE BESSEL FUNCTIONS FROM THE RECURRENT FORMULA

It is convenient to evaluate the Bessel functions $J_0(x)$, $J_1(x)$, ... (x is a real number) with absolute error less than a given positive number ε by the recurrent relation

(1)
$$\frac{2n}{x} J_n(x) = J_{n-1}(x) + J_{n+1}(x).$$

It is necessary (which is done in [1] and in the present note) to fix as accurately as possible the integer N such that $|J_N(x)| \ge \varepsilon$ and $|J_n(x)| < \varepsilon$ (n = N+1, N+2, ...). One assumes then

$$J_n(x) = egin{cases} 0 & (n > N), \\ a & (n = N), \\ rac{2(n+1)}{x} J_{n+1}(x) - J_{n+2}(x) & (n = N-1, N-2, ..., 0). \end{cases}$$

The unknown quantity $a = J_N(x)$ assumes at the beginning any non-zero value, e.g. a = 1; afterwards it is corrected in such a way as to have

$$J_0(x) + 2 \sum_{k=1}^{[N/2]} J_{2k}(x) = 1$$

(the symbol [] denotes the integer part).

Let us determine now the integer N. To do this, in [1] the Neumann functions $Y_0(x)$, $Y_1(x)$, ... are used. In the present note a simpler way is proposed. It is described best by the following Algol-like instruction in which eps denotes the absolute error e, x denotes the argument of the Bessel functions, and N — the wanted index:

if
$$abs(x) < eps$$

then $N := 0$
else begin
 $real \ J, wO, w1, x4;$
 $N := 2 \times entier(.5 \times abs(x) + 1.75);$
 $J := (N-1) \uparrow (-.333);$
 $x4 := 4/(x \times x);$
 $w1 := N \times (N-1) \times x4 - 2;$
for $w0 := w1$ while $J \geqslant eps$ do
begin
 $N := N + 2;$
 $w1 := N \times (N-1) \times x4 - 2;$
 $J := J/(wO - 1/(w1 - 1/w1))$
end $wO;$
 $N := N - 2$
end $abs(x) \geqslant eps$

Verification. For $|x| < \varepsilon$ we have

$$|J_n(x)| < \varepsilon \max_x |J'_n(x)| < \varepsilon \quad (n = 1, 2, ...);$$

thus consider the case $|x| \ge \varepsilon$ only. First, note that if J is such that $|J_m(x)| \le J$ for certain $m \approx |x|$ and if $q_n = J_{n-2}(x)/J_n(x)$, then N may be calculated from N = m + 2l, where l is the least natural number satisfying the inequality

$$J/(q_{m+2}q_{m+4}\ldots q_{m+2l}) < \varepsilon.$$

This follows from $q_{n+2} > 1$ (n > |x|).

Let $m = 2[\frac{1}{2}|x| + \frac{3}{4}]$; then

$$J = \max_{m-\frac{3}{2} \leqslant x < m+\frac{1}{2}} J_m(x).$$

From [2] (p. 247, formula (7)) for z approximately equal to ν we have

(2)
$$J_{\nu}(z) \approx \frac{\sqrt{3}}{6\pi} \left\{ \left(\frac{6}{z} \right)^{1/3} \Gamma\left(\frac{1}{3} \right) + (z - \nu) \left(\frac{6}{z} \right)^{2/3} \Gamma\left(\frac{2}{3} \right) + 0 + \ldots \right\}$$
$$\approx .45z^{-1/3} + .4(z - \nu)z^{-2/3}$$

and, finally, one may assume that $J \approx (m+1)^{-1/3}$.

Now we shall determine the numbers q_n . From (1) we obtain the identity

(3)
$$J_{n-2}(x) = w_n J_n(x) - \frac{n-1}{n+1} J_{n+2}(x),$$

where

(4)
$$w_n = \frac{4n(n-1)}{x^2} - \frac{2n}{n+1}.$$

Dividing (3) sidewise by $J_n(x)$ we have

$$q_{n} = w_{n} - \frac{n-1}{n+1} \frac{1}{q_{n+2}},$$

i.e.

(5)
$$q_n = w_n - \frac{(n-1)/(n+1)}{w_{n+2}} \frac{(n+1)/(n+3)}{w_{n+4}} \frac{(n+3)/(n+5)}{w_{n+6}} \dots$$

In the above presented algorithm, formulae (4) and (5) were used in the reduced form

$$w_n \approx 4n(n-1)/x^2-2,$$
 $q_n \approx w_n-1/(w_{n+2}-1/w_{n+2}).$

The case of Bessel functions with non-integer indices may be treated analogously. And so, for instance, for the functions

$$j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+\frac{1}{2}}(x)$$

considered in [1] it follows from (2) that $|j_m(x)| \leq j$, for $m = 2 \left[\frac{1}{2} |x| + \frac{3}{4} \right]$, where $j \approx (m+1)^{-5/6}$.

Some numerical examples with $\varepsilon = .00005$ are given in Tables 1 and 2 $(J_n^*(x))$ and $j_n^*(x)$ denote the calculated values of $J_n(x)$ and $j_n(x)$.

 $J_n(x) - J_n^*(x)$ $J_n^*(x)$ \boldsymbol{x} n4.4 0 -.3422576.0000008 4 (= m).3364509 -.0000008 $12 \ (= N)$.0000178 .0000006 102.4 0 .0369959 -.0000010 $102 \ (= m)$ -.0000027.1031530 $122 \ (= N)$.0000114 .0000047 2502.4 .0098404 -.0000109 $2502 \ (= m)$ -.0000363.0338756 2544 (= N).0000360 .0000816

TABLE 1

T.	A	\mathbf{B}	${f L}$	${f E}$	2
----	---	--------------	---------	---------	---

x	n	$j_n^*\left(x\right)$	$j_n(x)-j_n^*(x)$
6.4	0	.0182108	.0000000
	6 (= m)	.1130852	.0000000
	14 (= N)	.0000151	.0000008
102.4	0	.0093345	.0000000
	102 (= m)	.0116074	.0000000
	118 $(=N)$.0000109	.0000053
2502.4	0	.0003967	.0000000
	2502 (= m)	.0008090	.0000109
	2524 (= N)	.0000174	.0000577

References

- [1] Fr. Mechel, Improvement in recurrence techniques for the computation of Bessel functions of integral order, Math. Comp. 22 (1968), p. 202-205.
- [2] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge 1966.

DEPT. OF NUMERICAL METHODS MATHEMATICAL INSTITUTE UNIVERSITY OF WROCŁAW

Received on 21. 12. 1970

Z. CYLKOWSKI (Wrocław)

UWAGI O OBLICZANIU WARTOŚCI FUNKCJI BESSELA Z WZORU REKURENCYJNEGO

STRESZCZENIE

Dla danego rzeczywistego x i $\varepsilon>0$ podaje się algorytm obliczania takiej liczby naturalnej N, że wartości bezwzględne funkcji Bessela $J_{N+1}(x)$, $J_{N+2}(x)$, ... są mniejsze od ε .