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CONSTRUCTION OF A RECURRENCE RELATION
OF THE LOWEST ORDER FOR COEFFICIENTS
OF THE GEGENBAUER SERIES

0. INTRODUCTION

A function f defined in the interval {—1, 1) and satisfying the re-
quired conditions may be expanded into a series uniformly convergent in
this interval with respect to the Gegenbauer polynomials C{? () (A > —1/2),
orthogonal with weight (1—&**"'? (in short: the Gegenbauer series):

oo

f@) = D a,[f1C0 ().

k=0
Assume that f satisfies the linear differential equation

(0.1) Qo =p

of order n, where p,, p,, ..., p, # 0 are polynomials in #, and the coef-
ficients of the Gegenbauer series of the function p are known. Assume,
moreover, that the derivative f™ can be expanded into a uniformly con-
vergent Gegenbauer series.

We give a method of constructing in view of equation (0.1) the linear
recurrence relation of the lowest order,

'Z}.j(k)ak”[f] = u(k) for k>0,

where 4y, 4,, ..., 4, (4 # 0, 2, # 0) are rational functions of the variable k.

1. FORMULATION OF THE PROBLEM

Let us write
(1.1) (a)p =1, (a), =a(a+1)...(a+k—1) for k>=1.

The k-th Gegenbauer polynomial C{P(x) of order A, where k> 0, and
% is a real number greater than —1/2, is for A # 0 defined by the
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formula

(24); dr

_ m2\12—2 1 — g2)k+A-1/2
Friatr1je), LT gF =)

(1.2) CP(@) = (—1)F

and for 4 = 0 by the formula
(1.3) CO(2) = limA~10P (@)

A0

(see Erdélyi [3], vol. II, § 10.9). Polynomials C{’(z) (called also wulira-
spherical) form for a fixed 1 an orthogonal complete system in the interval
(—1,1> with weight (1—a?%)*"12

Typical orthogonal polynomials — the Chebyshev polynomials of the
first order Ty (x) and of the second order U,(x) and the Legendre polynomials
P,(#) — are particular forms of the Gegenbauer polynomials. Namely,
we have

k
To(@) = C9(@), Tylo) =5 CP(@) for k>1,

(1.4)
Ugx) =CP(x) and P,(x) =C% @) for k>0

(see [3], vol. II, §§10.10 and 10.11).

A function f which is continuous in the interval (—1,1) and satis-
fies required conditions (see, e.g., [3], vol. II, § 10.19, and [5], vol. I, § 8.5)
can be expanded into a series uniformly convergent in this interval with
respect to the Gegenbauer polynomials, i.e. into the Gegenbauer series

(1.5) fl@) = X & lf10P ().
k=0

The coefficients a,[f] of this series are defined by the formula

1

J (A —a*) 0P (@) f (o) dar
(1.6) a.[f]1= "} for k> 0.
J (=& 0 (0) o

-1

We know (see [7], § 8) that in many cases amog the Gegenbauer
series of a given function f, obtained for different values of the parameter 4,
the most rapidly convergent series is that with respect to the polynomials
C")(x), hence — in view of the two first equations (1.4) — the series with
respect to the polynomials T, (), called in the sequel the Chebyshev series:

1 o
(1.7) f@) = Slf1To(@) + D bilf1Tu(®).
k=1
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The Chebyshev coefficients b,[f] of the function f are defined by the
formula

(1.8) b[f] = % f(l—m"’)“”sz(w)f(w)dm for k> 0.
-1

Let for >0

(k+A4)"ta,[f] for 4 #0,

(1.9) alfl= ‘ b, [f] for 4 =0,

where a,[f] and b,[f] are defined by (1.6) and (1.8), respectively.
Numbers ¢, [ f] will be called the Gegenbauer coefficients of the function f.
In the sequel it will be convenient to use coefficients with negative
indices. We assume that if 24 = m, where m is a non-negative integer,
then (see [2])

for k=1,2,...,m—1,
Comlf]l] for k=m

and if 22 is not an integer, we take

(1.10) c_x[f1=

(1.11) e_x[f1=0 for k>1.

Assume that the first derivative of the function f can be expanded
into a uniformly convergent Gegenbauer series. In view of equations

2(k+2) 0 (w) =—[0§c‘ll(m R (x)] for k>1,
2 10(1)(.,,,) = ig(l)(w)
0 d{ﬂ 1 ’
(1.12) P
2T () = Y Tipa(®) =1 T,_ (w)] for %
4T, (2) = dT(w) Ty(x) = d T,(x)
1 - d$ 2 ’ 0 - d.’ﬂ 1

(see [3], vol. II, §§ 10.9 and 10.11) it is easy to show that
(1.13) 2(k+2)6,[f] = 1 [f 1= [f]  for k>1

(see, e.g., [1] and [2]).
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Similarly, in view of equations

(1.14)
m%ﬂm%=EﬁgzﬁRk+nC&Aerk+2»—n0&¢m] for k>1,
1
2l (@) = 5= CP(a),

1
aTy(x) = E[Tk+l(w)+Tk—l(‘v)] for k>1,

#To(x) = T'y(=)
(see [3], vol. II, §§ 10.9 and 10.11) we have

1
(1.15) elaf]l = 5{a(k)ck_l[f]+ﬂ(k)ck+1[f]} for k>1,
where

El(k+2) for 4 #0,

(1.16) a(k) =1 cor 1o B0 =2—a®

(see [1]and [2]).
Let us generalize relation (1.15). For an arbitrary function u of the
variable & we define

(1.17) pt(k) = p(k+1) and p (k) = u(k—1).

By induction with respect to ! it can be shown that
l

(1.18) ald'f1=27" Y a;(k)epyyq;[f]1  for k,1>0,
ji=0
where
l
and
ap(k) =1,
(1.19) aaq;_y 0 for j =0,

al]': aal_;_l’j'“{“ﬂai*__!,j_l fOI'j =1,2,...,l—’1 andl}l,
Bai 111 for j =1
for 1 £ 0.
In general, it is very complicated to find the values of integrals in

formulae (1.6) and (1.8). Explicit forms of the Gegenbauer coefficients
resulting from these formulae were obtained for many functions (see, e.g.,
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[5], vol. II, §§ 9.2 and 9.3, or [7], §§ 10-12). The expressions obtained
are often very intricate and contain, for example, symbols of special func-
tions, which makes difficulty when they are used.

It is relatively easy to find the values of the Gegenbauer coefficients
if they  satisfy a recurrence relation of the form

(1.20) N y(k)e[f1 = u(k)  for k>0,

where 4y, 2;, ..., 2, and u are known functions of the variable k. A partic-
ular solution of (1.18), satisfying additionally the so-called normalizing
condition

Zukek[f] =,
k=0

where the constants «, (k> 0) and v # 0 are given, and the series on the
left-hand side is convergent, can be obtained by using the well-known
methods of Miller and Olver as well as modifications and generalizations
of those methods (see [5], vol. IL, § 12.5; [7], § 15; [6] and [9]).

Among methods of constructing the relations of form (1.20) for the
Gegenbauer coefficients of a given function f, we can distinguish a very
simple and universal method which may be applied in the case where this
function satisfies the linear differential equation

n
(1.21) D pf® =p
i=0

of order n, where py, py, -.., P, & 0 are polynomials, and the Gegenbauer
coefficients of the function p are known.

Let us assume that the derjvative f™ can be expanded into a uni-
formly convergent Gegenbauer series; it is then possible to expand into
such a series each of the functions f, f’, ..., f~ .

Let us write

&) = e, [fP?] for i =0,1,...,n.

We also write ¢, ¢, ¢, instead of ¢, ¢!, ¢{?), respectively.
The k-th Gegenbauer coefficients of both sides of equation (1.21)
are equal, which implies the formula

(1.22) D alpf® = alp] for k>o.
i=0

This relation is true also for any negative integer %k, but (1.10)
and (1.11) imply that in this case relation (1.22) is either 1° for 24 = m
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(m — non-negative integer) equivalent to a relation obtained from (1.22) by
substituting — (k+m) > 0 for k; or 2° trivial.

Every term of the sum on the left-hand side of (1.22) may be — in
view of (1.18) — expressed in the form

(1.23) e [p:f®] = LYY  for i =0,1,...,n,
where
d;
(1.24) P = 3 i),
j=—d;

d; denoting the degree of the polynomial p;, and A (j = —d;, —d;+
+1,...,d;) t’)leing rational functions of the variable k.

Let p,o° be the monomial of the highest degree of the polynomial
p;(®). It is easily seen that for j = —d,, d; the coefficients 2{) depend on

this monomial and do not depend on the monomials of lower degrees of
the polynomial p,(x).

If 2 +# 0, then by (1.18), (1.19) and (1.16), in view of the above remark,
we have

' k—d;+1)
l(i)di(k)=17ioa(k)a(k_1) ceea(b—d;+1)= py (k(—}—l 1l;_|_)d11) ’
- % d;
(1.25)
| k+22),,
1K) = piuB(R)B(k+1)... f(k+d;—1) :p”%wz))dz'
d;

If 2 = 0 (according to formula (1.9), expressions of the form {c¢{?}
denote in this case the Chebyshev coefficients of the function f), then i)
in formula (1.24) are constant and such that

}.}"’ = A(f} for j=1,2,...,4d,
10y, = 1) = Dy
Equations (1.22) and (1.23) imply

(1.26) !

(1.27) DLOP = ¢, [p]  for k> 0.
t=0

This equation and following from (1.13) relations
(1.28) 2(k+A) ™ =), —e, fori=1,2,...,n,

considered for k> 0, form a system of n+1 linear difference equations
with unknown sequences {¢{} (i =0,1,...,n).
Clenshaw [1] has proposed an approximate method of solving this
system for A = 0, which was applied by Elliott [2] for the case of 1 # 0.
In applications to particular differential equations the Gegenbauer
coefficients (exclusively in the case of 2 = 0) of all derivatives of the
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function f were sometimes eliminated, which finally implied a single re-
currence relation of type (1.20) (see, e.g., [6], vol. II, § 16.2).

A general algorithm for the construction of relation (1.20) for the
Chebyshev coefficients, based on the differential equation (1.21) and
equations (1.12) and (1.14), was given by Paszkowski [7], § 13; the order
of this relation is equal to
(1.29) 2 max (d,_;+1).

0<i<n
Pp—i#0

Paszkowski [7] observed that system (1.27), (1.28) sometimes implies
a recurience relation of the order lower than (1.29).

We present in this paper an optimum algorithm, i.e. a method of
constructing the recurrence relation (1.20) for the Gegenbauer coeffi-
cients with the lowest order among relations following from (1.27), (1.28).
(Let us observe that in [7] there is given an optimum algorithm but only
for the simplest case of A = 0 and n = 1.)

In Section 2 we give the formulation and the proof of the correct-
ness of the optimum algorithm.

In Section 3 we describe an algorithm which can be considered as
the generalization of the first of two above-mentioned Paszkowski algo-
rithms.

In Section 4 we show that if the coefficient p, of the differential
equation (1.21) has no zeros equal to 1 or — 1, then the optimum algorithm
described in Section 2 leads to a recurrence relation for the Chebyshev
coefficients (A = 0) with order (1.29). This means that in this case the
Paszkowski algorithm is the optimum one.

2. OPTIMUM ALGORITHM

We give now definitions and fundamental properties of difference
operators (Section 2.1), then introduce the set A(L) and describe the
construction of minimum operator in this set (Section 2.2). This operator
plays an important role in the proposed method of constructing the re-
currence relation of.the lowest order for the Gegenbauer coefficients of
the function satisfying the differential equation (1.21). After having de-
fined auxiliary operators in Section 2.3, this method is presented in Sec-
tion 2.4; main results are contained in Theorem 2.1. Having in view the
practical realization of the procedure there described, we finally give
its compact formulation which will be called Algorithm I (Section 2.5).

2.1. Difference operators.

Definition 2.1. Let S denote a linear space of complex number
sequences with addition of sequences and multiplication of a sequence

6 — Zastosow. Matem. 15.3
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by a constant defined as usually. Difference operator is an operator L map-
ping the space S into itself and such that

Lz} = { ) 4(R) ey} Tor {m}eS,

where » =7(L)>0 and » = u(L) are integers, and the coefficients
Aoy Ary vy A (A9 £ 0, 4, == 0) are known functions. The number 7 is called
the order of the operator L.

Obviously, every difference operator is linear. Let us emphasize
that in this paper only those operators are used the coefficients of which
are rational functions of the variable k. The set of all these operators
will be denoted by L. By “operator” we always mean a difference operator.

Let E™ (m — an integer) and I be operators with the following prop-
erties:

(2.1) E™{z} = {2,.m}, I{2} = {2} for {z,}eS.

I will be called the identity operator. It follows from (2.1) that E® = I.

The zero operator O, associating with any sequence {z,}eS the «e-
quence {0} composed of mere zeros, belongs also to difference operators
although it does not satisfy conditions of Definition 2.1. Remark that
the symbols 7(®) and (@) have no definite meaning. It is convenient to
assume that r(@) = —1.

Two operators L, and L, are equal if L,{z,} = L,{z,} for every {z,} ¢S.

Addition and multiplication by a number are for difference operators
defined in a natural manner.

Definition 2.2. Let L and M be difference operators. The oper-
ator N =¢,L+¢,M (¢; and ¢, — complex numbers) is defined by

N{z} =, L{z}+c,M{z} for {2}eS. -

This definition implies the linearity of the space L.

Let us also introduce the composition of operators.

Definition 2.3. Let L and M belong to L. An operator P = LI
is such a one for which P{z,} = L{y,}, where {y,} = M {2} ({z}S).

Composition of operators is associative and distributive (from the
left and from the right) with respect to addition of operators. (The space 1
is, therefore, a ring with unity formed by the operator 1.) Since it is possible
that LM # ML, we see that, in general, the composition of operators i
not commutative. If LM = ML, we say that operators L and M are

commutative. In particular, any two operators with constant' coefficients
are commutative.

It follows from (2.1) that

E'E™ = E'"*™, where | and m are integers.

]
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If a is a rational function and M eL, then we write
a(k)M = LM, where L{z} = {a(k)z}.
It is easy to see that for any non-zero operators L and M we have

(2.2) r(L+M)<wmax{r(L)+u(L), r(M)+u(M)} —min{u(L), u(M)}
| (L # —M),
(2.3) u(L+M) > min{u(L), (M)}

(2.4) r(LM) = r(L)+r(M), w(LM) = w(L)+u(M),

where we use notation of Definition 2.1.

Take I = r(L), m = r(M), and let A;(k) (¢ =0,1,...,1) and g (k)
(¢ =0,1,...,m) be coefficients of the operators L and M, respectively.
We have the sharp inequality in (2.2) if and only if

(2.5) (L) = w(M), 2(k)+ po(k) =
or
(2.6) L+ u(L) =m+u(M), A(k)+pa(k) =0,

whereas the sharp inequality in (2.3) occurs only in the case where equal-
ities (2.5) are satisfied.

Assume that Lz, denotes the k-th element of the sequence L{z,}
(LeL; {2} €8S).

-Definition 2.4. Let LeL, and let u be a given function and {z,}
an unknown sequence from S. The relation

Lz, = u(k) for k>m (m — an integer)

will be called the (linear) recurrence relation or the difference equation;
the order of a recurrence relation is the order of the operator L.

2.2. Minimum operator of the set A(L). Let D be the operator defined
by the formula

(2.7) D=E'-E.

Definition 2.5. Let L be a given operator and assume that for a non-
zero operator A there exists an operator @ such that AL = QD.

The set of all operators having this property will be denoted by A(L).

A*c A(L) will be called a minimum operator if for every AeA(L)
we have 7(4%) < r(4).

Tt is easy to show the following
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LEmMMA 2.1. If Ae A(L) and C is a non-zero operator, then CA e A(L).
If A,, AyeA(L) and A = A,+ A, is a non-zero operator, then AeA(L).
We prove now

LEMMA 2.2. If A, A*<A(L) and A* is a minimum operator in the
set A(L), then there exists a mon-zero operator C such that

(2.8) A = CA*.

In particular, if A is also a minimum operator in the set A(L), then (2.8)
holds for C = o(k)E™, where o is a rational function, o % 0, and m — an
integer.

Proof. We define a_sequence of operators 4,, 4,,... Let 4, = A.
For ¢ = 0,1, ... such that the operator A, is defined and different from
the operator @ we write

(2.9) A,.,=A4,-C; A%,
where C; is a non-zero operator for which we have
r(C;) =r(4)—r(4%), u(0y) = u(4;)—u(4),
Vio(K) = aio(k)/a:(k‘i‘“(oi)),

while y;, a;, and o} denote the zero coefficients of the operators C;, A;
and A* respectively.

If A;,, (¢>0) is a non-zero operator, then in view of Lemma 2.1
we infer that 4, ,¢ A(L). Moreover, from (2.9) it follows then — by virtue
of (2.2), (2.4), (2.10) and (2.5) — that r(4;,.,) <r(4;). Therefore, after
a finite number of steps we obtain the operator 4,¢ A(L) such that

(2.10)

(2.11) r(4,) = r(4"),

»)
or
r(d,) >r(4%), A,,=0.
We are going to show that also in the first case we have 4, , = 6.

Indeed, if we assume that A, , # 0, then the preceding remarks imply
that A,,,¢ A(L) and that r(4,,,) < r(4,), which is a contradiction since

the operator 4, is (by (2.11)) the minimum one in the set A(L).
Thus in any case formula (2.9) implies

Ay = CgA*+ A4, = CoA*+ 0, A"+ 4, = ...
=CoA*+C A"+ ... +C, A"+ 4,
= (Co+ 0+ .. +Cp) 4%,
which means that equality (2.8) holds for ¢ = Cy+C,+ ... +C,.
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If 4 is a minimum opeiator in the set A(L), then r(4) = r(4")
and, therefore, equation (2.8) and the first reiation of (2.4) imply that C
is an operator of the zero order, hence it is of the form p(k)E™, where o
is a rational function, ¢ # 0, and m is an integer, q.e.d.

We now show that if L is an operator of order not greater than 1,
then the set A(L) is not empty, and next we give for this case a formula
defining the minimum operator in A(L) (Lemma 2.3). We also show that
for any operator L the minimum operator in the set A(W), where W is
an operator of order not greater than 1 connected with L (and defined in
Lemma 2.4), belongs to the set A(L) and is in this set the minimum op-
erator (Lemma 2.5).

Let 2; and yu; (¢ =1, 2) be polynomials and let a; = A;/u;. Let us
write

ged (4, 25)
ged (pyy ps) ’

where the symbol ged(¢,, ;) denotes the greatest common divisor of
polynomials ¢, and ¢,. The symbol {a;, a,, as} has the analogical meaning.

LEMMA 2.3. Let W be an operator defined by the formula

{an az} =

(2.12) W = n(k) I+ (k) E,

where n and ¢ are rational functions. Define the operators A and R in the
Jollowing manner:

(2.13) I for n =& =0 (case I),
nt(k)I—n(k)E for n =& £ 0 (case II),
nt(k)I+7n(k)E for n = —9 £ 0 (case 1II),

_ 1 it ET =y (k)E for n £ 0, & = ¢y, ¢ = const,
w (k) ¢ #=1 (case IV),
9T (k)E~' -9 (k)E for 9 #£ 0, n = ¢, ¥, ¢, = const,
3 #1 (case V),
a(k)E~ '+ B(k)I—a (K)E  for 5|9 # const (case VI),
0] (case I),
n(k)yn* (k) E (case II or III),
(214) R— %k) 0~ )+ () [T + cB] (case IV),
9~ (k)9 (k)[e, I+ E] (case V),
a(k)n~ (k)] +a~ (k) 9+ (k)E  (case VI),
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where
1 (case I),
{n*, n} (case 1T or III),
o=13{n",n*"} (case IV),
{97,907} (case V),
{a, 8,07} (case VI),
(2.15)

a =gt -9, B =970 —9*d".

(Notation in these formulae is that of (1.17).)
So in any case I-VI the operator A belongs to the set A(W) and is in
this set the minimum one. We also have

(2.16) AW = RD.

Proof. For n =3 =0 (case I) we have W = @ and relation (2.16)
holds for
(2.17) A=I, R=06.

Let n £ 0 or 4 == 0. Assume that
(2.18) A = E"[a(k)E'+B(k)I+y(k)E],
(2.19) E = E™[p(k)I+y(k) E],

where m is an integer and a, B, y,9 and y denote rational functions.
Let us substitute for the symbols A4, W, B and D the right-hand sides of
formulae (2.18), (2.12), (2.19) and (2.7), respectively, next perform the
corresponding operations and equal coefficients of the operators on both
sides of the relation obtained. We arrive at 4 equations

(220) an” =¢, ad +Pp=y, P+t =—9, pit=—y,

where we use the relationship E+'y(k) = n(k+1) = n* (k) ete. (see (2.1)
and (1.17)). By eliminating ¢ and p we get the system

(2.21) an~+p+ynt =0, a4 py+y9*t =0.

It is easily seen that if any two of functions a, § and y are vanishing
identically, then the third of them vanishes also identically. This means
that the set A(W) does not contain operators of the zero order.

Let us successively examine the cases defined in (2.13). Assume
that case VI occurs, i.e. 7 # 0, & # 0 and there exists no constant ¢ such
that 4 = c¢n. We will show that then the set A(W) does not contain op-
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erators of the first order. Remark to this end that none of functions
¢ 9t N n- 9
n 9F 8- ot 97 9

vanishes identically. Indeed, if, e.g., 4, = 0, then 9~ [y~ = &+ /n*, i.e. the
rational function 9/ has the period equal to 2. The only rational function
with this property is the constant function, hence 4 = ¢ (¢ = const),
contrary to the assumption. If we assume that 4, =0 or 4, = 0, the
conclusion will be the same. It is thus clear that every non-trivial solu-
tion a, B, y of system (2.21) is such that a # 0, # # 0 and y == 0. There-
fore, if Ae A(W), the order of A cannot be lower than 2. An operator of
the second order having the form of (2.18) belongs to the set A(W) (and -

- ot

A1= ’ 2 = ’ 3 =

is in this set a minimum operator) if a/f = — 4,/4,, y/f = — A44/4,.
For instance, we can put
[ — = + _ + — A - + __ o+t o9
(2.22) a 4y =T =997, B 5 n” 9T —nTH7,
y=—dy=—a",

which together with the first and the last of equations (2.20) implies
(2.23) ¢ =ap~, w=a 9.

Assume now that 5 # 0, 4 = ¢y, where ¢ = const. Relations (2.21)
take the forms
(2.24) an~+efn+ynt =0, ecan”+pPyp+eypt =0.

Let us consider 3 cases according to values of the constant c.
If ¢2 £ 1 (case IV), then from (2.24) we have

=0, an +yp* =0.

Therefore, if Ae A(W), then the order of operator A cannot be lower
than 2. The second order operator will be obtained, e.g., for

(2.25) a=n% p=0, y=-—9.
In this case, the first and the last of equations (2.20) imply
(2.26) p=n1", = cp.

If ¢ = +1 (case II or ITI), then system (2.24) will be reduced to the
single relation

an”™ +efn+yn*t = 0.
Operator (2.18), belonging to the set A(W), is, therefore, of the first

order if «a =0, ¢fn+ynt =0 or if y =0, an™+¢py = 0. In particular,
we can assume that

(2.27) a=0, B=193% y=—on.
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In this case (see (2.20)) we have
(2.28) =0, y=mm".

If 9 £0, n =¢,9,¢, =const,c? #1 (case V), then similarly as
in case IV we state that in the set A(W) there exist no operators of the
order lower than 2. Operator (2.18) belongs to this set and it is of the second
order (and thus is the minimum operator), if

(2.29) a=9", B =0, y=-—9".
In formula (2.19) we have then to put
(2.30) p =99, ¢ =cvp.

Formulae (2.13)-(2.15) follow from (2.18) and (2.19) for m = 0, and
from (2.22), (2.23) and (2.25)-(2.30). The factor 1/w in (2.13) and (2.14)
is introduced in order to simplify the forms of operators A and R, which
by Lemma 2.2 does not change minimality of the operator 4, q.e.d.

Let L be a non-zero operator of order » with coefficients 4y, 4,, ..., 4,.
Let us write

[r/2] (r—1)12]

(2310 alB =Y h®,  alib = 3 b,
i=0

(By [a] we denote the integer part of the number a.) We assume, more-
over, that o¢,(@;k) =0 (h =1,2). Functions ¢,(L; k) are obviously
rational in k.

It is easy to see that for m being an integer we have

(2.32) o, (E™L; k)= E"0,(L3 k), op(LE™; k)= o0,(L; k) (h=1,2).
If o is a rational function, then
(2.33) onle(k)L; k) = e(k)oy(L; k) (b =1, 2).

Let L,, Ly,eL and L = L+ L,. We consider four cases.
Case I. L, =60 or L, =0 or L = 0.

Case II. Numbers u(L,) and u(L,) are different and either both even
or both odd.

Case III. L # 0, u(L,) = u(L,) # u(L); a. w(L) is even, b. u(L)
is odd.

Case IV. u(L;)—u(L,) is odd.

In cases II and IV we obviously have L # 6. We easily get the
relation

(2.34) on(L; k) = o3 (Ly; k) + oy (Lp; k) for b =1,2,
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where
h (case I, IT or IITa),
hy = hy, =

3—h (case IIIb)
or
hi=h, hy_;=3—h (case IV),

whereas ¢ (¢ = 1 or 2) is such that »(L;) is equal to the less of the numbers
u(L,) and wu(L,).

It is easy to show the following

LeEMMA 2.4, Let L be a non-zero operator of order r such that

r
sz - Z lj(k) zk_*_u_*_j .
j=0

Let N be an operator such that N = O for r < 1, and

r—2
Nz, = 2 Yi(K) 214y Jor r>1,
i=o
where the coefficients vy, v, ..., v,_, are defined by the recurrence formula
v =V o—Aiys forj=r—2,r-3,...,059, =v9_, =
Then
(2.35) L =ND+WE*,

where D is defined by (2.7) and W by the formula
W =oy(L; k)L +o0,(L; k)E.

Lemma 2.5 contains the most important result of this section.

LEMMA 2.5. Let L be the operator defined in Lemma 2.4. The operator A,
defined by (2.13) for n = a,(L; k) and & = o,(L; k), belongs to the set A(L)
and it is the minimum operator in this sel.

Proof. Let N and W be two operators defined as in Lemma 2.4.
We will show that

(2.36) A(L) = A(W),

which together with Lemma 2.3 will prove Lemma 2.5.

1° If Ce A(L), then according to Definition 2.5 there exists an opera-
tor ¢ such that CL = QD, which together with (2.35) implies the relation
CW = (Q—CN)E ™D meaning that Ce A(W).

2° Let CeA(W). Applying the operator C to both sides of (2.35)
and taking into account that there exists an operator S such that CW = SD,
we have CL = (CN + SE*)D. Hence Ce A(L).

Thus we have proved relation (2.36).
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2.3. Auxiliary operators and their properties. Let B, ({ = 0,1,...)
be an operator defined by the formula

D for ¢+ =0,
(2.37) B; =
I (k+2)"'"[a(k)E~'—B,(k)E] for i =1,2,...,
where
(2.38) a;(k) = (k+A+i—1),, Bi(k) = (k+4i—1),,

notation being that of Section 1.
Define operators S;; and P; by the formulae

I for ¢+ <j,
(2.39) § = s
BB, ,...B; fori>j>0,
and
(2.40) 'Pi = Si-—],o fOI‘ 7: = 0, 1, ces
It is easy to see that
(2.41) S’U = BiSi;l,j == S’i,j+lB_'f fOI‘ i}j 2 0,
8i_1;P; for i>j>0
(2.42) pP,= """ , 1=
B, ,P,, fori=1,2,...

Let y4, v1, ... be polynomials in k¥ defined by the formulae
(2.43)  yo(k) =1, (k) =(k+A—i+1)y_, fori=1,2,...
Equations (2.38) and (2.43) imply
(2.44) Vip = a;y; =Py for i =1,2,...,

notation being that of (1.17).
Using the symbol defined in (2.7), relation (1.28) can be rewritten

in the form
. (2.45) D) = 2(k4+2)cfi  for i > 0,
which allows us to obtain the relationship between ¢, and the terms of
the sequence {c¢{} for ¢ > 0. Namely, we prove
LeMMA 2.6. For any 1 = 0,1, ... we have

Proof (by induction). According to (2.40) and (2.43) we have P, = I
and y, =1, which implies that for + = 0 equation (2.46) holds trivially
true.
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Since P, = B, = D and y,(k) = k+ 1 (see (2.40), (2.37) and (2.43)),
we see that for + = 1 relation (2.46) is of the form

Dc, = 2(k+A)e,

and, therefore, by virtue of (2.45), it is true.
Assume that equality (2.46) holds for a certain 4 > 1. Relations (2.42),

(2.37), (2.44) and the foregoing equality imply
Pi+lc$ci+l) = B,P;d{*" = 2'B,y; (k)¢
= 28 (k4 2) " [ay (k) y7 (K) €y — Bi(R) it () €}y ]
= 2(k+2) "'y (k) Doy, = 27y, (K

Identity (2.46) is, therefore, true for any ¢ > 0, q.e.d.

The second of two lemmata, which we shall prove, defines coeffi-
cients of the operator 8;(y;(k)I) which will immediately imply the form
of the operator P;. These informations will be used in Sections 2.4 and 3.2.

Let
(247)  gym(k) = (—1)’”(’,;’)<k+l—v:),-+m(k+z—i+j+2m>><
X (ot At 14 1)y [( A — 2]

for i =1,2,...;j=0,1,...,% and m =0,1,...,7—].

It is easily seen that g, is a polynomial in % of degree i+j—1.
Moreover, let us remark that putting 2 = 0 into the right-hand side
of (2.47) and substituting 7 —j for j we obtain a polynomial denoted
in [7], §13, by by, (k) (see also Section 3.2).

LeMMA 2.7. For every © =1,2,... we have

Qit1,50 = (k+l)“aiei?o,
(2.48) Oir1im = (k+ A" 05m—Bi0fm) for m =1,2,...,i—j,
Qit1,j,i+1—j = —(E+ A B0l i

where j = 0,1, ..., 1 and notation is that of (1.17) and (2.38).

Proof. We introduce an auxiliary variable » = k- 4.
First we prove the first equality of system (2.48). According to (2.38),
(2.47) and (1.17) the right-hand side of this equality may be rewritten

in the form
x'l(x+i—1)2(74—'5—1)]-(%—73—[—]' — 1)(:!4)1-[(%—1)2 —42]7.

Divide this expression by x+¢—1 and then multiply and divide it
by x+i+1 and use the equality

)+ 0) (e +i4+1) = (x+1);,.
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We get then
(=i —1);(— 4 — 1) (4 Dy [ — (1 + 1)1

This is exactly the expression for g, ;, which is implied by (2.47).

We can similarly prove the last relation of system:(2.48).

We will show that the second equality of this system holds. Its right-
hand side, by (2.38), (2.47) and (1.17), is of the form

x—‘{<x+i—1>2< —1)"‘(" ;;j) (=i = D)yl — i+ 2m—1) (x4 M), X

X [(—1)* — @] — (2e — 0)( _1)M~1(72191) (—t+1)j, 51 X

X (x—t+]j+2m—1) (%+’m+1)i—m+1[(”+1)2_i2]_1}'

Let us divide the minuend in brackets by »+4—1, and the subtra-
hend by »—¢+1. Multiplying and dividing the minuend by =x-+:41,
and the subtrahend by »—¢—1 and next using the equalities

(e+m);_pm(x+i)(x+i+1) = (x+m)(x+m+1);y,_p,
(¢ —i—1)(x— i) (r—i+ 1)y = (£ —i— 1) (e —i+j+m—1),

we get the expression
alfi—3 i—) . m .
% l:( m])(x+m)+(m_1>(%—’b+]+’M—1)}(—1) (x—1—1)j,p X

X (—t—14j+2m)(x+m~+ 1), _n[%*— (i +1)°]7".

%, this expression is

Since the sum in brackets is equal to (Z +;,,_])

identical with that which may be obtained for g¢;,,;, from formu-
la (2.47), q.e.d.

LEMMA 2.8. For every © =1,2,... and j =0,1,...,1 we have
-3
(2.49) Si—l,j(‘}’j(k)zk) = Z@ijm(k)zk—i+j+2m Jor {#}eS,
m=0

where the notation used is that of (2.39), (2.43) and (2.47).
Proof. Let us first examine the case of 7 = j. Since
Si—l,i =1,
Qinn(k) = (k+A—0);(k+2)(k+A+1);[(k+ 24)*—4*]7
= (k+2A—i+1)y_, = yi(k),
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we have
81, (7:(k)2) = ouo(k)z, for i =1,2,...

Let us now assume that j < ¢ and proceed by induction on 7. Let
t = 1. The left-hand side of (2.49) assumes then for j = 0 the form

Soo(}’o(k)zk) = B2, = 23_1— %419

and the right-hand side the form

1
2 C10m (K)2p—100m = 21— 241y

m=0

because 0,0(k) = — 0101(k) = 1. Hence the equality is true in the consid-
ered case.

Assume that it is true for an ¢>1 and for j =0,1,...,7. Equal-
ity (2.41) implies

Sij(?j (k) zk) = B; Si—l,j(?’j(k) zk) .

By virtue of (2.49) and definition (2.37) of the operator B, and having
evpplied Lemma 2.7, we obtain for the right-hand side of the foregoing
relation the form

i

B; Z@ijm(k)zk—'i+j+2m = (k+2)~" {ai(k) 050(K) & aqi+

m=g

T Z [a;(k) Qi}m(k) — B:(k) Q;;,m—-l (k)]zk—i—1+j+2m — Bi(k) 9$,i—j(k)zk+i+1—j}

i+1—j

3
= Z 9i+l.im(k)zk—i—1+j+2m .

m=0
This completes the proof.
Putting j = 0 into (2.49) we get in view of (2.40) the following
COROLLARY 2.1. For i = 1,2, ... we have

Pz, = Z Oiom (K) 2k _iiom SO {z}eS.

m=0
Since 0;, Z 0 and g,; % 0 (see (2.47)), this corollary implies
(2.50) r(P;) =2i, u(P;)=—t fori=1,2,...,
where the notation used is that of Definition 2.1 (Section 2.1).

2.4. Recurrence relation of the lowest order for Gegenbauer coeffi-
cients. Let us now come back to the problem formulated in Section 1.
For Gegenbauer coefficients {c{’} (¢ = 0,1, ...,n) of funetion f and its
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derivatives f', "/, ..., f™ we have there obtained the system of relations
(1.27), (1.28); it follows from the differential equation (1.21) and from
equalities (1.12), (1.14). Theorem 2.1 (which will be preceded by some
lemmata) defines the recurrence relation of the lowest order for the co-
efficients {c,}.

Definition 2.6. Let V be a non-zero operator with the property

(2.51) r(V) = —2u(V)

and such that if =, 74, ..., 7, (v = r(V)) are its coefficients, then
(252) W =0y, T, =9V,

where the polynomials ¢, v, @, p satisfy the relation

(2.53) deg(p) — deg(y) = deg(p)— deg(y),

deg(a) denoting the degree of the polynomial a.

The common value of differences of both sides of (2.53) will be de-
noted by I(V). By ¥V we denote the set of all operators V having the above-
given properties.

Note that for an ¢ (0 <i< %) such that p; # 0 the operator L{
satisfying relation (1.23) belongs to the set V, for by (1.24), (1.25) and the
second line of (1.26) we have

(2.54) r(LY) = 2d;, w(LP) =—4d;
and conditions (2.52) and (2.53) are satisfied, whereas
(2.55) HIM) = 0.

To the set V there also belong operators P,, P, ... defined by (2.40),
which follows from (2.50) and from Corollary 2.1. It is easy to see that

(2.56) I(P) =0, UP)=i—1 fori=1,2,...

LEMMA 2.9. If Vi, VeV, UV,) £ UV,), then V =V, +V,eV and
we have

(2.57) r(V) = max{r(V,), r(V,)},
UV, if ¥(V,)>r(Vi_p) for m =1 or 2,

(2.58) (V) = _
max{l(V,), UV,)} if 7(Vy) =7r(V,).

Proof. Fori =1, 2 let u, = w(V;),v; = r(V,), and let v,, 735, ..., T ;
denote coefficients of the operator V,. Since Ve V¥V, we have v; = — 2u,.

The rest of the proof will be divided into two parts.

I If w, # u,, also v, +u, # v,+u,. Hence V # @ and, therefore,
in view of the fact that none of systems (2.3), (2.6) is satisfied, there
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are excluded sharp inequalities in the following from (2.2), (2.3) relations

(2.59) r(V) < max {’01 + Uy, Vo + uz} - min{ul’ uZ}’
- u(V) = min{uy, u,}.

Hence »(V) = max{v,, v} = —2u(V) and we infer that equality (2.57)
holds and V satisfies condition (2.51).

Let 79, 75, ..., 7, (v = 7(V)) denote coefficients of the operator V. It is
easy to see that 7y = 7,,, 7, = 7,,,,, Where m is such that v,, = max {v;, v},
which means that V satisfies conditions (2.52) and (2.53), whereas (V)

=1l(V,,). Hence VeV.
II. Let w, = u,. We then have v;,+u;, = v,+u,. For i =1, 2 let

Tio = @il Vss Tio; = @il Vi
UV = deg(p,) —deg(y,) = deg(§) —deg(§,).
It is easy to verify that for_ Wv, #UV,) we have
(2.60) Tt T = @Y EO0, T, TT., =@/t #0,
where the polynomials ¢, y, @, » are such that
(2.61) deg(p)—deg(y) = deg(p)—deg(y) = max {l(V,), I(V,)}.

So we have V # @ and none of systems (2.5), (2.6) being satisfied,
we infer that sharp inequalities are excluded in (2.59) and we find — as
in the foregoing case — that equalities (2.57) and (2.51) are true. Coeffi-
cients 7, and 7, of the operator V are equal to the first and the second
sums in (2.60), respectively, and so, by virtue of (2.60) and (2.61), they
satisfy conditions (2.52) and (2.54) of Definition 2.6; it is easy to verify
that we also have I(V) = max {{(V,), I(V,)}. Hence we have VeV and the
second part of formula (2.58) is true, q.e.d.

It is easy to prove the following
LEMMA 2.10. If V,, Vye V, then V. = V,V,e V and

WV) =UV)+UTVs).

COROLLARY 2.2. If VeV, o = ¢/y, where ¢ and y are polynomials
t k, ¢ £0, p =0, then o(k) VeV and

Uo(k) V) = U(V)+deg(p) —deg(p).

Proof. Note that the operator U such that Uz, = o(k)z, ({2} eS)
belongs to the set V and I(U) = deg(¢)—deg(y). This and Lemma 2.10
imply the corollary, for o(k)V = UV according to the definition in Sec-
tion 2.1, q.e.d.
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LeMMA 2.11. Let us take

n
(2.62) V= Y2 L0y ti(k)P,_],
=0
where L, LY, ..., LV are operators salisfying relations (1.23), and op-

erators Py, Py, ..., P, and polynomials yy, v, ..., y, are defined by formu-
lae (2.40) and (2.43), respectively. Then VeV and we have

(2.63) r(V) = 2 max (d,_;+1).
o<i<n
Pp—i#0

Proof. Assume
(2.64) V,=2LO[y (k)P,_] fori=0,1,...,n.

Since y,';(k)P,_; # O, we infer that the equality V, = 0 is equi-
valent to the equality L) = 6, whence to the equality p, = 0 (see (1.23)).
If p, & 0 (by assumption this is the case for ¢+ = n), then it follows from
Lemma 2.10 and Corollary 2.2 that Ve ¥V and (by virtue of (2.55), (2.56)
and (2.43)) that

(2.65) Wv,) =i—mn for 0<i<n—1, IV, =0.
From (2.64) by virtue of the first relation of (2.4) it follows that
r(V;) = r(L{) +r(P,_,),
which in view of (2.50) and (2.54) implies

(2.66) r(V,) = 2(d;+n—1).
Put
n
(2.67) Uyj= )V, forj=0,1,...,n.
i=n—j

We will prove by induction on j that U;e V and that the formulae
(2.68) r(U;

;) = max »(V)),

n—Ji<i<n
D=0

(2.69) IU,

;) = Z(Vm],) for n—j<m;<n

are true for any j =0,1,...,n.

For j =0 we have U, = V,eV and, therefore, (2.68) and (2.69)
are trivially true. Assume that U;e V and that formulae (2.68), (2.69)
hold for a j such that 1 <j<<n—1. According to (2.67) we have

Ua’+1 = Uj+Vn—j—1'
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For p, ; , =0 we have V, ; , =6, U,;,, = U;eV and formulae
obtained from (2.68) and (2.69) by replacing j by j+ 1 are obviously true.
For p,_;_, # 0 we have V,_; , # @ and by (2.65) and (2.69) we get

l(Vn—j—l) = _.'i_‘l < ""j < l(Uj)'
By Lemma 2.9 we infer that U;,, belongs to the set V,
7( Uj+1) = ma’x{r( Uj)y T(Vn—j—x)} = max 7(V,),

n—j;;soign
and I(U,;,,) is equal to I(U;) or to I(V,_;_,), whence I(U,,,) = UV
where n—j—1 << m;,, < n.
So for every j =0,1,...,n the operator U; belongs to the set V
and formulae (2.68) and (2.69) hold. '
Since the operator V, defined by (2.62), is equal to U, (see (2.67)

and (2.64)), we infer that (2.63) follows from (2.68) and (2.66).

Definition 2.7. Suppose that for a non-zero operator P there exists
an operator L such that

mj+1)7

n
(2.70) P Y I ) = Loy,

i=0
where L, L, ..., L™ are operators satisfying relations (1.23). The
set of all operators having this property will be denoted by P.
LEMMA 2.12. If Pe P and LeL satisfy relation (2.70), then

(2.71) r(L) = r(P)+2 max(d;—1).
Oi;son

Proof. By Lemma 2.6 it follows from (2.70) that
P N 9 IO [y (W) Py_s] = 27" L7 () P,
t=0

which implies the equality
PV = Lly; (k) P,],
where V is operator (2.62). Using the first of equalities (2.4) we get
r(P)+7(V) =r(L)+7(P,),

whence, by virtue of the first formula (2.50) and formula (2.63), we have
formula (2.71).

Definition 2.8. Let operators L{’ (i =0,1,...,n) satisfy rela-
tions (1.23) and the function =, be such that z,(k) = ¢, [p], where p denotes
the right-hand side of the differential equation (1.21). Define for any
t=1,2,...,n the operators L{, L{M, ..., L{"® and the function =,

7 — Zastosow. Matem. 15.3
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by recurrence formulae

(2.72) L = A, LY, Tori=0,1,...,n—t—1,
(2.73) LY = A, L2+ M,

(2.74) my (k) = Ay_ymy_y(K),

where

1° A, , belongs to the set A(L{";**"Y) and is the minimum operator
in this set,

2° M,_, is an operator such that

(2.75) My_,z, = 2Q, ,[(k+2)2] for {z)eS
and the operator Q,_, satisfies the relation
(2.76) Ay LY =@, D.
LEMMA 2.13. For t =0,1,...,n we have
(2.77) LY = ILLY fori=0,1,...,n—t—1,
(2.78) Lr—9er=8 = 1, an LY,
j=n—t
(2.79) m(k) = e, [p],

where II, is an oﬁemtor defined by
I Jort =0,

(2.80) 11, =
A, I, fort=1,2,...,m.

Proof. Relations (2.77) and (2.79) follow easily from equalities (2.72)
and (2.74), respectively.

We will show by induction on ¢ that identity (2.78) is true. For t = 0
it is obviously true. Assume that it is true for a ¢ such that 0 <t << n—1.
By formula (2.73) we have

(2.81) L Der =t = (4, L0 M) er 4.
Using (2.45), (2.75) and (2.76) we obtain
Mfp=D = 2Q,[(k+2) e~ = @ Defr=" = A, L{FY¢r.

This formula, the induction assumption and formula (2.77) allow
us to transform the right-hand side of (2.81) and obtain

n n
AL (LpOep0 4 3 Ip) —11,,, Y IO,

j=n—t j=n-~{—1

So we see that identity (2.78) is true for any ¢t = 0,1, ..., n, q.e.d.
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Obviously we have
COROLLARY 2.3. Operators II, and L satisfy the relation

n
(2.82) m, 1P = Le,
i=0
and, therefore, II, belongs to the set P.

LEMMA 2.14. If Pe P and LeL satisfy relation (2.70), then there exists
a non-zero operator @ such that

(2.83) P = oIl
(2.84) L =oIV,

where II,, is defined by (2.80) and the operator LY is defined according to
Definition 2.8.

Proof. Since by virtue of the first equality of (2.42), by (2.40), (2.39)
and (2.37) we have P; = §;_,,D for ¢ > 1, we infer by (2.46) that

(2.85) o = 275y (k) 8;_1, Def)  for i>1.
We will show by induction that
(2.86) P=¢tﬂt fOl‘ t=1,2,...’”,
where @, is a non-zero operator and /I, an operator defined by (2.80).
Let t = 1. Using (2.85), we transform (2.70) into the form
n
P{LOn+ 327 LE Ny (k) 851, D1} = 27 Ly (k) 8,1 DefP],
i=1
which implies the equality
PL{ = {27 Ly (k) 8,0, ] —P D) 277 L) [y (k) 851,11 D.
i=1

Therefore Pe A(L{). By virtue of Lemma 2.2 there exists an op-
erator @, # @ such that P = @, 4,, where 4, is the minimum operator
in the set A(L{M).

Assume that for a ¢ such that 1 <?¢<n—1 there exists an operator
®, £ O which satisfies relation (2.86). By virtue of (2.77) and (2.78) we
obtain

n n n—t
PZ:Lgﬂc;j) = @11, Z:Lf,”c}:) = ¢'-Z(: e,
1= 1= 1=

Taking into account (2.70) we therefore have the identity
n—t

@, ) L) = Le,
t=0
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which by (2.85) can be transformed into the form

n—1

O Ll 4 3 2T LI [y (k) 8y, Defp )
i=1 |

= 2Ly (K) 8y g1,y D]
implying the equality

n—t

GLE Y = {2 Ly (R) 8y 101 — @ Y 27 LM I [y (8) 8501} D,
j=1

i.e.
D,e A(LY).

There exists, by Lemma 2.2, a non-zero operator &, , such that
®, = @, A;, where 4, is the minimum operator in the set A(L{*™"),
which implies the equality P = &, ,1I, ,.

Thus we come to the conclusion that (2.86) is true for every ¢t =1, 2,
...yn. For t = n it is of the form P = @, II,, where @, # @. Assuming
@ = @,, we get equality (2.83). o

Relation (2.84) is a consequence of this ‘equality and of identity (2.82),
q.e.d.

THEOREM 2.1. Let f be a function satisfying the differential equa-
tion (1.21) of order n and such that its n-th derivative can be expanded into the
uniformly convergent Gegenbauer series. We then have the recurrence relation

(2.87) LO¢, = m, (k) .for k>0,

where L and =, are an operator and a function, respectively, formed in the
manner given in Definition 2.8, and {c,} are Gegenbauer coefficients of the
function f defined by (1.9). The order 19 of this relation is ewpressed by the
formula

n—1
(2.88) W = D'r(4;)+2 max (&—1i),
=0 o
1

where Ay, Ay, ..., A,_, are operators given by Definition 2.8, r(A;) denotes
the order of the operator A; (j = 0,1, ..., n—1), polynomials Py, Py ---5 Pu
are coefficients of equation (1.21), and d;, denotes the degree of the polyno-
mial p, 0 (0 <<i<<n). Among recurrence relations for the Gegenbauer
coefficients of the function f, which were obtained by virtue of the differential
equation (1.21) and relations (1.12), (1.14), relation (2.87) is that of the
lowest order. .

It is easy to see that coefficients of the operator L are rational
functions and, {¢,} being the Chebyshev coefficients of the function f,
they are polynomials in k.
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Proof. Let the operator I7,, defined by (2.80), be acting on both
sides of equation (1.27). Applying (2.82) and (2.79) we get (2.87).

Formula (2.88) is true in view of Corollary 2.3 and Lemma 2.12.

Let us show the last statement of the theorem. From equation (1.21)
and equalities (1.12), (1.14) we obtain system (1.27), (1.28). The elimina-
tion process of terms of the sequences {c;}, {¢;}, - - ., {¢!} from that system,
leading to the relation of form L¢,, = u(k), where LeL and u is a function,
is equivalent to the action on both sides of equation (1.27) of the operator
Pe P. By Lemmata 2.12 and 2.14 the operator L is of the lowest order
which is equal to the order I{”) of the operator L in the case where

r(P) = r(IT,) = 2’ r(4;).

COROLLARY 2.4. We have

2 max (d; —i) < IV < 2 max (d,_;+1).
o<ign =<ii<n
pP;#0 Dp—3#0
The corollary follows from (2.88) and from the fact that according
to Definition 2.8 and Lemma 2.5 we have 0 <7(4;)<2 for j =0,1, ...
ey —1.

2.5. Algorithm I. We now formulate an optimum algorithm, called
Algorithm I, which allows us to construct a recurrence relation used in
Theorem 2.1 (Section 2.4).

AvrcorrrEM I. Define the system of operators L{?) (1 = 0,1, ..., n;
t =0,1,...,n—t) and the system of functions =, x,, ..., 7%, in the follow-
ing way.

(a) Define (using (1.18)) operators L{", LY, ..., L to satisfy rela-
tions (1.23). Assume that m,(k) = ¢,[p], where p stands for the right-
hand side of the differential equation (1.21).

(b) Let us now perform for every ¢t =1,2,...,n the following op-
erations.

1° Let

1
(289) Lgﬁ;t_ﬂ)z]‘ = le(k)zk+u+j for {zk}es7
j=0

Where 1 = r(L{’7"*Y), and v = u(L{27*Y).
Define an operator N,_, such that N, , = @ for I <1 or such that

-2

(2.90) Nioa#e = ) (k) Zpuprsy (B} eS)  for 1> 1.

j=o
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We assume, moreover, that

0 for I =0,
Ao for 1< 1,

(2.91) n = =14 for I =1,
Ao—vy for 1>1,

A—vy, forl>1,

where the functions vy, vy, ..., v,_, (I > 1) are defined by the recurrence
formula
(2.92) Vi = Vipa— Ajts

for ) =1-2,1-3,...,0 and », =»_; =0.

2° Let us form operators A and R according to formulae (2.13)
and (2.14) for 5 and 9 defined by (2.91), and next assume that 4, , = 4,
R, , =R.

3° Let us form operators @,_,, M,_,, L, L, ..., L{»Y applying
the formulae

(2.93) Qt—l = A,_th_l-I—R,_lE“,
(2.94) M, 2, =2Q,_,[(k+2)2] for {z}eS,
(2.95) L = A, L), fori=0,1,...,n—t—1,
(2.96) LY =4, LY +M,_,.

4° We assume that
(2.97) (k) = A,_7_, (k).

The equation
L(:) O = Ty ( k)

is a recurrence relation of the lowest order — in the sense of Theorem 2.1
(Section 2.4) — for the Gegenbauer coefficients {c,} of the function j
satisfying assumptions of this theorem.

Proof. We will show that operators L ({ =0,1,...,n;¢ =0,1, ...
..., n—1) and functions =,, x,, ..., x,, formed in the above-given way,
satisfy conditions of Definition 2.8. This obviously holds in case of the
operators L{”, LY, ..., L™ and the function ,.

Let ¢t be such that 1 <t < n. From (2.91) and (2.92) it follows that

(/2] [@—-1)/2]
n = lej, 9 = Z Az:‘_+1
ji=o

j=0
and, therefore, we have

7 = oy (LPT5 k), 9 = oo(LTHY5 k)
(see (2.89) and (2.31)).
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By Lemma 2.4 we have
(2.98) LY = N, D+W,_ B,

where N,_, is an operator defined in part 1b of the proved algorithm,
and W,_, = n(k)I+3(k)E.
Operators 4,_, and R,_,, defined in part 2b, are such that

At—l IVt—l = R:_1D

and, moreover, A, ; belongs to the set A(L{";**Y) and is a minimum

operator in this set (see Lemmata 2.3 and 2.5 in Section 2.3). These
statements and equalities (2.98) imply

—t
At—ngﬁl ) = Qt—lD’

where ,_, is an operator defined by (2.93) and, therefore, it satisfies (2.76).
Hence, in view of the formal identity of the corresponding formulae (2.75)
and (2.94) as well as of (2.72)-(2.74) and (2.95)-(2.97), we state that the
operators L, LV, ..., L{*~Y and the function =, are formed in accordance
to Definition 2.8, which together with Theorem 2.1 implies the correctness
of the algorithm.

Example 2.1. The complete elliptic integral of the second kind
/2

(2.99) fl@) = [ (1—a*sin*t)®a@t  for —1<a<1

0

satisfies the differential equation
@@ —1)f" + (@ —1)f —af =0

(see [4], p. 437). We have here n = 2, po(2) = —x, p,(2) = 22 —1, py()
=gz(x*—1), p =0.

Let us now apply Algorithm I to the construction of a recurrence
relation for the Chebyshev coefficients of the function f. We, therefore,
assume that 1 = 0.

(a) By virtue of formula (1.18) we define operators L, L{® and L{
such that

1
Lf,°)c,c = C[pPof]1 = — ?(ck—l+ck+l)7

’ 1, ;L

1 " ’

9) 11 ’ ’” "
L )ck = ¢ [p.f"'] = g(."k—s —Cp_1—Cry1t Crys)-
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Assume, moreover, that =,(k) = ¢,[p] = 0.
(b) By formulae (2.89)-(2.92) for ¢t =1 we have |l =6, v = —3,
and so

1
Nozk = ?(zk—z_zk+2)a n=09=0.

Formulae (2.13) and (2.14) define in this case the operators 4, = I

and R, = 6.
According to formulae (2.93)-(2.97) we have
Qo = No1
1
Moz, = r [(k—2)2,_y— (E+2)2,,],
L(lo) = Lff),
(1) 1
L'z, = Z[(k_l)zk—2_2zk_(k+1)zk+2]7
7 =0
Let ¢t = 2. Applying formulae (2.89)-(2.92) we get | =4, u = —2,
and so h

1
Fity = L [E+3)m 1+ (k+1)2.0],
n=-—1, 9 =0.

Hence formulae (2.13) and (2.14), for which we have case IV, imply
(for o = —1) that A, =D and R, = — 1. From this statement and

from (2.93)-(2.97) it follows that

Q2 = [(k—2)2,_,— 42, — (k+2)2,,],

SN

Mz, = - [(k—2)%%,_,—4ke;, — (k4 2)%%,,],

1
Lz, = Y [(k—1)(k—3)2_,— 4kz;, — (k+1)(k + 3) 21,1,

7wy, = 0.

For the Chebyshev coefficients {b,[f]} of function (2.99) we obtain
the following recurrence relation of the fourth order:

(—1)(k—3)by_o[f1— 4kb,[f1— (k+1)(k+3)b,,[f1 =0 for k> 0.
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This function being even, we infer — in view of T),( — ) = ( —1)*T,(x)
for k> 0 — that coefficients b,,,,[f] (k > 0) are equal to zero and coetffi-
cients {w,}, where w;, = b,,[f], satisfy the second order relation

(2k — 1) (2% — 3)w;,_, — 8kw,, — (2k+1)(2k+3)w,,, =0  for k> 0.

Example 2.2. Let us construct a recurrence relation for the Gegen-
bauer coefficients {c,} of function (2.99), which are defined by formula (1.9)
for 2 £ 0. Let n, p,, p,, p, and p have the same meaning as in Exam-
ple 2.1. ‘

(a) Applying (1.19) forl = 0,1, 2 and 3 we get:

ag =1,

k+ 22

a (k) = my ay;, (k) = ot A
(k—1), K424k +1—1 (k+24),
k) = — "2 k) = k) = — 7
axy(k) (k+l—1)2’ az (k) (k-}-l)2~l y  Agq(k) (k+ 7). ’

(k—2), K4 (24—1)k—2
v) = —/—/——————— k) = 3k
ST TR RN
B+(22+1)k+2(1—1) (+22),

N\ k) = — "3
tall) =302 T a0 T ey,
Using (1.18) we define operators L, L’ and L{? such that

: 1
L{¢, = e [pof]1= — m[kck_r*'(k"*‘ﬂ)ckﬂ]a
’ 1 (k'—'l)z ’ l()'—l) ]I
1. o ) A _ o =
LO ck —ck[plf] 4 {(k—,'}._l)z ck—2 2[1+ (k+l)2_1 ck
(k+22), ,
(k‘l'}b)z k+2()
Lff’@k’ = ¢x[Pof"']
_ 1 { (k_2)3 C” k [1+ 31(1_1) ]cu _
8 (k+A—2), T k+A (k+4a—2)(k+a+1) |
_ k+2z [1 32’(1_1) ]cll + (k+2}“)3 0” }
k+2 (k+A—1)(k+2+2) | 77 (k+2),

We assume that m,(k) = ¢,[p] = 0.

(b) Performing the operations 1°-4° for ¢ = 1 of part (b) of Algorithm I
we obtain the operator N, and find functions 5 and 9, and next construct
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operators A,, Ry, Qo, My, L, L{) and the function =,. Consequently,

i _l{ (k—2), . 22k (% -+ 22) Y (k+22), i
TRl (HA=2) T (A1), (k)
n=9=0, A, =I, R,=6, ¢ =N,

1) (k—2)s 24k (k4 22) (k+22),

0% =Z{(k+1—1)2z"“2_ BT AP—1 % (k1 A)s z’c+2}’

L(IO) = Lgo)y

o, L[ kE-17 (A+ 1) +21(A+1)k+(22+1)(A—1)
1 k-—Z{(k+}.—1)2 k—2 (eF AP —1 2 —
(k+22) (k424 +1)?

- (k_I__l)z k+2}’

w, =0.

Repeating this procedure for ¢ = 2 we get the operator N; and the
functions 7 and 9 as well as the operators 4,, R, Q,, M,, L{¥ and the
funetion #,. We have

B+ 2(4A+ 1)K+ (1642 — 3)k+ 44 (A —1)(22+1)
[ (k+4—-1),
(k+24)(k+24+1)

(l—+ 2); "*‘]’
n=—(244+1), &=0, A,=D, R, = —(2i+1)I,
1[(k—1)(k—2) (A4+2) k2 +20(A4-2)k—2(A+1)
B = Z[ (Fri-2), 77 (k+47—1 T
(k+24+1)(k+21+2)
B (k+4+1), "*2]’
2
o= [
(A+2) k2 +24(A+2)k —2(A+1)
Tt AP—1 “
(k+22+1)(k+ 24+ 2)*
k+A+1 "'“]’

1[(k—3)(k—1) 424k —1
IOz = = (A4 2) (kAT

(k42141 (k+24+3) ]
k+i+1 k2]’

1
'lek ZZ

Rp—1 t+

—2(k+2)

w =0.



Coefficients of the Gegenbauer series 377

The Gegenbauer coefficients {c,} of function (2.99) satisfy, therefore,
the recurrence relation

I®M¢, =0 for k>0

of the fourth order, with L{" already calculated. Since this function is
even and, by a well-known property of the Gegenbauer polynomials,

CP(—2) = (—1)*CP(x) for k>0

(see [3], vol. II, § 10.9), we have ¢, ., = 0 (k> 0), and the coefficients
fw,}, w, = ¢y, satisfy the following recurrence relation of the second
order:

(2k -+ A-+1)(2k — 3) (2k — 1)2w,_; — 2(242)(2k + ) (4k> + 42k — 1) w, —
—(2k+A—1)(2k+24+1)*(2k+24+3)w,,, =0 for k> 0.

Algorithm I as well as algorithms described in Sections 3 and 4 are
easy and simple in applications. If, however, the order » of the differential
equation (1.21) or degrees of polynomials p,, p,, ..., p,,, Which are coeffi-
cients of this equation, are large, then the corresponding calculations may
be tiresome. It is to note that there is a possibility of automatic realiza-
tion of these algorithms in one of programming languages if it admits
formula manipulation as, e.g., ABC ALGOL (see [8]).

Let us finally remark that the results of the present section and those
of Sections 3 and 4 may be easily applied to the case of the shifted coef-
ficients of Gegenbauer and of Chebyshev, i.e. to the coefficients of series
with respect to polynomials {C;*(x)} and {Ty(x)}, respectively, where

Cw) = CP(2x—1), Ti(z)=Ty(22—1) for 0<ao<1.

3. GENERALIZATION OF THE PASZKOWSKI METHOD

First we describe an algorithm (called by us Algorithm II) which
leads to a recurrence relation for the Gegenbauer coefficients of a function
satisfying the differential equation (1.21). The order of this relation is
equal to number (1.29), which, in view of results of Section 2.4 (see The-
orem 2.1 and Corollary 2.4), implies that Algorithm II, generally, is not
an optimum one.

Next we will show how to generalize the results of Paszkowski [7],
§ 13, on the Gegenbauer coefficients and to get in this way an algorithm
called the generalized Paszkowski algorithm (GPA). Moreover, it will
be shown that algorithms II and GPA are equivalent in the sense that
they lead to the same recurrence relation (Section -3.2).
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3.1. Algorithm II. It may be shown that the differential equa-
tion (1.21) is equivalent to the equation

n
(3.1) D@ =p,
1=0
where
(3.2) q; = 2(—1)j"'(jj_i)p§-"‘i’ for i =0,1,...,n
i=

(see, e.g., [7], § 13). Obviously, both sides of (3.1) have the same Gegen-
bauer coefficients, whence

D a1 = alpl,

1=0

where, according to the assumptions of Section 1, we have

4.1 = e [(¢:.1)].

Let the operator P,, defined in Section 2.3 by formula (2.40), act
on both sides of this relation and take into account that P, = §,_, ; P,
for s =0,1,...,n (see (2.42)). We get

Y 8,1, Pi[4:f] = Poc,[p],
=0

which by Lemma 2.6 (Section 2.3) implies the identity

(3.3) V28, 1i(vi(k) 6 [4if 1) = Prelp].
i=0
Functions ¢, ¢,, ..., ¢, being polynomials, we can In view of rela-
tion (1.18) define operators Ly, L,, ..., L, such that
(3.4) Lic,[f] = vi(k) e [g:f] for ¢ =0,1,...,n,

which together with (3.3) implies the following

THEOREM 3.1. If the function f satisfies conditions of Theorem 2.1
(Section 2.4), then

(3.5) Ley, = n, (k) for k>0,

where

(3.6) L= Y28, L,
i=0

(3°7) j";n(k) =Pnck[p]7

¢, = ¢, [f] being the Gegenbauer coefficients of the function f.
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Remark that it follows from Theorem 3.2 (see Section 3.2) that the
order of relation (3.5) is equal to number (1.29) which limits from above
the order of the recurrence relation constructed according to Algorithm I
(Seetion 2.5).

Formalized description of the method of the construction of rela-
tion (3.5) leads to the following Algorithm II, which in view of the above
remark is not, in general, the optimum algorithm.

ArGoriTHM II. The recurrence relation (3.5) can be constructed in
the following way:

(a) Define operators L,, L,, ..., L, to satisfy identities (3.4).
(b) Form operators §,_, ; (¢ = 0,1, ...,n) according to the formulae

(3-8) Sn—l,n = I, Sn—l,i == S‘n—l,i-}-lB‘l' fOI' 'i = n_l, n""2’ coey 0,

where B; is an operator defined by (2.37), and next determine the opera-
tor L by (3.6).
(c) Define functions =, x,, ..., %, by the formulae

(3.9) my(k) = ¢, [pl, m;(k) =B,_im;_,(k) fori=1,2,...,n.

The function =,(k) forms the right-hand side of equation (3.5).
Proof follows from Theorem 3.1 and relations (2.41) and (2.42).

Remark. Part (¢) of Algorithm IT may be modified if instead of
formulae (3.9) we use formula (3.7) and take into account that P, = 8§, _, ,.

Example 3.1. The function
(3.10) f(®) = (ax)'~*s,(az) for —1<x<1 and a #0,

where x4 and v are real numbers such that x-+» and y—» are not odd
integers and s, denotes the Lommel function, satisfies the differential
equation

(3.11) o' f" 4+ bz f + (a®2*+¢)f = a*a?,

where b = 2u—1 and ¢ = (u—1)2—92 (see [3], vol. II, § 7.5.5).

We are going to construct a recurrence relation for the Chebyshev
coefficients {b,[f]} (i.e. for the Gegenbauer coefficients defined by (1.9)
for 4 = 0) of function (3.10). Applying (3.2) for n = 2, py(2) = a?x24-c,
P:(2) = bz, py(a) = x?, we obtain

%(2) = a*x®*+d, (@) =(b—4)x, ¢@@) =22?,
where d = 2.—b+c.
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(a) Define operators L,, L; and L, such that (see (3.4))

1
Lyb;, = yo(k)br[qof] = Z(a2bk_2+2(a2—|—2d)bk+azbk+2),

Ly, = 1 (k)b [qaf ] = — (b — ) k(by_y + by ) s

Lyb;, = ya (k)b lgof 1 = (k_l)a(bk-2+2bk+bk+z)’

| = b

where b, = b, [f] and v;(k) (¢ =0,1,2) are polynomials defined by
formulae (2.43) for 4 = 0.
(b) According to formula (2.37) for 2 = 0 we have
B,=D, B,=(k+1)E1'—(k—1)E.
Applying successively formulae (3.8) and (3.6) we get

S0 =1, Sy =By, Sy = (k1) B 2kI+(k—1) B,
1 1
L= Za’(k+1)E-*+(<k+1)[<k+b—4)<k—1>+d]+ §a2)E-2+
1 1
+2k(k2— Zaz—d—1)1+((k—1)[(k—b+4) (k+1)+d]——2—a2)E2+
1 2 4
+ 5 @k—1) B,

(¢) The function p(#) = a*x? on the right-hand side of (3.11) may
be written, in view of fact that Ty(x) = 1 and T,(2) = 22*—1, in the form

1
p(@) = 5 a*(To(a) + (),
which implies that
a? for £k =0,

1
7o (k) = b [p] = 5“2 for |k| =2,

0 for |k| =1, 3,4,...,
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where we made use of the following equality resulting from formula (1.10)
for A =m = 0:

' b_,[f]1 =0b.[f] for k>0.

The second formula of (3.9) defines for ¢ = 1,2 successively the
functions

1
—a* for k| =1,3,
(k) = 2
0 for |k| =0,2,4,5,...,
a? for |k} =0,2,
5
7wy (k) = Eaz for |k| = 4,
0 for |k =1,3,5,6,...

The Chebyshev coefficients {b,} of function (3.10) satisfy the following
recurrence relation of the eighth order:

Lb, = my(k) for k= 0;

L and =, being calculated above.
Since this function is even, by, =0 (k> 0) and the coefficients
w, = by, satisfy the following relation of the fourth order:

a*(2k+1)w;_,+2(2(2k+1)[(2k+ b —4)(2k — 1) + d] + @*)w,_, +
+4k[4 (4K —d —1) — a*Jw, +
+2(2(2k — 1) [(2k — b+ 4)(2k + 1) + d]— @*)wy,, +a*(2k —1)w,

[40,2 for k¥ =0, 2,
= 110a®> for k = 4,

lO for k¥ =1,3,5,6,...
Example 3.2. Using Algorithm II, we are going to construct a recur-

rence relation for the Gegenbauer coefficients {c,[f]} of function (3.10),
which are defined by formula (1.9) for 2 # 0.
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(a) Using (1.18) we define operators L,, L, and L,:

Lye,, = yo(k)er[qof]

_1(a2 (k=1) N [2k2+22.k+}.—-1
(k+A—1), *? (k+4)2—1

k+2
+2d]0k+a,2( + l)20k+2)’

4 (k+ 4),

1
Ly, = yi(k)elaif] = '2‘(b—‘4)[kck—1+ (k+24) ¢4,
Ly, = ya(k)ex[gaf]

1
= S+ A41) (B =1)200y +2(k+A) (K + 24k +A— 1), +
+(k+A—1)(k+22)44,],

where the constants a, b, d and the functions ¢,, ¢,, ¢, are such as in Exam-
ple 3.1, and the polynomials y;(k) (¢ = 0,1,2) are defined by formu-
lae (2.43).

(b) By virtue of (2.37) we have
B,=D, B,=(k+i+1)E'—(k+i-—1)E.

Define operators S;; (¢ =0, 1, 2) according to (3.8) and next the
operator L by (3.6):

Slz = I’ Sll == ‘Bl, Slo = (k—l_;i_'—l)E—z—2(k+1)1+(k+1_1)E2;

oL btA4+1)(E—3), o,
4 (k+4—3)q

(2A+1)k—3(4+1)
2(k+4—3)
) k2—|—2}.k—2}.2—3}.—4]
4[(k+2)* —4]

+[(k+/1+1>[(k+b—4>(k—1>+d] +a? ]E+

+ 2(k+z)[k2+21k +(b—3)A—d—1—a

+[(kH—l)[(k+2l—b+4)(k+21+1)+d]—

2 k —1)(k
@A DE+ G +5'1+3]E2+la2( FA-1)(k+2042),
2(btA13) 1 (k+4+2);
(c) Since CP(x) =1 and CP(x) = 2(1),4>— 1 (see formula (1.2)),
we have

1
2 m2 2 (%) (4)
p(x) = d*a* = T a*[ACY" (2) + CY (x)].
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This formula and formulae (1.10) and (1.11) imply

1
— a? for k=0,
2(A+1)
m (k) = ¢ [p] = a2 for k =2
2(7)s ’
0 for k = —2, —-1,1,3,4,...

Using the second formula of (3.9) we successively define the func-
tions =, and =,:

1
——a* for k= —1,
2(A+1
-1
12 a? for k =1,
my(ky =] 2(4),
1 a? for k = 3,
2(4),
0 : for k =0,2,4,5, ...,
21—-1
— (A+1)¢ ) a® for k=0,
2(4).
2
—14
%_,_—A——az for k =2,
mo(k) =] 2(4)
A+5a2 for £k =4,
2(2),
| 0 for ¥ =1,3,5,6, ...

The Gegenbauer coefficients {c,} of function (3.10) satisfy, therefore,
the recurrence relation of the eighth order,

Le, = my(k) for >0,

with the above-calculated L and =,. Since this function is even, we have
Coes1 = 0 (k> 0), and for the coefficients {w,}, w; = ¢y, this equation
gives a recurrence relation of the fourth order.

3.2. The generalized Paszkowski algorithm. The results of Pasz-
kowski [7], § 13, for the Chebyshev coefficients will now be generalized
for the case of the Gegenbauer coefficients.

8 — Zastosow. Matem. 15.3
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From equality (3.3) of Section 3.1 it follows by Lemma 2.8 and Cc
rollary 2.1 (Section 2.3) that

n n—1i n
J ol
(312)  X'2 3 0uim(®) Chniivem S 1 = D Cuom () C_niom[P]-
i=0 m=0 m=0
An analogous relation was obtained in the book [7], § 13, for i =
(Theorem 13.1). The following theorem may be considered as a geneial
zation of Theorem 13.2 of this book.

THEOREM 3.2. Equality (3.12) implies the recurrence relation
d n
(313) D (B eeilf1 = ) tuon(F) 0 nyanP]  for k>0,
i=—d m=0
where
= max (dn—j+j)7
0<ji<n
Pp =0
p stands for the right-hand side of the differential equation (1.21), and pol;
nomials Pg, Py ..., P are the coefficients of this equation, d, denotes tl
degree of the polynomial p, £ 0 (0 < I < n). The coefficients v_g, T_g.yy -y
are: 1° rational functions for 4 # 0 or 2° for 2 =0 — polynomials in .
mostly of the degree 2n —1, such that v_,(k) = —7,(—k) (¢t =0,1,...,d
moreover, T_g 0 and t; % 0.
If Doy P1y ...y Dp, are alternately even and odd functions, then (3.1
contains only d+-1 coefficients ¢;,_g[f1, ¢x—aiolf1y -+ Cryalf]

Proof is analogous to that given in [7] for the above-mentione
theorem.

The method using the equality (3.12) in order to construct the recu
rence relation (3.13) is called the generalized Paszkowsk: algorithm (GPA
For 4 = 0, GPA is identical with the algorithm given in [7], § 13, whic
we call Paszkowski’s algorithm.

The equivalence of identities (3.3) and (3.12) implies the identit
of relations (3.5) and (3.13) and, therefore, the equivalence of Algorithm .
and GPA.

As already noticed, Algorithm II (and so GPA) is not, in gener:
an optimum algorithm. We formulate the following

HyproTHESIS. If the coefficient of equation (1.21), appearing at t
derivative of the highest order, has zeros different from 1 and —1, then Alg
rithm II (GPA) leads to a recurrence relation for the Gegenbauer coefficier
of a function satisfying the assumptions of Theorem 2.1 (Section 2.4), as
the order of this relation is the lowest one in the sense defined in this theore:

We infer from Theorem 4.2, which will be proved in Section 4.
that this hypothesis is true in the case of the Chebyshev coefficients (A = (
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4. MODIFICATION OF THE OPTIMUM ALGORITHM
FOR THE CHEBYSHEV COEFFICIENTS

Algorithm I, described in Section 2.5, may be applied, in view of the
second part of (1.9), to constructing the recurrence relation of the Cheby-
shev coefficients {b,[f]} of the function f satisfying assumptions of Theo-
rem 2.1 (Section 2.4); to this end it suffices to take in (1.18) and (2.94)
the value A = 0 (see Example 2.1 in Section 2.5).

We are now going to show that if the coefficient p, of the differential
equation (1.21) of order n has no zeros equal to 1 or — 1, then it is possible
to modify Algorithm I (without loss of optimality) which mainly consists
in the substitution of operators 4,, 4,, ..., 4,_, by operators B,, B, ...
..., B,_,, respectively, defined by (2.37) for 4 = 0. This follows from The-
orem 4.1 which will be proved in Section 4.2.

Let us emphasize that by B;, S;, P; and y; we denote in this section
operators and functions defined in Section 2.3 by formulae (2.37), (2.39),
(2.40) and (2.43), respectively, where the parameter 1 is equal to zero.
Thus

D for : =0,
(4.1) ;= .
E~'[a,(k)E"'—B,(k)E] fori=1,2,...,
V4
(4.2) a(k) = (k+i—1);, Bi(k) = (k—i)s,
I for i < j,
(4.3) Sy = T
B‘i'Bi—l cee B] for < >J 2 0,
(4.4) P,=8,_,, fori=0,1,...,

(4.5) volk) =1, v;(k) =(k—i+1)y_, fore=1,2,...

We also have
B’}’j(k) —=—0 fOI'j =0,1,...,
S--y,-(k)»z() for i>j>0.

Y

(4.6)

The first identity of (4.6) follows from (4.1), (4.5) and (2.44), and
the second one from the first and from definition (4.3) of the operator S,;.
It can also be shown that for any operator L we have

(4.7) Gt(SijL; k) = S,-,-o"(L; k) fOI' t = 1, 2.

This formula follows from properties (2.32)-(2.34) of o,(L; k) and
from the definition of the operator 8.
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4.1. The set T of operators. We begin with

Definition 4.1. Let T be the set of difference operators with co:
stant coefficients such that

d

(4.8) sz = 2 }.jzk_‘_j fOI' {zk}GS,
j=—d

where

(4.9) Ay = 2A_; for j =0,1,...,d.

Note that the operators I and 6 belong to the set T as well as — &
(1.26) — the operators L{? (i = 0,1, ..., n) which satisfy (1.23) and (1.2
for A = 0. ) ~ )

LEMMA 4.1. If LeT and the operator L* is such that

(4.10) L*z, = L(kz,) for {2,}eS,
then
(4.11) L* =kL+L,D,

where LT and D = E™'—E.
Proof. Let the operator L be such that identity (4.8) holds. Then
(4.12) L* =kL+M,

\,

where the operator M is such that

d
j=—a

If d =0, then M = @ and from (4.12) we obtain (4.11) for L, =«

Let d > 1. Remark that

d
7 (

o (M; k) =
(4.13) d_"f

oy(M; k) = Z (2j"d+1)z‘2]’—d+1 =0,

0

2j—d)dy;_q =0,

=]

<.,
I

where the notation is that of (2.31).
Lemma 2.4 and the above-given formulae imply

(4.14) M = IL,D,

the operator L, being such that

d-1
lekz S ljzk+j,

j=1—d
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where the coefficients Z,- are defined by the following formulae:

d
hjiay = — Y(2i—d)dy_, forj=1,2,...,4d,
i=j
d—-1
j'2_’i—d = —Z(zi_d"*—l)lzi_d_l_] fOI‘j=1,2, .-.,d—l.
i=j

Since
Zd—2j+1_zzj—d—l =0o,(M;k) forj=1,2,...,4d,
Ag—sj—doj_g = ay(M;3 k) for j =1,2,...,d—1,

we infer in view of (4.13) that L, belongs to the set T. Equality (4.11)
follows from (4.12) and (4.14).

Assume that
(4.15) b =b,[f®] fori=0,1,...,7n
(see (1.8)). Instead of b, b and bP we will write by, b, and b, respec-
tively.

LEMMA 4.2. Let LyeT. For every ¢ = 0,1, ..., n we have
(4.16) P,L,b) = 2 N,;b,,
swhere P; is operator (4.4), and N, — an operator defined by
)
= \J
8;_,,; being the operator (4.3), y; — the function defined by formulae (4.5),
and the operators L., L,, ..., L, satisfy the relations
(4.18) Lt_l(kzk) - kLt_lzk"I‘LtDzk
Jort =1,2,...,n and {2} S.

Moreover, we see that

(4.19) ou(Nis k) = o3 (Lo; K) (k) for h =1,2,

where h; = h;(h) is equal to 1 or 2 and h;(1)+ h;(2) = 3.
Proof (by induction). Since P, =8_,, =1 and y, =1, we have
Ny, = L,; equality (4.16) is for ¢ = 0 trivially true. ,
Assume that (4.16) and (4.17) are true for a certain ¢ = 0. From
formulae (2.42), (4.17) and (2.41) it follows that

(4.20) P Lob+Y = B,P,Lb{™) = 2¢B; N;b,
)

= 2i2 (; ) S [yj(k)Li—jbI;] .

j=0

(4.17) N; = Z( )Si—l,j[}’j(k)Li—j]’
0
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Since L,eT, we infer by Lemma 4.1 that the operators L,, L,, ..., L,,
defined by identities (4.18), exist and belong to the set T. This means,
in particular, that they are operators with constant coefficients. The
identity Db, = 2kb, (see (1.13) and (1.9)) and the equality

B;(yj(k) I} = & 9;,. (k) D,
following from (2.44), as well as (4.18) and (2.41) imply
S35 (vi(%) Li_jbr) = 84511 Bi(v;(R) Li_;by) = 8541 (k 7" v511(k) DL;_;by)
= Si,]’+1(k—17j+1(k)Li—ij;c) = 28, ;11 (k_17j+1(k)Li—j(kbk))
= 2Si,]‘+l(yj+l(k)Li—jbk+k—17j+l(k)DLi+l-—:ibk)
= 28, 41 [V51(8) Li_;bi+ B (%) L1 b4
= 2841 (¥i41(B) L) + 8y (vs(k) Ly yy b)) for j =0,1,...,4.

The last expression in (4.20) may be, therefore, transformed to the
form

i+1 4.
2z+1 Z(/&_{j )S’OJ (yj(k)Li+1_jbk’.

=\

Hence identity (4.16) holds for every ¢ =0,1,...,n.
We now prove formula (4.19). By virtue of (2.33), (2.34) and (4.7)
it follows from (4.17) that

on(N;5 k) = Zg(;) Si-],j(‘}’j(k)ahj(Li—ji k)) for h=1,2,
i=

where h; = h;(h) is equal to 1 or 2 and h;(1)+h;(2) =3 (j =0,1,...,1)
Since o05,(L;; k) = const (¢t =0,1,...,n and h =1, 2), we infer in view
of the second equality of (4.6) that terms of the sum on the right-hand
side of the above-given formula, obtained for j =0,1,...,i—1, are
identically equal to zero. The last term of this sum equals y;(k) ony(Los k),
which implies formula (4.19).

4.2. Modification of Algorithm I. First we show

LEMMA 4.3. Let f be a function developable into the Chebyshev series (1.7),
p — a polynomial and L — a difference operator satisfying the identity

Lb, = b, [pf], where b, = b,[f].
Then the inequality

p(—=1)p(1) #0
is equivalent to the imequality

loy(L; k)| # loa(L; k).
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Proof. Let ¢ and »,#+r, be the quotient and the rest, respectively,
from the division of the polynomial » by #2—1:
(4.21) p(x) = (22 —1)q(x)+rz+7,.
Define operators M and N by
Mb, = by[gf] and  Nb, = by[(r4+75)f].
By (1.18) for 1 =0 we get

1 1
bl(@®—1)qf) = - (be—»[9f 1 —2b,[qf 1 + by [af]) = Z-Dszln

1 * .
Nb,, = ?Tl(bk_1+bk+1)+'rzbk7
where D = E"1—E.

We have
Lb, = b, [pf] = b [(#2—1)qf 1+ b [(riw+75)f ]
=%D2Mbk+ka,

which by (2.34) implies
1 .
(4.22) on(L; k) = oy, (ZDZM; k)—|—ah2(N; k) for h=1,2,

where h; = h;(h) =1 or 2 and h;(1)+5;(2) =3 (¢ =1, 2).

Since M is an operator with constant coefficients (which follows
from the definition of M and from (1.18) for 4 = 0), we have o,(M; k)
= const (b = 1, 2). Using (2.32)-(2.34) we verify that

1 1
oh(ZDzM;k) =—4—D2ah(M;k) =0 for h=1,2.

It is easy to see that
oy(N3; k) =7; for h =1,2,
where
) ] h for r, 0 or r, =0,
j=3j) =
3—h for r, =0 and r, # 0.
Consequently, it follows from (4.22) that
O'h(L;k) =1 for A =1’2,

Where 1 = 1(h) =1 or 2, whereas l(1)41(2) = 3. This result together
Wwith equality (4.21) proves our lemma.
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LeEMMA 4.4. Let
(4.23) I =1  fori=0,1,...,n,

where LO, LY, ..., L™ are operators satisfying (1.23) for A = 0. Let t
be such that 1 < t << n. Suppose that the operator B,_, defined by (4.1) belongs
to the set A(L{"7'*Y) and, therefore, that there exists an operator Q, , for
which

(4.24) B, L0 =@, D

and define operators L®, IV, ..., L") by the formulae

(4-.25) LY = B, I, for i =0,1,...,n—t—1,

(4.26) L9 = By L0+ M, Ly,

where M,_l i8 an operator for which

(4.27) M, 12, = 2Q_1(kz,)  for {#]}eS.

We then have
(4.28) on(L{" D5 k) = 2o (L k) y (k) for b =1,2,
where vy, is the polynomial defined by formulae (4.5) and h, = hy(h)
=1 or 2, whereas h,(1)+h,(2) = 3.

From Lemma 4.5, which will be proved in the sequel, it follows that
the assumption on the operator B,_; in Lemma 4.4 is satisfied for every
t=1,2,...,n.

Proof. Note that equalities (2.72), (2.73), (2.75) and (2.76), which
define the operators L{ for A = 0 (Section 2.4), and relations (4.25)-(4.27),

(4.24), respectively, are from the formal point of view the same up to
the notation. It may be shown that analogously to (2.78) we have

¢ L AL, »
(4.29) I 9pp- = P, Y LY,

i=n—t
where P, is the operator defined by (4.4).
Applying the equality
‘Pl=St—l,j'P' fOI‘jZO,l,...,t,

corresponding to (4.3) and (4.4), we will transform the right-hand side
of (4.29) to the form

i
r (n—t+5) p(n—t+j
St—l,ijLgn +J)b§cn +)

j=0

J
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In view of (4.23) and (1.24), (1.26), the operators L (j = 0,1, ..., n)
belong to the set T, which by Lemma 4.2 implies that there exist op-
erators Ny, Ny, ..., Ny such that

P L pr—t+) — oI N b for j =0,1,...,1
and

(4.30) 0,(N;y; k) = ahj(j}g”“”); k)y;(k) forj=0,1,...,tand b =1,2,

J

where h; = h;j(h) =1 or 2 and h;(1)+h;(2) = 3.
We thus get the equality
t

I:g"—” — Z ZjSt_l,jN .

j=o0

which, by virtue of (2. 33) (2.34), (4.7) and (4.30), implies

o (L85 k) 221 (LGt k)8, ;v;(k)  for b =1,2.
J=0

Using the second equality of (4.6) we state that the terms of the
sum on the right-hand side, obtained for j = 0,1, ...,¢—1, are identically

equal to zero. The last term of this sum is equal to 2’oht(LAf,"); k)y,(k),
for 8;_,; = I, which implies relation (4.28), q.e.d.

LEMMA 4.5. For every t =0,1,...,n—1, the operator B,, defined
by (4.1), belongs to the set A(L{Y), where L is defined in Lemma 4.4.

Proof. Since B, = D, and L{ is the operator with constant coeffi-
cients, we have

B,L{Y = L{ D,

which means that Bye A (L{Y).

Suppose that 1 <¢t<n—1 and that the operator B,_;, belongs to
the set A(L{7*Y). Applying formula (4.7), Lemma 4.4 (formula (4.28))
and the first equality of (4.6) we infer that

on(B LM k) = Byoy (L k) = 20, (LM k) Byyy(k) = 0
for h =1, 2.

Consequently, by virtue of Lemma 2.4 we see that there exists an
operator Qt such that
B,i™9 — §,D
and, therefore, B,e A(L"Y), q.e.d.
It follows from the last lemma that every stage of the construction
described in Lemma 4.4 is realizable when we form the system of opera-
tors L (¢4 =0,1,...,n and ¢ =0,1,...,n—%).
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Assume that
(4.31) (k) = b[p], m(k) = B, (k) for t =1,2,...,n,

where p = p(z) denotes the right-hand‘ side of (1.21).
Determine, moreover, polynomials d, 6,, ..., 9, ., of the variable k by

(4.32) 60=61 El, 6¢+2=Yt6t fOI‘ t=0,1,...,’n,
where y, is the polynomial defined by (4.5). It is easy to see that
(4.33) at-'-lz = (k+1)t6t+17 6t_+2 = (k_t)téml for t = 0,1, ceey 1y

the notation being that of (1.1) and (1.17).
, LeMMA 4.6. If the coefficient p, of the derivative of the highest order in
the differential equation (1.21) is such thai

(4.34) Pu(—1)p,(1) # 0,

then for every t = 0,1, ..., n we have

(4.35) I = 8,(k)LH for i =0,1,...,n—t,
(4.36) 7, = 8,7,

where L®, LY, ..., L") are operators and m, are functions formed in
Algorithm T (Section 2.5), L®, LM, ..., L denote operators defined
in Lemma 4.4, m, and d, are functions defined by (4.31) and (4.32), respec-
tively.

Moreover, operators Ay, Ay, ..., A,_,, defined in Algorithm I, are
such that

(4.37) A, = (k+1,E'—(k—t),E fort =0,1,...,n—1.
Proof. The operator L{™ satisfies by definition the identity
b [P f™] = L{b, [f™],

hence by Lemma 4.3 inequality (4.34) implies the alternative

(4.38) 6, #0, o0, =c¢0, for c #1
or

(4.39) g, #0, 0, =cCy0, for ¢ #1,
where

(4.40) o, = o, (LM; k) for b =1, 2.

It is easily seen that equalities (4.35) and (4.36)_are true for ¢ = 0.
It may be verified that, according to Algorithm I, the operator A4, is in
view of (4.38)-(4.40) of form (4.37) for ¢ = 0.
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Suppose that (4.35) and (4.36) hold for a ¢ such that 0 <t << n—1.
By virtue of (2.33), (2.34) and (4.28) we then have

(L5 k) = 240y, (L Ky py(k) (k) for b =1, 2,
where &, = 1 or 2 and, therefore, by (4.23), (4.40) and (4.32), we obtain
on (L5 k) = 2'0y,0,45(k)  for b =1,2,
So, if relations (4.38) hold, then
n(k) = o (L5 k) £ 0 (k) = 6oL k) = eyn(k),

where ¢, is the constant occurring in (4.38); according to Algorithm I,
the operator A, is defined by (2.13) for the above-given values 5 and 9.
Since formula (2.13) is connected with case IV we have

1

4, = ~) [8f12 (k) E™" — 87, (K) B,

where w; = ged (6;,, d;5,), which in view of (4.33) implies equality (4.37).
It may be similarly proved that this equality occurs also in the case
where relations (4.39) hold.
It is easy to verify that if the operators 4, and B, are defined by (4.37)
and (4.1) respectively, then we have

A, [0,(k)I] = 5t+1(7‘7)Bn
which by (4.35) and (4.36) implies the relations
ALY = 8, (k)B, LY for i =0,1,...,n—t,
A,y (k) = 6, (k) B, 7, (k).

By virtue of (2.72)-(2.76), (4.24)-(4.27) and the second formula of (4.31)
we thus get

LA, = 6 (KLY, for ¢ =0,1,...,n—2t—1,

Ty1 = at+17}t+17
which completes the proof of Lemma 4.6.
THEOREM 4.1. If the function f satisfies the differential equation (1.21)
of order n and the coefficient p, of this equation has no zeros equal to 1 or

to —1 and if the derivative f™ may be expanded into a uniformly convergent
series of Chebyshev, then the recurrence relation

(4.41) IO, [f]1 = #,(k)  for k>0

is true and has the lowest order — in the sense defined in Theorem 2.1 (Sec-
tion 2.4) — which is equal to number (1.29).
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Proof. Equation (4.41) follows from the first part of Theorem 2.1
and from equalities (4.35) and (4.36). It is obvious that this equation and
equation (2.87) have the same and, therefore, the lowest order expressed
by formula (2.88). In virtue of Lemma 4.6 all operators 4,, 4, ..., 4,
are of the second order, hence the right-hand side of (2.88) and expres-
sion (1.29) are equal, q.e.d.

Therefore, if the assumptions of/Theorem 4.1 are satisfied, it is pos-
sible to modify part (b) of Algorithm I (for 4 = 0) in the following manner:

Fort=1,2,...,n:

1° Form the operator B,_; according to formula (4.1).

2° Form the operator §,_; according to the formula

8, = B:_IL?S””
and then the operator @,_, such that 8,_, = @,_,D.

3° Construct operators M, ,, L®, LM, ..., L") and a function =,
using formulae (2.94)-(2.97), where the symbol 4,_, was replaced by the
symbol B;_;.

THEOREM 4.2. Assume that the function f satisfies the differential
equation (1.21) of order n and that the derivative f™ can be empanded into
a uniformly convergent Chebyshev series. The Paszkowski Algorithm (Sec-
tion 3.2) and, therefore, the equivalent for A = 0 Algorithm II (Section 3.1), lead
to a recurrence relation for the Gegenbauer coefficients of the function f, and
this relation is of the lowest order — in the sense assumed in Theorem 2.1

(Section 2.4) — if and only if the coefficient p,, of equation (1.21) has no zeros
equal to 1 or to —1.

Proof. 1° Suppose that the polynomial p, has no zeros equal to 1
or —1. Let us recall that Paszkowski’s algorithm gives a recurrence rela-
tion for the Chebyshev coefficients of the function f and the order of
this relation is equal to number (1.29). By virtue of Theorem 4.1 this is
the relation of the lowest order.

2° If p,(1) =0 or p,(—1) =0, then by Lemma 4.3 we get
01 (L8Y; &) = lo(LY; B)1.

The operator A4,, formed in Algorithm I, is then defined by formula
(2.13) for which we have case I, IT or IIT and, therefore, the order of this
operator is not greater than 1. This and formula (2.88) imply (in view of
the fact that for j =1,2,..., n —1 the order of the operator 4; is not great-

er than 2) that equation (2.87) for 2 = 0, being satisfied by the Chebyshev
coefficients of the function f, has the order lower than number (1.29).
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S. LEWANOWICZ (Wroclaw) *

KONSTRUKCJA ZWIAZKU REKURENCYJNEGO NAJNIZSZEGO RZEDU
DLA WSPOLCZYNNIKOW SZEREGU GEGENBAUERA

STRESZCZENIE

Funkeje f, okreélona w przedziale ( — 1, 1> i spelniajacg odpowiednie warunki,
mozna rozwingé w jednostajnie zbiezny w tym przedziale szereg Gegenbauera (1.5),
tj. szereg wzgledem wielomianéw Gegenbauera (1.2) ortogonalnych z waga (1 — 22)*~1/2
(A > —1). Szczegdlnie wazne rozwiniecie otrzymujemy w wypadku 4 = 0; wobec (1.4)
jest ono prosto zwigzane z szeregiem Czebyszewa (1.7) funkeji f. Wspolezynniki tych
szeregéw wyrazaja sie odpowiednio wzorami (1.6) i (1.8). Bedziemy rozwazaé lacznie
szeregi Gegenbauera dla 4 # 0 i szereg Czebyszewa i okre§lamy w tym celu za pomoca
wzoru (1.9) cigg wspdlczynnikéw Gegenbauera.

Obliczanie calek wystepujacych w (1.6) lub (1.8) jest ogdlnie biorac zadaniem
zlozonym. Jawne wyrazenia dla wspoétezynnikéw Gegenbauera otrzymano dla wielu
funkeji (zobacz np. [5], tom II, §§9.21i 9.3, lub [7], §§ 10-12). Jednak takie wyrazenia
83 czesto skomplikowane, np. zawieraja symbole funkeji specjalnych, co utrudnia
ich stosowanie.
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Wartoéei wspélezynnikéw Gegenbauera mozna znaleZé stosunkowo latwo, jesli
wspoélezynniki te spelmiajg zwiazek rekurencyjny postaci (1.20). Przeglad przybli-
zonych metod rozwigzywania takich réwnai mozna znalezé np. w [7], § 15.

Wer6d metod konstrukeji zwiazkéw typu (1.20) dla wspélezynnikéw Gegenbauera
danej funkeji f prostota i uniwersalnocia wyrdznia si¢ metoda stosowana woéwczas,
gdy funkcja ta spelnia réwnanie réiniczkowe liniowe rzedu = (1.21), w ktérym
Pos> P1s +++» Pn # 0 83 wielomianami, a funkcja p ma znane wspélezynniki Gegenbauera.
Paszkowski [7], § 13, podal algorytm konstrukeji zwiazku (1.20) dla wspélczynnikéw
szeregu Czebyszewa na podstawie réwnania (1.21); rzad tego zwigzku jest réowny
liczbie (1.29). W cytowanej pracy zauwazono, ze w pewnych wypadkach nie jest to
zwiazek najnizszego mozliwego rzedu.

W obecnej pracy przedstawiamy metode budowy zwigzku rekurencyjnego (1.20)
dla wspélezynnikéw Gegenbauera, w ktéorym Ay, 4,,..., 4, s3 funkcjami wymier-
nymi, najnizszego rzedu wéréd zwigzkéw wynikajaeych z (1.21). Opisowi i uzasadnie-
niu tej metody jest posSwiecony § 2, ktéry dzieli si¢ na 5 podparagraféw. Po podaniu
podstawowych definicji (§ 2.1) wprowadzamy zbiér A (L) operatoré6w réznicowych
i definiujemy operator minimalny w tym zbiorze, a nastepnie dowodzimy pewnych
wlasnoéci zbioru A (L), ktére graja zasadnicza role w proponowanej metodzie kon-
strukeji réwnania (1.20) (§2.2). W §2.3 okreSlamy pewne pomocnicze operatory
réznicowe i dowodzimy ich wlasnoséci, ktére zostana wykorzystane w §§ 2.4, 3.1 1 3.2.
W § 2.4 podajemy (poprzedzone niezbednymi definicjami i lematami) twierdzenie 2.1,
zawierajace zapowiedziany wynik: istnienie i konstrukcja zwiazku (1.20), najnizszego
rzedu dla wspélezynnikéw Gegenbauera funkeji spelniajacej rownanie (1.21). W § 2.5
formalizujemy metode budowy tego zwiazku (Algorytm I), a takie przedstawiamy
dwa przyklady jej zastosowania.

W § 3 uogélniamy wspomniang wyzej metode Paszkowskiego dla wspélczynni-
kéw Gegenbauera dla A = 0. Wynik ten jest zawarty w twierdzeniach 3.1 (§3.1)
i3.2 (§3.2). W §3.1 podajemy sformalizowany opis metody (Algorytm II) i dwa
przyklady jej zastosowania.

Wreszcie w § 4 formulujemy konieczny i dostateczny warunek na to, by algo-
rytm Paszkowskiego prowadzil do zwigzku rekurencyjnego dla wspoélezynnikow
szeregu Czebyszewa funkeji spelmiajacej réwnanie (1.21), najnizszego mozliwego rzedu
(zobacz twierdzenie 4.2 w § 4.2).



