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Abstract. By presenting a number of new results and problems we show that
the theory of Phragmén-Lindelof should not be regarded as a field in which further
development is out of the question. To make use of Lemma 3.1 conveniently, we con-
sider the half plane H, particularly favourable for our purpose. We stress that it is
natural to impose restrictions on the increase of the analytical function under consid-
eration not only in the whole of H,, but also at least on one ray in H, starting from 0.
This new viewpoint permits us also to obtain a number of very elementary results.

1. Introduction. Throughout this paper we consider analytic functions
in the half plane H, = {s = u+1iv: 4 > 0}. If we include the imaginary
axis, we write H, = {s: u > 0}. For the sake of brevity we put
analytic in H,,

N = 1f(s):

continuous in H,, if('iv)|<1 ’
M = {f(s)eN: |f(s)| <1 in H,}.

For all results which are based on Lemma 3.1 — they will be called
non-elementary — we need slightly more restricted sets, namely '

N = {f(8)eN: zeros of f have no finite limit point},
M =MnN.

The basic problem in the theory of Phragmén-Lindelof is to obtain
the conclusion “ReN is also ¢ M” from appropriate restrictions imposed
*on the increase of R. This increase can be conveniently described by means
of the function

Mgz(r) = max |R(re®)],
Ikvlar.-;L

which defines the order and type of ReN. But also complicated average
functions describing the behaviour of R(r¢"®) on semi-circular ares are
sometimes used; see e.g. [2].
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At present the theory of Phragmén-Lindelof seems to be “out of
fashion” and it is only rarely that an author tries to develop it. In spite
of that there are several new results and possibilities which deserve atten-
tion.

In this paper we want to make it clear that it is natural in the theory
of Phragmén-Lindel6f to restriet the rate of increase of R not only gener-
ally in the whole of H,. In all theorems of this paper (except Theorem 2.1)
we also impose restrictions on the increase of R(re'?) (r—>oo; ¢ fixed);
in this way we can relax the general restrictions. A few theorems of this
kind are not new. The most important of them is that of Pdlya—-Szegd
(see Section 2), but unfortunately only little attention has been paid to
it so far. A systematic treatment of this viewpoint seems to be possible
and desirable.

2. The Phragmén-Lindeléf Principle with elementary consequences.
We will state the following principle in a version which is rather trivial
if we consider it as a theorem. But we want to study the restriction for
the increase of ReN which is expressed by it. Of course, the principle
could prove fruitful only, because there exist very useful sufficient (and
necessary) conditions for inequality (2.1).

PRINCIPLE OF PHRAGMEN-LINDELOF. Assume ReN and let there
ewist a function fe M, f % 0, such that for all de(0,1]

(2.1) If*(8)R(s)| <1, seH,;
then Re M.

Putting f(8) = exp{—s7}, 0<p<g<1 we easily obtain the follow-
ing result from this principle.

THEOREM 2.1. Assume ReN and let R have at most order pe(0,1);
then Re M.

In textbooks this proposition is often used to prove the famous
theorem of Phragmeén-Lindeléf (p = 1, minimal type). Characteristic
for this proof is the decomposition of H, into two quarter planes; we can
map Theorem 2.1 to them and then apply it to the auxiliary function
R,(s) = ¢~ R(s) in each quarter plane. It was Pélya and Szegd who
recognized that for this method order 1 and minimal type is necessary
only for s = >0. From this assumption it follows that R,(«) is bound-
ed and three applications of Theorem 2.1 yield |R,(s)|<1 Vde(0,1].
In this way an important geueralization of the theorem of Phrag-
mén-Lindeléf can be obtained, namely the

THEOREM OF POLYA-SzEGO. Assume R eN at most of order 1
(intermediate type) and ‘
(2.2) Yim log [ E(w)l

U—00
then Re M.

<0;
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As shown in [4] this idea yields even the more general

THEOREM 2.2. Assume ReN at most of order pe(0, 2) and (2.2); then
Re M.

Obviously the procedure described above can be repeated, but this

time we make use of Theorem 2.2 instead of Theorem 2.1. Then we obtain
a theorem in the assumptions of which 3 rays play an outstanding role [4].

THEOREM 2.3. Assume Re N at most of order pe(0, 4), (2.2), and

— log! +in/s
— log|R(re*")|

r—00 r?

(2.3)

then Re M.

Now we are in a position to improve Theorem 2.2 slightly; namely
Theorem 2.3 immediately yields the following result, in the assumptions
of which it is only one ray which plays a role.

COROLLARY 2.1. Assume Re N at most of order p = 2 (minimal type)
and (2.2); then Re M.

This idea can of course be extended to an arbitrary odd number
of rays. If we use an even number of rays, the results are more compli-
cated, see [3]. Let us for instance consider the case of the rays re=*/¢, » > 0.
Then we can again consider R,(s) and apply Corollary 2.1 to the angle
—n/6 < ¢ < =/2; but for the angle —n/2 << —n/6 — if we do not
want to decompose it — the best theorem we have at hand is Theorem 2.2.
Hence we need different assumptions on the increase of B in the two
angles and on the two rays as well, namely order 1 on s = re~*/¢ and
order 3/2 on 8 = r¢'™ (intermediate types).

But these are not the only possibilities of making an elementary
use of the Phragmén-Lindelof principle. As an example we give a the-
orem of Ostrowski ([6], Lemma 5.2.1) slightly adapted to our represen-
tation. For its proof H, is also decomposed once. We expect that interest-
ing generalizations of it will be possible.

THEOREM 2.4, Assume Re N and (2.2); moreover,

|R(8)| < e"z, $ =u+tiveH,;
then Re M.

Interesting in our context is Beurling’s theorem, for which we obtain
two different generalizations. In both of them the assumption (2.2) plays
an important role.

BEURLING'S THEOREM (elementary version). Suppose that f(s) is
analytic and at most of order 2 (minimal type) in H,; furthermore let (2.2)
be satisfied. Suppose that ®(r) > 0 i8 continuous for r > 0 and unbounded
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as r—»oo; moreover, let be 0 < o <1 and

— log®
lim ___log ()

rooo 10

= 0.

If If(Xv)| < P(v) for v > 0, then there emists a sequence

0<R1<R2< ooy .Rn—>m’
such that

log M,(R,) < sec —?logtﬁ(Rn).

The proof is literally the same as in [1]; we only use Corollary 2.1
instead of the theorem of Phragmén—Lindelof.

3. Non-elementary theorems with restricticns on rays. In Section 2
the importance of the asymptotic behaviour of R(r¢®) for one or several
pe(—m/2, =/2) was a consequence of the decompositions of H,, which
play a considerable role in the proofs. Now we show that it is not only
this simple trick which leads to the necessity of directing attention to
certain rays.

In [1], Chapter 6, the theory of “functions of exsponential type”
is presented. We generalize this concept in the following way.

DEFINITION 3.1. Let the function f(s) be analytic in H,. It is of ex-
ponential type in the larger sense (i.l.s.) if its increase is restricted in the
following way. For every ¢ > 0 there exists a C, > 0 such that for a certain
number C > 0 — independent of ¢ — we have the inequality

(3.1) log|f(s)| < C,+——— +(C+e)r, §=re®H,.
cos@

We next quote a lemma from [10]; without the additional remark “i.l.s.”
it can be found in [1] and (slightly less general) in [6]. Its basic ‘mpor-
tance for the Phragmén-Lindel6f theory has not been recognized yet.

LEMMA 3.1. Let ge N belong to the exponential type i.l.s. Then we have
in H, the representation

_loglg(it)|

t—v)2+ o dt-l—log]ho(s)l +k,u,

u o0
(3.2) log|g(s)] =— [o

where h,(8) is analytic and |h,(s)| <1 in H,,

(3.3) k, — Tim 0810001

u—>oo u

This lemma is essential in our context, as no simpler proofs of the
following Theorems 3.1 and 3.2 can be expected than those which are



Theory of Phragmén—Lindelof 95

based on (3.2). But the lemma is also interesting for another reason,
namely it makes apparent the essential role played by certain rays in
the Phragmén-Lindel6f theory. In the gssumptions of the lemma no ray
is mentioned. But, as shown in (3.2), the asymptotic behaviour of g(u)
(> 0) is essential, because it is just the constant (3.3) which decides
if geN is bounded or not.

But the positive real half-line is not the only possible ray. From [5]
(V. § 4, Theorem 7) we infer

COROLLARY 3.1. k, < 0 if and only if for some fived ¢

—lo i
im 0819 () g ol < —..
r—00 ¥ 2
THEOREM 3.1. Assume that Re N belongs to the exponential type i.l.s.,
kr<0;then Re M.

Remark. The proof is obvious from (3.2). Note that Theorem 3.1
is a generalization of the theorem of Pélya—Szego obtained without a de-
composition of H,. Probably it is the most general result which can be
obtained  without decomposition.

THEOREM 3.2(1). Assume ReN, and let there emist fe M, f(s) = 0,
with k; = 0 that

(3.4) If()R(s)|<1 in H,;
then Re M.

Remark. In this case it is the assumption k, = 0 that implies a con-
dition on a ray. Without this assumption the theorem is wrong, as is
shown by the example f(s) = ¢™°, E(s) = ¢°. Note that k, = 0 is a sub-
stitute for the assumption “for allde(0,1]” in the principle o Phragmén—
Linde.di; in (3.4) we have only d = 1.

In [10] we proved the following counterpart of Theorem 3.2.

THEOREM 3.3. Assume ReN and (2.2), and let there exist a function
fe M, f(s) # 0, such that (3.4) holds in H,; then Re M.

Finally we return to Beurling’s theorem. Replacing the theorem
of Phragmén-Lindeléf by Theorem 3.1 in the proof given in [1], we obtain

BEURLING’S THEOREM (non-elementary version). In the elementary
version we can raplave the assumption “f at most of order two” by “f is
the exponential type i.l.8.”.

4. Applications of the Principle and Theorem 3.2. The Principle
and Theorem 3.2 have a common feature, namely the assumption “There

(1) The intimate relation of this theorem to the Phragmén-Lindel6f theory
was analyzed first by W. Tutschke in [12].



90 H..J. RofBlberg

exists a function fe M ...”. In spite of that they admit applications of
quite different types.

As for the Principle, several of its immediate consequences have
been stated in this paper, namely Theorems 2.1 and 2.4; they contain
explicit restrictions for the increase of Re N from which Re M follows.
It is characteristic for the applications of the Principle that very special
fe M are used which seem to be appropriate; often it is the essence of
such proofs to find an appropriate fe M. But the use of a special fe M
jmplies a loss of information. '

Theorem 3.2, too, has already been applied to very different prob-
lems, particularly in probability theory and statistics. We give here an
example to indicate a quite different type of results which can be proved
by it; cf. [9].

THEOREM 4.1. Let r(@) be a real function of bounded variation in 0 < @
< oo, (@) =0 (#<<0). Furthermore, let F(x) be a distribution function
with the property F(0) = 0, F(e) >0 Ve >0, the Laplace—Stieltjes trans-
form of which

[e=aF@) =fs), sed,,
0

having no zeros in H,. If
(4.1) [ Flu—a)dr(u) =0, Vz>t>0
-0

(for fized t>0), then r(w) = const for © > 1.
Remark 1. It is basic for the use of Laplace—Stieltjes Transforms
in Theorem 3.2 that “F(0) =0, F(e) > 0” is equivalent to k; = 0.
Remark 2. The point is that by means of Theorem 3.2 we get rid
of the unknown function F in (4.1) and have a statement about r(®).

In this way we actually make the best of the fact that f(8)e M in Theorem
(3.2) is arbitrary.

Remark 3. If zeros of f(8) are admitted, the theorem is wrong

Quite a different application is made in the following proposition,
which is apparently new. Note that by Lemma 3.1 every ge M can be
represented by

(4.2) g(8) = p(8)k,(s)e™" e,

where ¢(8) # 0in H, has the property ¥, = 0; moreover, we have h,(s) =1,
if g(8) # 0 in H,; see [8].
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THEOREM 4.2. Assume f,ge M, g(v) # 0,

(4.3) Q( 8) = fL(s))- where |Q(iv)| < 1.

Then R(s) = Q(8)h,(s)e~"s* i8 bounded in H,.
Proof. By assumption we have ReN; from (4.2) and (4.3) we obtain

R(s)p(s) = f(s)e M.

Hence Theorem 3.2 yields Be M, and this is the desired result.
CONSEQUENCE 4.1. Suppose that ge M has no zeros in H, and that

0<a<g(iv) <

If, moreover, k, = 0, then a < |g(s)| <1 in H,.
Proof. Put f(s) =a in Theorem 5.2; then it follows that Qe M.

5. Application of Theorem 2.3 to entire fumnctioms. Obviously we
can now improve many well-known results whose proves are based on the
theorem of Phragmén-Lindelof; we need only replace this theorem by
a more general one.

We give an example from [4] which immediately follows from The-
orem 2.3 by conformal mapping of the plane to a half plane.

THEOREM 5.1. Let R(3) be entire at most of order 2 (intermediate type);

if
(5.1) Rx)<1l (u=0),
(5.2) lim log | E ()| <o,
V100 v
— log|R(u)|
(63) o T <%

then R(s) = const. g
This theorem contains two special cases, which are well known.

a) The first case is due to S. Bernstein, who required |R(u)| <1
for all v and at most order 1 (minimal type). This theorem is “sharp”

because of the example R(s) = }(¢* +e~%). Note that in our theorem
this examp’e is excluded by (5.2).

b) The second case (Theorem 3.1.5 of [1]) requires (5.1) and at most
order }, minimal type.

Of course we could obtain an even better result if we imposed more
assumptions on appropriate rays.

7 — Annales Polon. Mathematicl 33.1-2
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6. Vanishing fumctions. There exists a group of theorems stating
not only that ReXN is also ¢ M, but even that E = 0. In our context the
following classical result is of interest because of assumption (6.1); see [2],
Theorem 24.

THEOREM 6.1. Suppose that Re N i8 at most of order 1 and

_ 1

r—00 r
SJor some fimed @, |p| < n/2; then R =0.

For the proof it is shown that |[R(s)e®’| <1 for all B> 0. In view
of Theorems 2.2 and 2.3 the assumption “order 1” can be relaxed for this
purpose.

But we want to state another theorem from [3] in which the assump-
tions of Theorem 6.1 are replaced by much weaker ones, but on the other
hand a supposition on R(%) (v > 0) must be added; this combination of
assumptions on s=14v (v >0) and s=wu,u >0 is a new type of prop-
osition.

THEOBEM 6.2. Suppose that Re N belongs at most to the order 2 (mini-
mal type) and

i BRI oy <<y

0 u?

if, moreover,
(6.2) |IB(iv)] < ™, Vv>0,

then R(s) = 0.
In the proof all the assumptions are used to show, that for E % 0
and 6 >0

E,(s) = R(s)exp[8s%¢™(1 +¢)]

belongs to M; hence Re M. But for Re M the integral

f log |R(iv)| o
1;2
1

exists, see [1] or [8]. This contradicts (6.2).

7. Final remarks.

1. In this exposition we want to convince the reader that additional
restrictions on the rate of increase of Re N imposed at least on one ray
in H, are something natural in the theory of Phragmén-Lindelof. The
reason is twofold: Firstly the simple trick of decomposing H, has proved
extremely fruitful; secondly Lemma 3.1 makes the importance of the
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constant (3.3) obvious. We suppose that every theorem stating that
ReN is also ¢ M can be generalized in the same way as that used
in the proof of Theorem 2.2 by means of Theorem 2.1. Condition (2.2)
must be satisfied anyway, hence R,(u) = ¢ **R(u) will be bounded.
Now conformal mapping of the given theorem to quarter planes will
yield new conditions under which |R,(s)] <1 can be inferred.

2. The theorem of Phragmén—Lindelof can be proved in quite differ-
ent ways, which we have not mentioned so far, e.g. by means of Carle-
man’s principle of harmoni¢c majorization. We would obtain a deeper
insight into the theory if we succeeded in proving also the theorem of
Pélya~Szego in this way.

3. Theorem 3.2 has proved very useful not only in the examples gi-
ven in Section 4. More important is the question whether finite limit
points of zeros can be admitted for the functions f and R in this theorem.
In some applications the assumption under consideration is satisfied
by itself, in others it is a nuisance.

4. Finally we give a number of criteria to stress important differ-
ences between the theorems quoted above.

a) In our view the following distinction for the proofs of the pro-
positions presented in this paper is essential. Elementary results are the
theorems of Section 2 and Section 5, because they are immediate conse-
quences of the Principle. Contrary to them, the others require (for an
eagy proof) Lemma 3.1, which is distinctly deeper than the “elementary
results”. It is because of this lemma that we consider the domain H,
particularly favourable for the theory of Phragmén-Lindelof.

b) In Section 7.1 we supposed that every theorem stating that Re N
is also ¢ M can be generalized by means of a decomposition of H,. There-
fore it is an interesting question, which results can be proved without any
decomposition of H,; note that Lemma 3.1 itself does not require such
a decomposition for its proof. Of particular interest seems to be the ques-
tion whether Theorem 3.1 can be improved without decomposition. It is
also of interest to know which propositions require exactly one decompo-
gition, like Ostrowski’s Theorem 2.4.

¢) In some theorems (Pdélya—Szegé, 3.1, 3.2, 3.3) the rays playing
an important role in the assumptions can be turned about 0 without
-changing the other assumptions. This seems to be a criterion that the
theorem can be generalized. On the other hand, if we turn the ray in
Theorem 2.2 for instance, the other restrictions on the increase of B must
also be changed, see [4].

Acknowledgement. My thanks are due to I. Lehmann and M. Riedel
for reading a draft of this paper and helpful discussions.
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