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A generalization of Morera’s Theorem

by H. L. RoYyDEN (Stanford, Calif.)

The purpose of the present note is to obtain a generalization of Morera’s
Theorem by using the Weyl lemma. Let D be a region in the plane. A com-
plex valued function ¢ is said to belong to the class Cj if p possesses partial
derivatives of all orders and the closure of the set of points where ¢ # 0
is contained in . We use z = ¢+ 4y to denote a point in the plane. We
begin with the following well-known lemma of Weyl [1]:

LEMMA 1. Let f be a function of class L' in D such that for every ¢ € Cp

1) fffAtpda:dy =0.
D
Then f is equal almost everywhere to a harmonic function.

LEMMA 2. Let f be a function of class L* in D such that for every ¢ € Cp
we have

) Lff%dwdy=0.

Then f is equal almost everywhere to an analytic function.
Proof. For every y e Cp we have dy/oz e Cp, and so

ffwadwdy=4fff(%[g—': dady — 0 .

Thus by Lemma 1 we have f(2) = g(z) almost everywhere with g a harmonic
function. Hence for every ¢ ¢ Cp we have

o 0
o= [ sipasa - — [ [ gasa

Since 9¢/dz is continuous, this implies &g/oz = 0, consequently ¢ is analytic.
THEOREM 1. Let f e L' in D, and let

(3) [1@dz =0
R

hold over almost every rectangle R. Then f i3 equal almost everywhere to
an analytic function.
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Proof. By almost every rectangle we mean, of course, all rectangles
except for those of a set of measure zero in the 4-dimensional Euclidean
space described by the coordinates of a pair of opposite corners of the
rectangles. Without loss of generality, we may assume that D is itself
a rectangle, say, ~a <z < a, —a <y < a. Now for almost all points z,
in D

f f(z)dz =0
R
for almost all rectangles having 2, for a corner. Let z, be a point with this

property, and suppose for convenience that z, is the origin. Define a func-
tion F on the y-axis be setting

(4) F(y) =1 [ f(in)dn,
0

the function f being integrable on the y-axis by the choice of z,. Then ¥
is continuous, and the function F defined by

(5) F(2)=F(y)+ [ f(&+iy)dé
0
is measurable. Moreover,
PR <IF@)+ [ 1fE+iy)de < M+ [ |f(2)d
(1} —-a

where M is the maximum of |[F(y)| on [—a, a]. Hence

[[ 1P (z)ldwdy < 4 Ma? +2a [ [ | (2)|dady

D

and so F ¢ L' in D. Since the integral of f over almost any rectangle with
a corner at the origin vanishes, we have

v
(6) P(z) = F(@)+i [ fl@+in)dn.
0

Let ¢ be an arbitrary function in 03. Then

YL TR
ffF dady fF dody+3 [ [ P avay.

By (5) we have F absolutely continuous as a function of z for almost
every y. Hence we may integrate by parts to obtain

fF(z)Z—zda: = — fﬂpda;,
-a
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since ¢ vanishes near # = +a. A similar use of (6) gives
a a
fFa;”dy=—i fﬁpdy.
oy
-a -a

ffpg—;’dxdy=—fff¢dmdy+fff¢dmdy=o.
D

Consequently, Lemma 2 applies and we have F equal to an analytic
function g almost everywhere. Since F is continuous on almost every
horizontal line, we have F(2) = g(2) on almost every horizontal line.
On such a line f(z) = g'(z). Hence f(2) = ¢'(2) almost everywhere in D.

THEOREM 2. Let D be a region whose boundary contains an open arc C
of class C3. Let u be a harmonic function in D such that

() £ﬂ

Suppose that at almost every imterior point p of C the limit of u as we
approach p normally is zero. Then we obtain a continuous extension of
to Do C by setting w identically zero on C.

Proof. We map D conformally on the upper half of the unit circle
so that C goes into the real axis. Since the mapping function has a con-
tinuous derivative on C, it follows from condition (7) that in the upper
half D* of any circle |2| < —e. We have

®) £ﬂ

where we again write # and y for the variables in D*.

Hence

u
8_m+

ou
5y }d:vdy< oo .

+

ou
or

ou
o }dwdy < o

Let
ouw 1fou .ou
fm=7=ﬂ%”@
for z ¢ D*, and L
1(2) = —1(2)

for z in the reflection of D* in the real axis. Thus setting .D, for the circle
|2| <1—¢, we have f ¢ L' in D, by (8). Now the integral of f over every
rectangle in D, lying in either the upper or lower half plane is zero since f
is analytic there. Hence in order to apply Theorem 1 to f we need only
show that

ff(z)dz =0
R
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for almost every rectangle which is symmetric in the z-axis. For almost
all such rectangles we have limu = 0 as we approach the real axis along
the rectangle. Let R be a rectangle with this property and let R* denote
the upper half and R~ the lower half of E. Then since

a

(9) u(a)—u(b) = Re [ f(2)dz
b

over any path in the upper half of D,, we have

Re ff(z)dzzo and Re fj(z)dz:O.
R+ K

By reflection we have
Im [fde=—Im [fde,
R+ R
and so
f fdz=0.
R

Thus Theorem 1 applies. Hence by choosing the values of f on the real
axis suitably f becomes analytic. From this and (9) we see that w can
be extended by reflection to be a harmonic function in D'. Consequently,
% is uniformly continuous in a neighbourhood of the real axis, and the
ex0oy}m follows.
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