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ON THE STRUCTURE OF THE STEINER TRIPLE SYSTEMS
DERIVED FROM THE STEINER QUADRUPLE SYSTEMS

BY
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1. Introduction. A Steiner triple sysiem (or, more simply, a triple
system) is & pair (S, t), where 8§ is a finite set and ¢ is a collection of three-
-element subsets of § (called triples) such that each pair of distinct elements
of § belong to exactly one triple of £. The number |S| is called the order
of the triple system (8, t) and it is well known that there is a Steiner triple
system of order n if and only if # = 1 or 3 (mod6) [1]. A Steiner quadruple
system (or quadruple system) is a pair (Q, b(q)), where @ is a finite set and
b(q) is a collection of four-element subsets of @ (called quadruples or
blocks) such that any three distinct elements of @ belong to exactly one
block of b(g). As with triple systems the number |@Q| is called the order
of the quadruple system (Q, b(q)). Hanani [2] proved in 1960 that the spec-
trum for quadruple systems consisted of the set of all positive integers
n =2 or 4 (mod6). For a quadruple system (@, b(g)) and any element
z in @, denote Q\{z} by @, and the set of all triples {a, b, ¢} such that
{x, a, b, c}eb(q) by b(q)(x). It is a routine matter to sec that (@, b(q)(x))
is a triple system called a derived triple system (DTS) of the quadruple
system (Q , b (q)). Virtually nothing is known concerning DTS’s of quadruple
systems. In particular, essentially nothing is known concerning the fol-
lowing problem:

What are sufficient conditions for a given tripie system to be a DTS
of some quadruple system? (P 938)

Since there is (to within isomorphism) only one triple system of order
1, 3, 7 or 9, every triple system of one of these orders is a DTS. There are
two triple systems of order 13 and Mendelsohn and Hung [12] have shown
that both of these are DTS’s. As far as the author can tell these two results
are all that is known concerning whether or not a given triple system is
a DTS. The purpose of this paper is to give some sufficient conditions
for a triple system to be a DTS. Whether or not & given triple system is
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a DTS (besides being of interest in itself) is quite helpful in solving a large
class of problems concerning triple systems. For example, if a triple system
is a DTS, then it has a disjoint mate (a triple system on the same set
of elements which is disjoint from it) [6]. The reader is referred to [3],
[56]-[8] and [11] for a more detailed account of the connection between
triple systems and quadruple systems.

2. Preliminaries. The main result in this paper is based on the
following two recursive constructions. The first is a generalized singular
direct product ([4] and [13]) for triple systems and the second is a general-
ized direct product for quadruple systems.

Let (V, t) be any Steiner triple system and let ¢,,¢,, ..., ¢, be the
triples in ¢. Let (@, q) be a triple system containing the subsystem (P, p).
Set P = @\ P and, for each ¢, belonging to f, let ®; be a binary operation
on P such that (P, ®;) is a quasigroup. On the set 8§ = PuU(P x V) define
the following collection T of triples:

(1) {p,q,s}eT if and only if {p, q, 3}ep;

(2) {p, (g, ), (s,v)}eT if and only if peP, qe P, se P, ve V and
{P,q,s}eq;

(3) {(p, w), (¢, w), (s, w)}e T if and only if p, ¢, s¢ P and {p, ¢, s}eq,
we V;

(4) {(p, w), (g, v), (p®;q, w)}e T if and only if p, ge P, t; = {u, v, w},
and v < v < w.

It is a routine matter to see that (8, T) is a Steiner triple system (see
[9], for example). We will often denote the triple system just constructed
by (V,t) x@Q(q, P, (P, ®)). It is important to note (because of what
follows) that the quasigroups (£, ®;) are not necessarily related and that,
in fact, (P, ®;) need have no special property other than, of course, being
a quasigroup.

By a 3-skein is meant a pair (@, {,,>), where @ is a finite set and
{, 4> is a ternary operation on ¢ such that if in the equation (z, y,2) = w
any three of x, y, z and w are given, then the remaining element is uniquely
determined. Let (@,b(¢) and (V, b(v)) be quadruple systems and
{w,y,z,w}, {r,y,2, Wy ..., {®,y,2,w} all Dblocks of b(v). Let
(@, <y 21)) (Q7 SRV IREEE (Q, <y k) be any k 3-skeins and define on the
set @ X V the following collection b(qv) of four-element subsets:

(1) For every block {a,b,c,d}eb(q) and every weV, {(a,w),
(b, w), (¢, w), (d, w)}eb(qv).

(2) For every two-element subset {a, b} of @ and every two-element
subset {u, w} of V,

{(a'v u), (b, u), (a, w), (b, w)}‘ b(qv).
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(3) For every block {a, b, c,d}eb(q) and every two-element subset
{u, w} of V, the followmc_r six %ubsets belong to b(qv):
{(a’7u)7( ),(C,W), d 10}7 {(a’w) (b7u7(c7u’)(d w}’
{(a, u), (b, w), (c, u), (d, w)}, {(a, w), (b, u), (¢, w), (4, u)},
(¢, w), (d,w)}, {(a,w),(d,w),(c,w),(d,u)}.

&

S

(4) For every block {z, v, z, w};e b(v) and every three (not necessarily
distinct) elements p, ¢ and s of Q,

{(p,2),(q,9),(8,2), (P, ¢, )i, w)}e b(qv), where z<y<z<w.

In [5], it is shown that (@ x V, b(gv)) is a quadruple system which
we will sometimes denote by (V, b(v)) x@(b(q), <, ,>;). As with the sin-
gular direct product for triple systems, the 3-skeins (@, {,,>;) are not
necessarily related. We will sometimes refer to the 3-skein (@, {,,>;)
as the 3-skein associated with {z, y, 2z, w};.

3. The structure of DTS’s. Let (P, p) and (V, v) be DTS’s, where
P={1,2,...,p} and V ={1,2,...,v}. Let (P*,p*) and (V*, o*) be
quadruple systems based on P* = {0, 1, 2,...,p}and V* = {0,1,2, ...

.y v}, respectively, such that

(Pap) = (P:,p*(O)) and (V7 'D) = (Vz;a V*(O))-

Further, let (7', t) be the triple system of order 3 basedon T = {1,2, 3},
and let (T, ®) be the totally symmetric quasigroup defined by the following
table:

® 2 3
2 | 2 | s
3 |_ A3 % 2 r
(T, ®)
Set (@,q) = (P, p) xT(t {1}, ®)). Then {2} x P equipped with

the set of triples {(2 x),(2,9), (2, z) for all {x,y,z}ep is a subsystem
of (@,q) which is, of course, isomorphic to (P, p). We denote this sub-
system by (2P, 2(p)).
THEOREM 1. If (P, p), (V,v) and (@,q) are as above in this section,
then any singular direct product (V,v)xQ(q,2I’,(I_’, ®i)) i a DTS.
Proof. We show that (V, v) x Q(¢, 2P, (P, ®;)) is a DTS of a suitable
generalized direct product of (P*, p*) and (V*, v*). We begin by noting
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that P = {1} U ({3} x P). Let a be the mapping from P* into P defined
by 0a =1 and ze = (3,x). For each triple t; = {x,y,2}e v = v*(0),
define a 3-skein (P*, (,,);) by
0, a,b); = ((aa)®;(ba))a™* for all a,beP".
Associate any 3-skeins with the other blocks in v* (the blocks not
containing 0). Now let (V*, v*) x P*(p*, ¢, ,>;) be the generalized direct
product of (P*, p*) and (V*, v*) having the aqsocia,ted 3-skeins described

above. Denote the quadruple system (V*, v*)x P*(p*,<{,,>;) by (8,s),
and the ordered pair (0, 0) by 0*. We claim that

(S:’ 3(0*)) = (V,v) XQ(972P7 (Pa ®i))-

In (8, s) the blocks conta-ining (0, 0) are of the following form:

(1) {(0,0), (=, 0), (y, (z 0)}, {0, %, 4,2} p*;

(2) {(0,0), (=, 0), (Oa?/ a?/ )}y & # YyeP;

(3) {(0,0), (fb' 0), ( w)}, {(0,0), (, w), (y,0), (2, w)} and
{(0, 0), (z, w), (y, w), ( }, Where {0, w,1,z}ep and w = 0; and

(4) for every bloek {0,2,y,2};ev" and any two (not necessarily
distinct) elements a and b of P* {(0,0),(a,x), (b, ¥), (0, a, bd;, 2)},
where 0 <z < y < 2.

Therefore, in (Sg, $(0*)) the triples are of the following form:

1) {(=,0), (y,0), (2,0}, {z,y,2}ep = p*(O);

(2) {(=, 0) (0,9), (#,9)}, 2 # yeP;

(3") {(z, 0), (y, w), (2, w)}, {(x,w),(y,0), (2, w)} and {(x,w), (¥, w),
(2, 0)}, where {w,y,z}ep = p*(0) and w % 0; and

(4') for every triple {®,y,2};ev = v"(0) and any two (not neces-
sarily distinct) elements a and b of P = P}, {(a, x), (b, y), ({0, a, bD;, 2)},

where x < y < z.
In (P,p)xT(t, {1}, (T, ®)) the triples are of the following form:

(a) {1,(2, @), (3, ®)}, all ze P; and

(b) {(2,2),(2,9),(2,2)},{(2,2),(3,¥), 2)} {3, 2),(2,9), (3, 2)},
and {(37 z), (3,9),(2,2)}, all {.’L‘, Y, ~}ep

Therefore, in (V, v) xQ(g, 2P, (P, ®,)) the triples are of the following
form:

(c) {(2, ) (2,9), (2, z} {$’y7z}€p7

(@) {a,v), (2, ), (3, w),v)}, all ze P and ve V;

(@) {(2, w) ((3, v) ((8,2), 0l {((3,2),9), (2, ), ((3,2), )} and
(B, ), ), ((3,¥), v) 2)}, 411 {z,y,2}ep and ve V;

(f) for ever Y triple {w, Y, 2};¢ v and every two (not necessarily dixtinet)
elements a, be P, {(a, x), (b, ¥), (a®;b, =)}, where x < y < 2.
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Now let z be the mapping from S5 = (P* x V*)\{(0,0)} into
2PU(P x V) defined by

(x,0)z =(2,2) for all ze P,

(z, )7 = (wa,v) for all veV,

where 0a = 1 and xa = (3, z) for ze P.

It is a routine matter to see that = maps the triples of type (1'), (2')
and (3') of (S5, $(0%)) onto the triples of type (c), (d) and (e) of (V, v) X
xQ(q, 2P, (P, ®;)). We now show that triples of type (4') are preserved
by =. So let

Ua, @), (b, ), (K0, a, b);, 2)}

be any triple of type (4') in (S;, $(0*)), where {=,y,2};e® =v"(0) and
z < y <=z Then

{(a’r x) 7, (b, )=, ({0, a, b);, 2) 7}
= {((aa)a™, @)=, (ba)a™*, y)=, (((40) ®;(ba))a™", 2) 7]
= l(“’ay x), (ba, ), ((aa)®i(ba), z” .

Hence triples of type (4') are mapped onto triples of type (f) proving
that = is indeed an isomorphism. This comnletes the proof of the theorem.

We now restate Theorem 1 in a somewhat more appealing form:

TUEOREM 2. If (P, p) and (V, v) are DT8’s, then so is any generalized
singular divect pr oduct

(V,o XQ(@D P ®z)) where (Q,q) = (P’p)XT(ta {1}’ (T’ ®))

4. Remarks. As mentioned in the ﬁ‘introduction, every Steiner triple
system of order1,3, 7,9 or 13 is a DTS. These results along with Theorem 2
give an infinite class of DTS’s for which the structure is known. A very
interesting problem, unsolved as yet, is the construction of a quadruple
system (@, b(g)) having all of its DTS’s mutually non-isomorphic. (P 959)
In [7], the author gave the first general construction for quadruple systems
having at least two non-isomorphic DTS’s. Very recently, the author hus
shown that, for ¢very positive integer ¢, there is a quadruple system having
at least ¢ mutuallv non-isomorphic DTS’s [8]. Unfortunately, the con-
struction used in [8] produces a quadruple system (@, b(q)), where |Q|
is comsiderably larger than ¢. For example, if ¢ = 8, the smallest order
for which the construction in [8] gives a quadruple system (@, b(g))
having at least 8 mutually non-isomorphic DTS’s is |Q| = 400. Neither
of the constructions used in [7] and [8] involve the structure of DTS’s
of quadruple systems (since nothing along these lines was previously known).
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Possibly, the results in this paper can be used to construct the first quadru-
ple system all of whose DTS’s are non-isomorphic. For a list of some other
problems involving quadruple systems and DTS’s for which the results
in this paper might prove useful, the reader is referred to [3], [6]-[8]
and [10].
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