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Introduction. A number of authors have given sufficient conditions on
a Sturm-Liouville problem so that the eigenfunctions of the problem will
be the characters of a measure algebra. In this paper we will bring together
known results, with a consistent notation, so that they can be compared.
Further, some of these old results are extended and some new results in this
direction are proved. In [7] we identify a class of measure algebras on [0, 7]
called Jacobi type hypergroups, such that for each of these measure algebras,
the characters are a complete set of eigenfunctions for the Sturm-Liouville
problem in one of its self-adjoint forms:

(S) (P*y') +uply =0, ¢'(0)=y'(x)=0.

In this article we are concerned with the inverse question of when the
eigenfunctions of a Sturm-Liouville problem on [0, 7] are also the characters
of a hypergroup. This is equivalent to asking if there are non-negative
measures 0, ; supported on [0, 7] such that o ¢ is the unit mass concentrated
at t and supp(o,,) shrinks to {t} as s decreases to 0 and which satisfy

s

Ju(r)dosi(r) = y(s)y(t) (0 <s,t <)
0

for every eigenfunction y of (S) normalized to y(0) = 1. Equations such
as the one above are called product formulas. The problem was addressed
with some success in [4] (with the notation ¥ = a + 1/2) for the perturbed
ultraspherical problem

(U)  u"(s) +27(cots)u'(s)+ (A — q)u(s) =0, '(0)= /() =0.
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We shall also be concerned with a Liouville normal form of the problem:
(L) v+ @¥-Qw=0, w(0)=uw(r)=0.

It is interesting to note (see [6]) that the only orthogonal polynomials
which have a product formula with o, ; as above are the Jacobi polynomials
of order (a,3) with @ > 8 > —1 and either 8 > —-1/20ora+ 3 > 0.

Our approach here shares that of [4] in that it is based on an associated
hyperbolic Cauchy problem, but it is technically much simpler and includes
some cases not covered by [4]. The advantages of the approach taken in [4]
(which is based on the Riemann integration method), is that more detailed
information about the product formula for the eigenfunctions is obtained.
In the last section we derive improved results by combining the two types
of theorems.

There are a number of related results on the infinite interval about the
eigenfunctions of analogous Sturm-Liouville problems; see [3] for (S), [2]
and [8] for (U), and [10, p. 53] for (L). The proofs of these theorems can
be adapted to [0, 7] if symmetric boundary conditions and symmetric coef-
ficients are required. These results are brought together here. Theorems 3
and 4 for (U) are given in [4] and a more limited version of Theorem 1 can
be found in [1]). The results in Theorem 5 for (L) are new, and by a simple
change of variables produce an extension of the results in [4].

We conclude this section with some notation. C will denote the space of
continuous functions on [0, 7] with the supremum riorm || f||co. Cc consists of
the functions in C which are supported on a closed subset of (0, 7); Co consists
of the functions in C which vanish at 0 and at 7, and C* consists of those
with k derivatives belonging to C. If x is a measure on [0, 7], its total
variation will be denoted by ||x||.

The self-adjoint form. Consider the problem (S) where p is required
to satisfy the following conditions: ‘

S1. p is positive and continuous on (0,7) and normalized so that
s
f pi(s)ds = 1.
0

S2. p(m - s) = p(s).

S3. p(8) = (sin” 8)g(s) for some v > 0 where g is real-analytic at 0 and
at m, g € C? where p is an integer greater than max(y +1/2,2) and g(0) > 0.

S4. p'(s)/p(8) is a non-increasing function on (0, 7).

THEOREM 1. Let p satisfy S1-S4. For each s and t in [0, 7], there is a
non-negative measure o, = o4, with the following properties:
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(i) [y y(r)do,«(r) = y(s)y(t) where y is any eigenfunction of (S) nor-
malized so that y(0) = 1. ’
(ii) [lo,lf = 1.
(iii) supp(91) C [ls = ], 7 — s+t = 7.
(iv) If f €C, then f(s,t) = [; f(r)do,(r) is a continuous function on
[0, 7] x [0, 7].

The Hilbert space L? associated with (S) is defined by the inner product
s
(f,h)= [ f(r)h(r)p?(r)dr
0

and the norm ||f||2 = (f, f)1/2. It will be convenient to gather some facts
about the eigenvalues and eigenfunctions of (S) into the following

LEMMA 1. (i) The eigenvalues of (S) may be arranged in an increasing
sequence 0 = po < p1 < p2 < ...
(i) limg— oo k2[.tk =1.
(iii) Corresponding to each u; is an eigenfunction y; normalized so that
yx(0) = 1.
(iv) yx has ezactly k zeros in [0 ).
(v) yi(m — 8) = (~1)*pu(s).
(vi) There is a constant M such that ||yk||cc < M for every non-negative
integer k.
(vii) limg—oo k27|lyk||3 = 2712 (y — 1/2)g(0) (cf. S3).
(viii) {yx}2, is a complete orthogonal system for L2.

Proof. The case v = 0is classical, so we assume that v > 0. [7] contains
a discussion of eigenvalues and eigenfunctions of (S) with vy = a + 1/2. In
that setting, (S) arises from a hypergroup, but many of the results obtained
do not depend on that fact. We use some of those results here. For (i),
(i), and (iv) see Lemmas 3.3 and 3.4 of [7]. That the normalization in (iii)
is possible follows from the Frobenius method and the requirement that v
and g(0) be non-negative.

To obtain (v) note that if y(s) is an eigenfunction belonging to u, then
so is y(m — s8). Thus there are eigenfunctions y.(s) = y(s) + y(x — s), and
Yo(8) = y(s) — y(m — s) which are even and odd with respect to 7/2. Each
must have k zeros in (0, 7); if k is odd, it follows that g, is identically zero,
which implies that y(s) = —y(r — s) and y is an odd function with respect
to 7 /2, and similarly if k is even.

(vi) can be obtained by combining (ii) of this lemma with the Hilb type
estimates in [7, Theorem 4.1]:

yk(8) = g(()) 2°T (o + 1)(mi8)~*Jo(mis) + Ii(s)
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where a = v — 1/2, m? = px, and J, is the Bessel function of the first kind
of order a. For any € > 0, there is C = C, > 0 such that
() < C/k (0< s < 1/k),
|I(s)| < Ck~Y(ks)™"Ink (k7! <s<7m—¢).
(vii) follows from [7, Theorem 4.3(iii)].

To obtain (viii) substitute w = py in (S) to obtain the Liouville normal
form (L) with v = 4 + v and

Q(s) = 7(7 — 1)(cot? 5) + [¢"(s) + 27(cot 5)g'(s)l/9(s),
and use the argument in the proof of [4, Lemma 1.1] to show that the

eigenfunctions of this problem are a complete orthogonal system on [0, 7]
with respect to Lebesgue measure, and (viii) follows. =

We define
hy = "yk”';z’ fk = (fv yk)’ S(n’ f) = kahkyk'

k=0
Let P be the space of finite linear combinations of eigenfunctions and P4
the non-negative functions in P. If f belongs to P then f = S(n, f) for some
finite n; in this case, let T* f(s) = Y r_o fihryk(s)yx(t). We shall see that T
is a generalized translation in the sense of Levitan [10). If 0 < a < b < ,
let A(a,b)={(s,t):8>t,a<s—-t<s+t<b}and A= A(0,n).
The proof of Theorem 1 requires two lemmas.

LEMMA 2. P is dense inC.

Proof. The argument is inspired by [9]. If f € C2?, then f;, =
(—=1/p)(Df)N, where Df = p~%(p*y')’; because of S3, this can be re-
peated p — 1 more times to obtain fi = (—1/u)?(DPf)"; it follows that
fr = O(k~=??) so that by Lemma 1(vii), %2 | filhk < oo. It then follows
from Lemma 1(vi) that S(n, f) converges absolutely and uniformly to f, so
that P is dense in C2P, and also in Cy.

By Lemma 1(iii) and (iv), y1(0) = —y1(7) = 1, so if f € C, then

Si=f-F0)A+w0)/2- f(x)(1-n)/2
belongs to Co. Now if € > 0, we can choose f, € P such that || f — fi]|e < €,

then F = f, + f(0)(1+ v1)/2+ f(7)(1 — v1)/2 belongs to P and the lemma
follows. m

LEMMA 3. Let f € P and assume f(3) > 0 for all s in some interval
[a,b] C [0, 7). Then f(s,t) > 0 for all (s,t) belonging to A(a,b).

Proof. Begin by assuming that f € P is strictly positive on [a, ).
Let f(s,t) = T*(f)(s), and assume by way of contradiction that f(s,t) is
negative at some point of A(a,b). Then it is possible to choose P = (£, 7) in
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A(a,b) so that f(£,17) =0, but f(s,t) > 0if (s,t) € A(e,b)and 0 < t < 7.
Let W(s,t) = p?(s)p*(t). Then f(s,t) solves the hyperbolic Cauchy problem

(Wfs)s—(Wh)=0, f(s,0)=f(s), fi(s,0)=0 (0<s,t<m).
Now let ¢ = £ — n and d = £ + 1. By Green’s Theorem

0= [ [ [(Wf)s— (Wf)]dsdt

A(c,d)

= ¢ (Widi+Wfds)
8A(e,d)

=—( [+ [)wa
CP BP
where C = (¢,0) and D = (d,0). Integration by parts yields
2W(P)f(P) =W(C)f(C)+ W(D)f(D)

+ [ fWe+Wydt+ [ f(W, - W,)dt.
CcP DP
Finally, S4 implies W; + W, > 0 on A(a,b),so 2W(P)f(P) > W(C)f(C)+
W(D)f(D) > 0, which contradicts our assumption about f(P).

If now f(s) > 0 on (a,b),lete >0and f, = f+ec = f+ eyp. Then,
since yo(s) = 1, £u(s,2) = f(5,2) + e90()yo(t) = £(5,t) + £. Thus by the
argument above, f.(s,t) > 0 on A(a,bd); since ¢ is arbitrary, this establishes
the lemma. =

Proof of Theorem 1. We begin by assuming f € P,. Then
Lemma 3 implies that f(s,t) = T*f(s) > 0 if (s,t) € A. But f(s,t) =
f(t,8) = f(r —t,x —s) by Lemma 1(v), so f(s,t) > 0 on all of [0, 7] x [0, 7],
or equivalently, T f € P,.

Now if f € P, then h = ||f|lcc £ f € P4, hence T*h = || f||oo £ T f € Py,
from which it follows that |7 f]lec < ||f]leo for every f € P. Since P is
dense in C (Lemma 2) it follows that

(a) T* can be extended to all of C.
(b) For all f in C, IT* flloo < || flloo-

(c)f fe€Cy then T f € Cy.
(d) If f(s) is continuous then f(s,t) is continuous in (s,1).

The Riesz Representation Theorem together with (b) and (¢) guarantees
the existence of a non-negative measure o, with ||, || < 1 such that

T'f(s)= [ f(r)do,r).
0
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Ttyo(s) = 1 for all s, so ||o, || = 1. To obtain (i) set f = yx.

Suppose (s,t) € A, and assume f € C vanishes on [s—¢,s4t]; then since
f>0and —f > 0on [s—t,3+ t] Lemma 3 implies that f(s,t) = 0, hence
supp(0o,,:) C [s — t,s + t]. Part (iii) of the theorem follows from symmetry
since 0, = 04,3 = Op—y n—t-

Hypergroups and convolution. It is now easy to associate a measure
algebra with the Sturm-Liouville problem (S): define x * w by

1) [ dxx)m)= [ [ [ f(r)dosdr) dx(s)dult),
0 0 0 O

so that 6, * 6; = 0,,.
THEOREM 2 [7, Theorem 3.6]. The measure algebra described above is a
Jacobi type (v — 1/2,v — 1/2) hypergroup with characters {y;}.
Thus the measure algebra defined by (1) has all the properties of Jacobi
type (v — 1/2,v — 1/2) hypergroups (cf. [4]). In particular,
lyklloo < yx(0) = 1,

dm(s) = p*(s)ds is the Haar measure in the sense that m * §; = m for all ¢
in [0, 7], and &p is the identity because &y * §; = §; for all ¢ in [0, x].
There is a convolution of functions defined by

(Fx9)s)= [T f(s)g(t)p*(t)dt
0

which has the usual properties. In particular, let L? consist of those f that
are measurable on [0, ] for which

111l = ([ 1£()Po?(s)ds) " < o,

0
and let L* and || f]|co have the usual meaning. Then

(f * g);c\ = fkgka
If * gllx < [ £l llglls,
If * gl < [ fll1llglloos

or more generally,

1 1 1

@ ol <Ullislle (;=+;-1 1<rpa<oo);

if r = 0o, then f#g is equal almost everywhere to a continuous function; f*g
is non-negative if f and g are. The Riesz Representation Theorem, together
with (2) for r = oo, shows that T* operates on L? and ||T*f||, < || f]l, for
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1 < p < 0o. At this point it is possible to obtain some results analogous to
those of classical Fourier analysis (see [5] for example).

Perturbed ultraspherical form. In [4] product formulas are obtained
for the eigenfunctions of the perturbed ultraspherical Sturm-Liouville prob-
lem (U): The following assumptions are made on ¢ and 7:

Ul. ¥ > 0 and (sin s)g(s) is continuous on [0, 7] and real-analytic at 0
and .

U2. g(7 — s) = ¢q(3).
In order to establish positivity for the product formula, we also need
U3. ¢ is decreasing on (0, 7/2).

Analogs to Lemma 1(i), (iii)—(v), and (viii) are obtained in [4, Lem-
ma 1.1 and the discussion preceding it]. Let u) denote the eigenfunction
with k zeros in (0, 7) normalized so that ux(0) = 1. We then obtain the
following

THEOREM 3 (cf. [4, Theorem 1.2]). For each k and for all 3 and t be-
longing to [0, 7]

f uk(r)D(r,8,t) dr = ug(s)ui(t).
0

D is a non-negative continuous function supported on (|s—t|, 7 —|s+t—=|),
and there is a constant A such that for all s and t belonging to [0, 7]

f D(r,s,t)dr < A.
0

A result for a closely related hypergroup is obtained in terms of the
functions

_ Uk _ D(r,s,t)
Ry = up and  K(r,s,1) = uo(7)uo(8)uo(t)(sin®7 r)’

and the measure dm(r) = [uo(r)]%(sin®" r) dr:
THEOREM 4 ([4, Theorem 4.3)). For all k and all s and t in [0, 7]

[ K(r,5,t)Ri(r) dm(r) = Ri(s)Ri(2).
0

K(r,s,t) is symmetric in all three variables; it is continuous, non-negative,
and supported on (|s—t|,m — |s+t—x|). For all s andt belonging to [0, r}

fK(r,s,t) dm(r) = 1.
0
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In particular, the R) are characters for a Jacobi type (y — 1/2,7—1/2)
hypergroup with Haar measure dm(s).

Liouville normal form. Many studies of ordinary differential equa-
tions, and of the Sturm-Liouville problem in particular, revolve around the
Liouville normal form of the problem (L). We assume that Q satisfies:

L1. Q(s) = b(csé? s) + h(s) where b > —1/4, and (sins)h(s) is real-
analytic at 0 and 7 and continuous on (0, 7).

L2. Q(7 — s) = Q(3).

L3. Let v be the larger solution of y(y — 1) = b; then Q € C?~2 where p
is as in S3.

If we substitute w(s) = (sin” s)u(s) in the differential equation (L), we
obtain the differential equation in (U) with g(s) = Q(s) — b(csc®s) and
A = v — 92, Thus q satisfies Ul and U2 so the resulting problem (U)
satisfies the analogs to Lemma 1(i), (iii)—(v), and (viii). Hence if {A\x}
are the eigenvalues of (U) arranged in increasing order and {ux} are the
corresponding eigenfunctions, then the eigenvalues of (L) are vy = A\ + 72
with corresponding eigenfunctions (sin” 8)uy(s). If

3) p(s) = ¢(sin” s)uo(s)

where c is chosen so that [ p?(s)ds = 1, and if fur} and {yx} are the
eigenvalues and eigenfunctions of the corresponding problem (S) (normalized
so that y;(0) = 1), then wi = py; is an eigenfunction of (L) corresponding
to the eigenvalue v, = ux + vp.

In order to obtain a product formula for this system of eigenfunctions
we must introduce an additional condition on @ so that p will satisfy S4:

L4. One of the following hold:
(1)562>0,Q(s)>Q(t)for0< s<t<m/2.
(i) 5>0,Q(s) 2 Q(t) for 0 < s <t < s, and Q(s) < yp for 59 < s <
7 /2 where sq is the smallest positive solution of Q(s) = Y.
(iii) b<0,and Q(s) <y for0 < s < .
(iv) (Inwp)"” < 0 on (0, 7).

THEOREM 5. If @ satisfies L1-L4, then there is a product formula
wi(s)wi(t) = [ wi(r)dry(r)
0

where. if p is defined by (3),

dT,’t(T)—» (‘?p)(t)d Pt( )
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Proof. The theorem will follow by a simple calculation once we show
that any of L4(i)—(iii) implies L4(iv); since p = wyp, this leads directly to S4.
We do this first assuming L4(ii).

We begin by showing that

(4) F(s)>0 (€ (0,50)).
Choose s € (0,80). Then by two invocations of the Mean Value Theorem
there is s; € (0,38) such that p’(s;) = [p(s) — p(0)]/s > 0, and there is
83 € (81,38) such that
p'(s) = p'(s1) + (s = 81)p"(82) = p' (1) + (s = 51)(Q — w0)p(s2)

since p = wp. Finally, L4 yields (4).

Now, let v = Inp. Then S4 will follow if we can show v"(s) < 0 for
0 < s < m/2. Substitution of p = e” in the differential equation (L) yields
(5) v+ () +w-Q =0,
so by L4, v"'(s) < 0 for s < s < 7/2. By (3), v'(3) = uf(3)/uo(s) + 7y cot s,
so v"'(8) < 0 for s in some interval (0, ¢).

We claim v'(s) < 0 for 0 < s < 7/2. Assume by way of contradiction
that
(6) v"(s) >0 for some s € (0,7/2).
Then there are s; and s3, 0 < 83 < 82 < 3¢, such that v"'(s1) =v""(s3) =0
and
(7 v"(3) >0 for s; < s< ss.

If now equation (5) is evaluated at s = s; and s = s;, and the difference
taken, we obtain

[v'(s2)]” = [¢'(s1)])* = Q(s2) — Q(s1).
Now the Mean Value Theorem yields s3 € (s;,52) such that

(8) 2v'(s3)v"(s3)(s2 — 81) = Q(s2) — Q(s1)
and L4 implies that the right side of (8) is negative, but v'(s3) > 0 by (4)
and v"(s3) > 0 by (7), hence (6) is false.

The other assumptions in L4 lead to S4 since (i) implies (ii), and if (iii)
is assumed, (iv) follows directly from (5). »

Comparisons of the results. The problems (S), (L), and (U) can be
compared by using appropriate transformations. That is, suppose that p
satisfies 51-S3, ¢ satisfies Ul and U2, and Q satisfies L1-L3. Then the
problems are equivalent if

(9) Q) = blesc?5) +a(5) = £ 1y
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and the eigenfunctions are related by

wi(s) = g(0)(sin” s)ux(s) = p(s)yx(s).
Thus each of Theorems 1, 3, and 5 yields product formulas for all three
systems of eigenfunctions.

1. Theorems 3 and 5 are not logically comparable; for example, the
fact that ¢ has at most a first order singularity at 0 shows that it is possible
for U3 to fail while L4 holds even in the strong sense of ) being a decreasing
function on (0,7/2).

2. It is shown in [4, Theorem 1.2] that even if U3 fails the conclusions
of Theorems 3 and 4 will hold except for the positivity of the kernel. This
observation yields the following improvements on the results obtained above.

THEOREM 6. Theorems 3 and 4 hold if U3 is replaced by
U3'. Q(s) = 7(7 — 1)(csc? s) + ¢(s) is decreasing on (0,7/2)
(or even the more general assumption that Q(s) satisfies L4).
THEOREM 7. Ify > 0, then Theorems 1 and 5 hold with
do,(r) = D(r,s,t)dr

where D(r,s,t) is a non-negative continuous function on (|s — t|, 7 — |s +
t—ml|).

The reader is referred to [4, Sect. 4] for a discussion of other properties
of the resulting hypergroups.
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