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INTRODUCTION

.In what follows, ‘“‘continuum” means “bicompact connected metric
gpace’’.

A continuum is of type A provided it is irreducible between a pair
of its points and admits a monotone upper semi-continuous decompo-
sition, &, whose quotient space is a non-degenerate are. Such a decompo-
sition is called admissible. If M is of type A and has an admissible de-
composition, each of whose elements has void interior, then we say M
is of type A'.

In Chapter 1 of this paper we treat the following questions:

(1) What conditions on a continuum M, irreducible between a pair
of its points, imply that M is of type 4 or A’'?

(2) If M is of type A or A’ and 2 is an admissible decomposition
of M then what structural properties of M can be obtained from
properties of 217

Before answering either question we prove a number of results which
are used as tools in investigating irreducible continua and admissible
decompositions. In particular, we show that if a continuum has an admis-
gible decomposition, then it has a unique minimal decomposition (re-
lative to the partial ordering by refinement). We also give a charac-
terization of the admissible decomposition in terms of monotone, con-
tinuous functions with values in the unit interval.

Turning to question (1) we show that M is of type A’ if and only if
every subcontinuum of M with non-void interior is the union of two
proper subcontinua (i.e. decomposable). Other conditions, sufficient for
M to be of type A, are obtained by studying the collection of indecom-
posable subcontinua of M.

At this point several theorems relating to question (2) have already
been obtained. More structure theorems are obtained by introducing
the notion of aposyndicity. Indeed, using this notion, we completely
characterize the elements of the minimal admissible decomposition and,
in the process, get another answer to question (1).

Asg applications of the decomposition theory, we obtain some (known)
characterizations of arcs and simple closed curves.
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In Chapter 2 we investigate the class of those confinua which are
hereditarily of type 4’. Such a continuum, M, can be successively de-
composed and the pieces reassembled using inverse limits to obtain a new
space, M, which serves as an approximation to M. We show that M
is metric if and only if it is Hausdorff, in which case M and M, are
homeomorphic. A necessary and sufficient condition for M, to be
Hausdorff is exhibited.

We next study the extent to which M, characterizes M. The approach
used here is to assume that I/ and N are continua hereditarily of type
A’ for which a homeomorphism exists between M, and N, and then
to find conditions on M which imply that M and N are homeomorphic.

Theorems 11 and 12 tell how to construct continua hereditarily
of type A’ from other such continua using inverse limits, and this yields
a continuum with very interesting properties.

We next show how to replace a decomposition element, D, of a given
continuum, #, with another continuum, without disturbing M — D.
The machinery needed for this also has applications at the end of Chapter 3.

In Chapter 3 we continue the study of the minimal decomposition,
2, of a continuum of type 4’, the emphasis here being on continuity
properties.

To begin with, we show that 2 is continuous almost everywhere.
An example, due to R. H. Bing and F. B. Jones, [4], shows that 2 may
be continuous everywhere. The continuum of this example is snake-like
and each element of its decomposition is indecomposable. By contrast,
we show that if M is of type A’, snake-like, and does not contain small
indecomposable subcontinua, then, near every point where M is not
locally connected, the minimal admissible decomposition for M is very
discontinuous.

The main tool in establishing the above result is that if M is of type
A’ snake-like and does not contain small indecomposable subcontinua,
then, joining any two open sets in M, there is a subcontinuum having
a composant whose complement is a single point. This generalizes a result
of G. W. Henderson, [6], and a result of L. K. Barrett, [1].

Finally, we develop a notion of “sidedness” for continua hereditarily
of type A'. Besides being intrinsically interesting, this yields information
on the structure of the minimal decomposition from an external point
of view.

In Kuratowski’s book, [12], will be found an investigation of irre-
ducible continua; the development found there is carried in a different
manner from ours and in some cases utilizes auxiliary results of a general
nature. It is natural that there be some overlapping of results; perhaps
the most interesting common result is our Theorem 10 of Chapter 1 and
Theorem 3 on page 1563 of [12]. In [12] can be found a bibliography of
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contributions to the theory developed there; we shall make our treatment
as self-contained as possible.

With a few exceptions, which we will point out as they occur, the
material presented in Chapters 2 and 3 is new.

The basic definitions and concepts used herein will be found in [7]
and [10]. We shall assume a familiarity with the general topological
concepts as presented in the first three chapters of Kelley, [10], and shall
ugse several well-known results concerning compact metric continug
which can be found in R. L. Moore’s book on point-set topology, [14].

We use standard set-theoretic notation except that the void set is
denoted by @, the union of the sets 4,, 4,, ..., 4, is denoted by 4,+4,+
+ ...44,, and A < B does not exclude the possibility that 4 = B.

The termination of a proof will be signified by two vertical
lines, ||.

If A is a subset of a topological space S, then the closure of A in 8§,
the interior of 4 in § and the boundary of A in § are denoted by clg(4),
intg(4) and ds(A), respectively, or by 4, A° dA if it is not necessary
to display S.

“Snbeontinuum of’’ means “closed, connected subset of’’. A con-
tinuum is irreducible between two of its points provided no proper sub-
continuum contains both points. A continuum is irreducible between
two of its subsets provided no proper subcontinuum intersects both sets.

When we write “Let M = P4 be a decomposition of M ...”
we mean that the continuum M is the union of the two proper subcon-
tinua P and Q.

We also use ‘‘decomposition” in another sense. A decomposition,
2, of a set 8 is a collection of subsets of § whose union is § such that
De¢2, Ec2 implies D ~ E = @ or D = E. Which of these meanings we
intend will be clear from the context. We ghall use script letters for
decompositions of the latter sort.

Let 2 be a decomyposition of the space 8; 2 is upper semi- continuous
provided that if U is open in § and confains D¢ 2, then some open subset of
U contains D and is the union of elements of 2. The function which assigns
to a point of § the element of 2 containing it is called the quotient map,
and the quotient topology for 2 is the strongest with respect to which the
quotient map is continuous (where we consider 2 as a point set with its
elements as points). The topological space thus obtained is called the
quotient space. It is easy to see that a subset of the quotient space is open
if and only if its preimage under the quotient map is open in 8.

By “S—T = A+B, separated, ...” we mean that §—T is the union
of the non-void, separated (relative to §) sets, 4 and B.

In several places in Chapters 1 and 2 we shall use a result which
appears as a remark on page 149 of Kelley’s book, [10].
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Remark on quotient spaces. If X 4s a separable metrio space
and 2 8 an upper semi-continuous decomposition of X each of whose
elements 18 bicompact, then the quolient space i8 metrizable.

This research comprises the author’s Ph. D. dissertation at the
University of California, Riverside (). The author acknowledges his
indebtedness to Professor ¥. Burton Jones who guided this research
with much patience and many helpful comments.

(}) Supported by the National Science Foundation.



CHAPTER 1

A function, f, from a space 8 to a space T is monotone provided the
preimage under f of a subcontinuum of T is a subcontinuum of 8. It is
well known that if f is continuous and § and 7' are compact metric, then
f is monotone if and only if f~'[¢] is connected for each teT. Also if fis
monotone and if § is irreducible from z to ¥, then f(8) is irreducible from

f(=) to f(y).

We shall begin by recording a number of facts about irreducible
continua.

TEEOREM 1. Let M be a continuum irreducible between a pair of its
points z and y. Then the following hold.

(a) If A is a subcontinuum of M which separates M, then we can write
M—A = X+7Y, separated, where weX, ye¥; in particular, 4 contains
neither x nor y. Moreover, X and Y are connected.

(b) If A is a subcontinuum of M, then A° is connected.

(c) Suppose that A is a subcontinuum of M such that 4 = A°. If A
misses @ and y, then A 18 idrreducible between two points on 0A. If A
contains x(y) and misses y(z), then A 1is irreducible from z(y) to 0A.

Proof. (a) Suppose M —A = B+0C, separated and non-void. It
is well known that 44 B and A+C are connected and hence are proper
subcontinua of M. By irreducibility of M it follows that neither set con-
tains both x and y and in particular A does not contain either point.
Thus we can relabel B and € as X and ¥ (or ¥ and X) so that zeX, y¢¥.

The component C of X which contains » has a limit point in 4. Then
O+A+Y is a subcontinuum of M containing # and y and therefore
C+4+4+Y = M. This implies that 0 = X, i.e. X is connected; similarly,
Y is connected.

(b) If A° = @, the result is trivial. We deal with the case A° # O
and z¢A4, y¢A. Since A° # @, we can write M—A4 = XY, separated,
where z¢ X, ¢ Y. By part (a), X and ¥ are connected. Let B= X, C =Y;
then B and C are disjoint subcontinua of M missing A°. Let D be a sub-
continnum of 4 irreducible from A ~ B to A ~ C. Then, as is well known,
D—[(4 A B)+(4A ~ 0)] is connected. Denoting this last set by B, we
have that E lies in some component of A° and E = D is irreducible from
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oo

—

A° ig irreducible between a pair of points on its boundary.

In case A contains z(y) but not ¥(z) an obvious modification of the
above argument establishes the desired result and also proves that A°
is irreducible from z(y) to 9A4.

(c) As noted, we established this in the course of proving part (b).||

A to B. It follows by irreducibility of M that B = A°. In particular,
B =

DeFINITION 1. Let M be a continuum irreducible between a pair
of its points, # and y. A decomposition, 2, of M is admissible, if 2 has
more than one element, 2 iy upper semi-continuous, every element of
2 is a subcontinuum of M, and every element of 2 not containing z or
y separates M.

Note that by part (a) of Theorem 1, if M is irreducible from « to y
and some subcontinuum .4 of M separates M, then A misses x and .
Hence the last criterion for admissibility does not depend on any
particular choice of x and y. It also follows that the elements of 2
containing ¢ and y do not separate M.

THEOREM 2. If 2 is an admissible decomposition of the continuum
M, irreducible from xz to y, then the induced quotient space, N, is an arc.

Proof. By the remark on quotient spaces, N is metrizable. Being
the continuous image of M under the quotient map, ¢, NV is also bicompact
and connected; hence & is a continuum. Let D be an element of 2 not
containing # or y and write M—D = X+ Y, separated, where w¢X,
ye¥. Then N—{D} = q(X)+¢(Y) and each set is non-void. Now X 4D
is closed in M so that g(X+D) is closed in ¥ (because g is necessarily a
closed map) and ¢(¥Y) = N —¢(X+D) is open in N; similarly, q(z) is
open in N, Thus, with at most two exceptions, every point of N separ-
ates N. Asis well known, see p. 119 of [12], this implies that ¥ is an are. ||

DEFINITION 2. If 2 and & are admissible decompositions of the
continnum M, then 2 < & means that every element of 2 is contained
in some element of &, i.e. 2 refines &.

Clearly < defines a partial ordering on the family of admissible de-
compositions.

THBOREM 3. If the continuum, M, irreducible from = to y, has an
admissible decomposition, then it has ome which is minimal with respect
to <.

Proof. Let {D.JacA} be a chain of admissible decompositions,
and for ze M and ae 4, let Z, be the element of 2, containing 2. For fixed
zeM, {Z,Jae A} is a chain of continua and we denote by Z the intersection
of this chain. Denoting by 2 the collection {Z|z¢ M}, we see that 2 is
a decomposition of M, each of whose elements is a continuum. It is easy
to check that if Z¢2 does not contain z or y, then Z separates. Suppose
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that U is open in M and contains Ze2. For some aed, Z, ¢ U, and since
9, is upper semi-continuous, some open subset V of U contains Z, and
iz the unjon of elements of 2,. A fortiori, V' contains Z and is the union
of elements of 2. Thus 2 is upper semi-continuous and therefore ad-
missible. Since 2 refines each 2,, it is a lower bound for the chain. The
proof is completed by applying Zorn’s lemma. ||

Before proving uniqueness of the minimal admissible decomposition
we ghall introduce some convenient notation and establish a few relevant
facts.

DEFINITION 3. A continuum, M, is of type A provided it is irre-
ducible between a pair of its points and has an admissible decomposition.

In what follows let M denote a continuum of type A4; let 4 denote
the collection of admissible decompositions of M; let & denote the
collection of all monotone, continuous functions which map M onto
the unit interval, I, and let @ denote the family of homeomorphisms
of I onto I.

For fe# let ®f denote {pof] ped}; then &Of c £.

Notice that if N is any continuum irreducible between a pair of
its points and f is a monotone, continuous function from N onto I, then
{f~'[s]| seI} is an admissible decomposition of N (hence ¥ is of type 4).
The only non-trivial verification needed here is that the decomposition
is upper semi-continuous. This follows easily from the faet that f is closed.
In particular, if M is of type 4 and fe%, then 2(f) = {f'[s]lscI}e4.

Next notice that if D4, then there is an fe# such that 2(f) = 2.
This is essentially Theorem 1; for by that theorem there is a homeomor-
phism, %, of the quotient space onto I and we take f to be hoq where
¢ is the quotient map.

THEOREM 4. The equation w(2) = ®f, where f is any member of
F for which 2 = 2(f), defines a function, w, from A into {Pf(feF} which
is one-to-one, and onto.

Proof. Suppose that for fe&F, geF we have 2(f) = 2(g). It follows
that the equation ¢(8) = f(g~'[s]) defines a function from I into I. Since
f is onto,  is onto; also ¢ is one-to-one since it has a well-defined inverse,
¢~ '[s] = g(f~'[s]). If F is closed in I, then f~'[#] is closed in M (because
f is continuous) and therefore ¢~'[F] = g(f '[F]) is closed (g is a closed
map). Thus ¢ is continuous and therefore a homeomorphism, i.e. pe®.
By construction, f = pog and this implies &f c¢ @g; dually, $g = &f 50
that @f = &g. This shows that w is well defined.

That w is onto is the content of the second remark preceding this
theorem.

Finally, w is one-to-one because, if 2 and & are in 4, then w(2)
= w(#) means that there is f in & such that 2 = 2(f) = &. |
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CoRrOLLARY, If f and g are in F, then D(f) < 2(g) if and only if there
is pe® such that f=g@og.

THEOREM 5. Let M be a continuum of type A, Ded, feF such that
2(f), and suppose that K is a subcontinuum of M such that f(K) is an in-
terval [r, 8] where r < 8, i.e., such that K meets at least two elements of 2.
Then (disregarding those De2 such that D ~n K = @) {D ~ K|De2} is
a non-trivial, upper semi-continuous decomposition of K each element of
which is connected. For r<t< s, f~'[t] lies in and separates K while
f'r1~ K, f~'[8]1 ~ K do not separate K. In particular, if K s irreducible
between a pair of its poinis, then it is of type A and {D ~ K|DeD} is an
admissible decomposition.

Proof. The non-void elements of {D ~ K|De2} are just the ele-
ments {f~'[t] ~ K|r <t < s}. Certainly the decomposition is non-trivial,
upper semi-continuous, and its elements are closed.

Let te(r,s) and take £ >0 so that r<i—e<i+e< s and denote
by L, and L, the sets f~'([0,t—e]) and f~'([¢-+¢, 1]), respectively. Since
f is in &, it is monotone, so that L, and L, are subcontinua of M. Hence
L,+K+L, = M and this implies that f~'[(t—e, t+¢)] = K, therefore
f'[t]= K. Since f~![t] separates M if r<it<s, it is evident that
f7'[] separates K, and, further, that if # and y are points between
which K is irreducible, then one of @, y lies in f~'[r] ~ K and the other
in f-'[s] ~ K.

To complete the proof of the theorem, we have only to show that

f'r1~ K and f'[s]~ K are connected. Let K, =f'[(r,s)] and
K, = Nf'lr,r+1/n)]; then K, is a subcontinuum of K, and K, is

Nusl

a subcontinuum of K. Let wef~'[r] ~ K; then it is easy to prove that the
component, C, of f~'[r] ~ K which contains # meets K,. Since 0 = f~'[7],
it follows that C meets K, which implies that f~![r] ~ K is connected. ||

Note that in the course of proving Theorem 5 we showed that if
& subcontinuum K of M meets two elements of some 2 = 2(f) in 4, then
K° # @; indeed, K contains the complete preimage under f of an open
interval in I.

Using the basic ideas in the proof of Theorem 5 we are able to prove
our uniqueness theorem.

THEOREM 6, Let M be a continuum of type A; then A contains
a unique minimal element.

Proof. Let 2 and & be in 4 and suppose that some element K of
¢ meets two elements of 2. We will show that & is not minimal. This
will show that a minimal element of A refines every element of 4 and
therefore will prove the theorem.

Using the notation of Theorem 5, let 2 = 2(f) and write f(K) = [7, 8]
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where r < 8 in I. We assert that the following collection of sets, denoted
by &', is an element of A4:

E—{E}+H{f1[t]l te(r, )} +{f"[*] ~» K} +{f'[s] ~ K}

Denote the last two sets by A and B, respectively.

Several facts are immediate: &’ is surely a decomposition of If;
the elements of &’ are continua; and upper semi-continuity of &’ every-
where, except possibly at 4 and B, is clear. Moreover, as far as the sep-
arating condition on elements of &’ is concerned, we need only show
that if M is irreducible from » to y and A (B) contains neither point, then
A (B) separates M.

We deal first with the latter argument. Suppose that A contains
neither # nor y. This implies that 0 <7< 1. Now f, being monotone,
maps the set {z, y} onto the set {0, 1} in some order, say f(z) = 0, f(y) = 1.
Let L, and L, be subcontinua of M irreducible from # to K and y to K
respectively. Since 0 < r, I, —K is non-void. Now L, and L, are disjoint
and M = L,+K+L, Note that L,—K, being the complement in M
of K+ L,, is open and (K +L,)—L; being the complement of L,, is open.
Thus M — (L, ~ K) is separated, being the sum of the non-void, disjoint
open sets L,—K and (K-.IL,)—L,. Since L, is irreducible from =z to XK,
f(L,) is irreducible from f(z) = 0 to f(K) = [r, §]. It follows that L, ~ K
cf'[r]~ K = A and, since L, ~ K separates, so does A.

We now verify upper semi-continuity at 4. We shall deal with the case
0 < 7, 8o that in the notation of the previous paragraph I,—K = IL,—A
is non-void. Suppose that U is an open subset of M containing A.
The union of U with K 4L, is an open subset, U,, of M which contains
the element K of &£. Hence there is an open set V, which is the union
of elements of &, contains K and lies in U,. Let ¥V be the union of those
elements of € lying in V,; ~ L,. Next, by Theorem 5, there is a subset
W of K, open relative to K, containing 4 and lying in K ~ U, which is
the union of the set A together with sets of the form f~'[¢] where » < ¢ < 8.
Thus V-4 W contains A, les in U and is the union of elements of &'.
Let 2eV4+W; if 2e(V—A)+(W—A4), then V+W is surely a neigh-
borhood of x. Suppose z<A and let {z,} be a sequence in M converging
to ». By choice of V, (W), the collection of points of the sequence lying
in M—K, (K), is either finite or forms a subsequence which is ultimately
in V, (W). Since every point of the sequence, {z,}, is in M—K or in K,
the sequence is ultimately in V+W. Thus V+W is a neighborhood of
each of its points and so is open.

In the above we were assuming 0 < r. If » = 0, the argument is
easier. We simply use W in place of V+W.

Thus & is admissible and since it properly refines &, & is not
minimal, g.e.d.|
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At this point we give two simple examples of continua of type 4.
Since we will refer many times to these examples, we give them descrip-
tive names rather than numbers.

The simplest continuum of type A is, of course, an arc. Perhaps
the next simplest is ““the sin (1/2) curve” which is our first example. This
is the set of points (2, ¥) in the plane whose coordinates satisfy:

(1) s=0,-1<y<1;
1
(2) 0oL, y=sin;.

We now give an intuitive description of the second example.

Let ¢ denote the standard Cantor “middle third” set on the line
segment {(#,¥)|0 <2 <1,y = 0} in the plane. This i3 obtained by de-
leting an open interval I,;, of length one third; then deleting two open
intervals, I, and I, of length one ninth; then four open intervals,
L, ..., Is, of length 1/27, and so on.
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Above each point of C erect a vertical line segment of height 1 and
denote the set so obtained by P. Deform P by “pulling” the two end-
points of I,, to the midpoint of I,;, thus replacing two vertical line seg-
ments with a “V”, Next “pull” the points whose x-coordinates are
the endpoints of I,; and whose y-coordinates are 1 to the point whose
x-coordinate is the midpoint of I,, and whose ¥-coordinate is 1; do the
same for the interval I,,. Thus, this step replaces two pairs of vertical
lines with “A’s.” At the next step we will identify four pairs of points,
corresponding to the endpoints of I, ..., I, and all having %-coordinates
0, each pair being ‘“‘pulled” to the midpoint of its respective interval.

The continnum obtained by continuing this process is originally
due to Knaster and is well known. For a rigorous definition, see page
132 of [12]. It can be pictured as in Fig. 1.

Throughout this thesis the term ‘‘accordionlike continuum?” will
mean this continuum (or any homeomorph of it).
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Evidently the minimal admissible decomposition of the sin(1/z) curve
consisgts of the vertical line segment together with the collection of sing-
leton point sets ({(z, )} 0< 2 <1, y = sin(1/z)}.

The accordionlike continuum provides an example of a continuum
of type A in which every element of the minimal decomposition is non-
degenerate. The elements of this decomposition are the *“\/’s” and “A’s”
together with uncountably many straight line segments (these cor-
respond to the points of the Cantor set which are not endpoints of deleted
intervals).

DEFINITION 4. A continuum is of type A’ provided it is of type A
and has an admissible decomposition each of whose elements has void
interior.

Thus the arc, sin(1/x) curve and accordionlike continuum are all
of type A’. With the next few theorems we show that a continuum of
type A fails to be of type A’ only if it contains large pathological sub-
continua.

A continuum is called decomposable provided it is the union of two
proper subcontinua, otherwise it is called indecomposable. The basic facts
concerning this notion are to be found in [13], however for completeness
we include the following resul.

THEOREM 7. Suppose that the continuum M is drreducible between
the closed subsets A and B and that every subcontinuum of M with non-void
interior is decomposable. If J = {we M| M 1s irreducible from A to x}, then
J 18 a subcontinuum of M and J° = @.

(This strengthens Theorem 148 on page 61 of [14].)

Proof. We first show that J is closed. Suppose that the point
zeM—J is a limit point of J. Let L be a proper subcontinuum of M
joining H to x; being proper, L misses J. Let yeJ and let N be
8 subcontinuum of M irreducible from 2 to y. Since yeJ, L+N = M so0
that N contains M —L and has non-void interior. Thus N is decom-
posable, say N = N, + N, where 2eN, yeN, Since Jc M—Lc N
and since weJ, N, contains a point z of J. But then L+ N, would be
a proper subcontinuum of M joining H to the point z of J, a contra-
diction. This shows that J contains all of its limit points, ie., J is
closed.

If J is. not connected, then we may write J = P+ where P and
@ are disjoint closed subsets of . Let U be open in M such that P
c Uc U c M—Q. Some component, C, of U contains a point # of P and
a point y of dU. Since U misses J, there is a subcontinuum, N, of M
joining H to # and missing J. Then N+C is a subcontinuum of I joining
H to x but missing Q, a contradiction. Thus J is connected and therefore
& subcontinuum of M.
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Finally, since M ig irreducible from H to J (by definition of J), M
misses J° which is merely a way of saying J° = @.||

The following result will be used frequently without explicit mention,

TaROREM 8. Let M be of type A' and let feF be such that 2(f)
is the minimal admissible decomposition of M. Then for 0 <r<e<1,
F(r, 8)] = K s a subcontinuum of M irreducible from every point of
K ~ f'[r] = K, to every point of K ~ f'[8] = K, Also, K, and K, are
subcontinua of K with void interior relative to I,

Proof. By definition, K, and K, have no interior relative to K.
Thus, if H is a proper subcontinuum of K joining K, to K, then K—H
contains some point # such that r < f(2) < s. But then H+-f~'[(0, ]+
+f~*[[s,1]] is & subcontinuum of M joining f~'[0] to f~*[1] and still missing
2, which contradicts irreducibility of M. That K. and K, are subcon-
tinua of K follows from Theorem 7.||

TEEOREM 9. Let M denote a continuum which 8 irreducible between
two closed subsets H and K such that every subcontinuum of M with non-void
interior is decomposable, Then the following hold.

(a) There is a decomposition of M, M = Mg+ Mg, where H ¢ My,
Kc Mg and Mg—Mg ~ Mg 18 connected.

(b) If U and V are open subsets of M such that Hc Ucllc Ve
M—K and 3V is connected, then there is an open set W of M such that U <
WecWeV and OW is connecled.

Proof. (a) Let M = P+@Q be any decomposition of M; then H
lies in one of P—@, @ —P and K in the other, say H « P—Q and K < @ —P.
Now P—Q = M~—@Q is connected and its closure, Mg, is therefore a sub-
continuum of M containing H and irreducible from H to Q. Let J
= {xe My| My is irreducible from H to x}.

By Theorem 7, J is a sub-continuum of My with void interior re-
lative to My, hence a subcontinuum of M with void interior in M.

Now let Mg = Q+J; Mg is a continuum since J meets Q. Clearly
Mp— Mg ~ Mg = J which is connected.

(b) With U and V as in the statement of part (b), let L be a sub-
continuum of M irreducible from U to dV. Since H = V and since V
is connected, part (a) of Theorem 1 implies that M —V is connected.
Since 8V is connected, U+L+dV+4-M—V is connected and, since it
joins H to K, must be all of M. This means that L —(U+3V) must be all
of V—U. Let I = L,+L, be a decomposition of L with T ~ L = L,— L,
and 0V ~ L < L,~L,. By part (a) of this theorem we may also require
that L,—L, ~ L, be connected.

We put W = U+L,—L,; then W is connected, open in M, and
Uc W. Since L is irreducible from U to 9V, L,—L, misses 0V and
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hence lies in V. It follows that dW = W ~ (M —W) = (TU+L,—Lg) A
(Ly+M—V) =Ly—L, ~n L, and this is connected, q.e.d.||

THEEOREM 10. Let M be a continuum irreducible between a pair of poinis
x and y. A necessary and sufficient condition that M be of type A’ is that
every subcontinuum of M with non-void interior be decomposable.

Proof of sufficiency. Using part (a) of Theorem 9, we decompose

M as follows: M = M +M, where weM,, yeM, and M,—M, ~ M,
is connected. Let W,, = M,—M,; then W), is open, connected and

has connected boundary. Also, by part (c) of Theorem 1, W, is irreducible
from z to dW,,. Applymg part (a) of Theorem 9 again, we decompose
W,,z as follows: Wm = P+, where zeP, Wy, =@ and P—Q Qn~Q
is connected. Let W, = P—@; then W,, is open in M, connected
and has connected boundary. Also —177'1,4 c Wy and W,,,—v_v’l,4 is con-
nected. At the next step, apply part (a) of Theorem 9 to 7?1,4 and apply

part (b) of Theorem 9 to the gap between Wy, and W, to get a pair
of open, connected sets, W,; and W;;, with connected boundaries such
that meWm c W”s c Wl[4 c W1’4, < W3IB c W3[0 c W]Iz and if r and s
are any of the numbers 1/8, 1/4, 3/8, 1/2 with » < s, then W,—W, is
conneoted. Continuing this construction in the obvious way we obtain
o family {W,| r is a diadic rational in (0,1/2]} with the following prop-
erties: each W, is an open, connected subset of M with connected
boundary; for r< s, W, =« W, and W,— W, is connected. Since M —Wm
is connected, we may extend the process to get a family {W,|r a diadic
rational in (0, 1)} with the same properties as above. Finally, we put
W[ = .M.

Define a function f from M to the unit interval as follows: for ze M,
f(2) = inf{t|#z «W,}. By Lemma 3 on page 114 of [10], a function defined
via a family of sets such as ours is continuous. We now show f is monotone.
Suppose 0 < r<1; for each positive integer n, let a, = r—1/n
and b, = r+1/n. Then, for any zeM, f(z) =r if and only if (for

n sufficiently large) ze W, 'Wan, which is connected. Since Wy —W,,
S an —Wa,_p f~'[r] is the intersection of a family of nested continua
and is thelefore connected. This implies that f is monotone (see the re-
mark preceding Theorem 1).

It is obvious that {f~'[r]| reI} is an admissible decomposition for
M, i.e. M is of type A. Let & be any admissible decompomtmn for M.
If some element K of € has non-void interior then XK°is a continuum to
which the preceding results apply; in particular, K° is of type A. Let 9
denote an admissible decomposition for K°. Then, arguing as we did in
the proof of Theorem 6 (the uniqueness theorem), we combine £ and &
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to obtain an admigsible decomposition of M properly refining &. This
shows that if & is the minimal decomposition for M, then no element of
& has non-void interior. Thus M is of type 4'.

Proof of necessity. Suppose that M is of type A’ and K is
a subcontinuum with non-void interior. Since no element of the minimal
admissible decomposition, 2, of M has interior, K is contained in no
element of 2. By Theorem 5, K has a (non-trivial) admissible decom-
position (namely, {D ~ K| De2}) and this surely implies that K is decom-
posable. ||

Remark. Our Theorem 10 and Theorem 3 on page 163 of Kura-
towski’s book, [12], are essentially the same result, although it takes
some effort to resolve the notational differences. Our development seems
to be more intuitive and, perhaps for that reason not so elegant as that
of Kuratowski. At this point our work and his diverge.

Until further notice, let M denote a continuum irreducible between
a pair of its points and let # denote the family of indecomposable sub-
continua of M with non-void interior. By Theorem 10, .# is empty if
and only if M is of type A'. We are interested in finding conditions on
J which imply that M is of type A.

The following well-known facts may be found in [13]. If ¥ is any
continuum and #e N, we define the x-composant of N to be the set of points
yeN such that some proper subecontinuum of ¥ contains « and y. Every
composant of N is dense in N and if N is indecomposable, then each of
its composants has void interior. N is indecomposable if and only if every
proper subcontinuum of N has void interior in N.

An indecomposable continuum is very far from being of type 4,
a8 is illustrated by the following

Remark. If the continuum N is the monotone, continuous image,
under the function f, of the indecomposable continuum M, then N is inde-
composable. Since if P is a proper subcontinuum of N, then f~'(¥) is
& proper gubcontinuum of M and therefore has void interior in M,
which implies that N has void interior in P.

We now proceed with our investigation.

LeMMA. (3) If Fes, then F = F°.

(b) Let of be a collection of subsets of M such that for each Ae.szl,
A=A4°andlet B = U {4|4 ¢ o}. Then B c B° and if B is closed, B = B°.

Proof. (a) If Fes, then F° @. By part (b) of Theorem 1, F°
is connected, hence F° is a subcontinuum of F with non-void interior
relative to F and, as we noted, this implies that F = F°,

(b) Wehave: B= J{d|4dest} = J{4°4 e} | J{A°d e} B°;
and, if B is closed, then the reverse containment holds. I
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THEOREM 11. If B and F are distinct elements of £, then B° ~ F = @.
The family # is at most countable.

Proof. By part (a) of the lemma, E° = F and .F—'5=F; thus,
by part (b) of the lemma, (F4-F)° = E4+F. If E° A F # @, then E4-F
is a continuum and by part (¢) of Theorem 1 must be irreducible between
two of its points, # and y. Clearly  lies in one of E—F, F—F and y in
the other, say zeE—F, yeF—T. Let O be the y-composant of F, then,
since O is dense in F, C meets the relatively open subset E° ~ F of F.
Hence there is a subcontinuum K of F lying in € joining % to some point
of E° ~ F. But then F+K i3 a proper subcontinuum of B+ F joining
z to y, contradicting choice of # and y. Thus E° ~ F = as asserted.

From the preceding it follows that {F°| Fe.#} is a family of pairwise
disjoint open subsets of M. Since M is compact metric, this family, and
hence s itself, is countable. ||

DeriviTION 5. Let K be the subset of M x M consisting of all pairs
(%, y) such that # = y or there exist finitely many elements F,, F,, ..., F,
of / such that F,+F,4-...4F, is connected and contains # and y. It
is a simple matter to verify that E is an equivalence-relation on M. We
denote by 2(R) the decomposition of M into the equivalence classes
determined by E. Note that the elements of 2(R) are connected.

THEOREM 12. The following statements are related as follows: (a) and
(b) are equivalent and either implies (c).

(a) Every element of 2(R) is closed.

(b) Every element D of 2(R) contains (intersects) at most finitely many
elements of S.

(e) If # is a subfamily of S and the union of the elements of & is
a subcontinuum of M, then £ 18 finite.

Proof. We begin by noting that since every member of # lies in
some element of 2(R), an element D of 2(R) intersects a member F of
J if and only if F < D. Thus, “containg’’ and “intersects” are equivalent
in (b). Next notice that if D is in 2(R), #¢.D, and D intersects ' ef, then
D contains a subcontinuum of M of the form F;+...+F, where velF,,
F = F, and each F; is in /. Thus, if an element D of 2(R) intersects at
least one member of .#, then D is the union of those members of # which
it intersects.

In view of this, (b) clearly implies (a).

We now prove that (a) implies (b). Let D be a closed member of
2(R) and suppose that D meets infinitely many distinet members, F,,
F,, ..., of 4, By the preceding remark, D = HF{ By the lemma pre-

ceding Theorem 11 and the assumphomthat D is closed, D° = D. By part

Rozprawy Matemalyczne L BU 2
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(¢) of Theorem 1, D is irreducible between a pair of its points, » and .
Since (z,y)<R, there exist F,,...., B, in # such that B +...+F, is
a subcontinuum of M containing  and y. Each E; is some Fy, say E; = F;,.
Thus Fy +... +Fy, is a subcontinuum of M, and hence of D, joining z
to y. By irreducibility of D, D = Fy +...+F;,. This implies that,
for some 7, F, < Fy +... +F;,. Since F, has non-void interior relative
to M, we conclude that for some i, Fy ~ F;, # @. This contradicts the
first statement in Theorem 11.

We next prove that (b) implies (¢). Let # be a subfamily of .# the
union of whose members is a subcontinuum of M and suppose £ is infinite.
If (b) holds, then we can write # = {F;, ¥y, ...} and choose infinitely
many distinet, and hence disjoint, elements, D;, D,, ..., of 2(R) in such
a way that there exist positive infegers 1<<m; < m,<... for which
Fit...4+Fy Dy Fppat... +F,, =D, and in general, F, 4
vod +Fp 41 = Dy, Since no continuum is the union of countably many
closed, pairwise disjoint, non-void subsets, see Theorem 56 on page 23
of [14], we have obtained a contradiction and therefore # is finite. ||

Later we shall give an example to show that (c) does not imply (a)
or (b). However, a strengthened version of (¢) turns out to be equivalent
to (a). This is the content of the next theorem and its corollary.

THEOREM 13. If the elements of 2(R) are closed and D, D,,... is
any collection of at least two distinct elements of Z(R) each of which is closed

and intersects a member of S, then | ) D; is not connected.
i=l

(Note that this reduces to a special case of the last theorem if “not
connected” is replaced by “not a subcontinuum of M.)

Proof. For non-triviality, we assume that there are infinitely many

=]
Dy’s. Suppose that D = | J D; is connected; we sghall obtain a con-
{eml

tradiction. By the lemma preceding Theorem 11, D; = D; for each i,
80 again by that lemma, D < D° and therefore, if K denotes the continuum

D, then K = K°. Thus, by part (c) of Theorem 1, K is irreducible between
a pair of its points, # and y. We shall assume that each of # and y belongs
to some D; and show how to remove this assumption later on. So, reordering
if necessary, assume @ e D; and y e D,. Denote by 2 the collection {D,, Dy, ...}
and note that for ¢ >3, D, separates K, K—D, = X;+Y;, separated,
where xeX;, ye¥; and X; and Y, are connected. (This is just part (a)
of Theorem 1.)

Using the above fact we now define an ordering on as follows: For
every i, D, < D; and D; < D,. For every ¢ and j, D; < D; if and only
iff]%- T)D, or D; c¢ X;. (Intuitively, “D; c X,”” means *“D; is on the x side
0 7
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Let i,j > 3 and suppose D; c X;. Then, since X is irreducible from
# to a point on X, (part (c) of Theorem 1) and since dX; = D;, X;,—D,
= A+ B, separated, where 2 is in 4, B meets 0.X; and 4 and B are con-
nected (part (a) of Theorem 1). But then we have: K—D, = A+ (B+
+D;+Y;), separated, where zc¢4,yeB+D;+Y;. Since D, separates K
uniquely into X; and ¥;, we conclude that A = X, and B4+D;+ ¥, = Y,

8o if D; % Dy (i,j > 3), then D;c X, implies D; = ¥;. Reversing
the roles of # and y we get the dual statement and we conclude that
for Dy # D, (i,j > 3), the following are equivalent: D; <Dy, D; c X;,
D; = Y;. Moreover, from the last sentence of the preceding paragraph
we see that if D; # D; (4,j > 3) and D; < Dy, then D;+Y; c X;, and,
of course, the dual of this statement holds.

I, for 4,j >3, we have D;< D; and D; < D; but D; # D;, then
by the above results, D; = ¥; and D; c X; which is absurd. Thus, omit-
ting the obvious arguments in cage ¢ or j take on the values 1 or 2, D; < Dy
and D; < D; imply D; = D;.

If D;<D; and D; < Dy (i,5,%k > 3) then, since D,c ¥; and
Y;4-D;c Y;, we have D; < ¥; which, as we have noted, is equivalent
to D; < Dy Again omitting the arguments involving D; and D,, we
conclude that < is transitive.

We have proved that < is a linear ordering on 2. We now show there
are no gaps. Suppose D; # D; and D; < D;. The sets X;+D; tor just D;
if¢ =1)and ¥;4 Dj (or just D,if j = 2) are closed, connected, and disjoint
in XK ; hence, if § denotes their union, X —4§ is non-void and open in K.
It follows that for some %, D, =« K—8 and that D; < D, < D;.

From the last fact, it follows immediately that, for & > 3, M {¥; ~n X
D; < Dy < Dy, D; # Dy, # Dy} = (\{¥; ~ Xy| Dy< Dy, <Dy, Dy # Dy, + Dy}
and that D;is the unique element of £ contained in this intersection.
With the obvious modifications, similar statements hold for ¥ = 1 and 2.

Now let U be a subset of D open relative to D containing the element
Dy of 2 (k = 3). Let V be open in K such that U = ¥V ~ D; we can choose
Di and .D; in 2 such that -Di < .Dk < .Dj, .Di #.Dk £ .Dj and .DkC Y;h X(
< V. But then, U=V ~ D contains ¥; ~ X; ~ D and this last sef
contains Dy, is open in D, and the union of elements of 2. A similar ar-
gument in case k = 1 or 2 shows that 2 is an upper semi-continuous
decomposition of the set D and the elements of 2 are compact. Since D
is separable metric, the quotient space D induced by 2 is metric (by the
remark on quotient spaces). The quotient space is also connected, since
D was assumed connected, and countable, since 2 is countable. No metrio
space i§ both countable and connected, so we have the desired contra-
diction.

Recall that we assumed that z and y belonged to elements of 2. If
z(y) belongs to no element of 2, then add to Z another element D, = {}
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(D, = {y}) and let D, (D,) play the role of D, (D,) in our proof. Only
trivial modifications are needed to use the above proof. ||

COROLLARY 1. If the clements of 2(R) are closed and Dy, D,, ... is

a countable collection of at least two elements of 2(R), then D = | D,
s not connected. =1

Proof. Let & be the collection of those D;’s which are not points,
i.e. which meet some member of . For non-triviality we may assume
& has at least two elements and we may then write: | {D;| D;<6} = A 4B,
separated. Then 4, B, {D;| D;¢&} is an upper semi-continuous decom-
position of D whose quotient space is countable and metric and therefore
not connected, whence D is not connected. ||

COROLLARY 2. A necessary and sufficient condition that the clements
of D(R) be closed is that if F is a subfamily of # the union of whose members
is connected, then this union lies in some element of D(R) and # is finite.

Proof. Suppose that the elements of 2(R) are closed. Let ¢ be
a subfamily of  and denote the union of its members by @. Certainly
@ is contained in the union of all members of 2(R) which it meets. Now,
by Theorem 13, no union of two or more elements of 2(R) is connected,
go if @ is connected, then @ lies in some element of 2(R) and therefore,
by part (b) of Theorem 12, @ meets at most finitely many elements of
s, i.e. # is finite.

Conversely, suppose that De2(R) and D is not a single point; then
D contains every member of # which it meets. (See the initial paragraph
in the proof of Theorem 12.) If the above condition on subfamilies #
of / holds, then, since D is connected, it meets (contains) only finitely
many members of £, In this case D is the finite union of closed sets and
is closed. ||

Notice that Theorems 12. and 13 and the corollary just proved are,
to a large extent, concerned with finding conditions which imply or are
equivalent to the condition, “every element of 2(R) is closed”. In a mom-
ent we shall see that this last condition implies that M is of type A.
Before proving this, we need another decomposition theorem which, in
some sense, is one step removed from Theorem 2.

Using a portion of the arguments of Theorem 3 it is easy to prove
that there is a decomposition, D, of M which is minimal with respect to
being upper semi-continuous and to being refined by D(R). It is possible
for 2 to be trivial, i.e., consist of the single set M (see the first example
following Theorem 16).

THEOREM 14. Let D be as above. The elements of 2 are subcontinua
of M and if D is non-trivial, then the quotient space of M relative to 9 is
a continuum of type A’, and M itself is of type A.
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Proof. Let & be the decomposition whose elements are the com-
ponents of members of 2. Since the elements of 2(R) are connected,
2 (R) refines &. We want to prove & = 2 and, for this, it suffices to prove
that & is upper semi-continuous (by minimality of 2). Notice that since
9 is upper semi-continuous, its elements are closed and therefore so are
the elements of &.

Suppose that the open subset U of M contains the element E of &,
Pick De2 so that T is a component of D; then we may write D = A+ B,
separated, where ¥ c A and D—U < B. Each of 4, B is closed in M
so we can find open sets ¥V and W in M such that Ac V< U, B W
and ¥ ~ W = @. Then V- W is an open set in M containing D and by
upper semi-continuity of 2 there is an open set U,, which is the union
of members of 2, such that D « U, « V- W. Since ¥V and W are separated,
the set U; ~ V is open in M, contains D, is contained in U and is the
union of all those components of members of 2 which it meets, i.e.
the union of members of &. This proves that & is upper semi-con-
tinuous.

We now turn to the main part of the theorem. Assume that 2 is
non-trivial, so that the quotient space N is a non-trivial compact con-
tinuum. Since the elements of 2 are continua, the quotient map g is mono-
tone and the quotient space is irreducible between a pair of its points.

Now let K be a subcontinuum of ¥ such that K° = K ; then ¢"'[K] =T

satisfies Z° = L and is therefore irreducible between a pair of its points
z, y. If K contains no separating points, no member of 2 lies in L unless
it contains exactly one of x, y. So L contains at most two elements of 2
and L is not separated by either of these nor by their union. An obvious
argument then shows that ¢[L] = K is decomposable and, by Theo-
rem 10, N 'is of type 4’.

To finish the proof, let f be a monotone, continuous function mapping
N onto I. Then the composition, fog, is monotone, continuous, and maps
M onto I, which, as we have noted before (see the remarks preceding
Theorem 4) implies that M is of type A.||

We now prove that a decomposition 2 such as we have considered
above is unique.

TrEOREM 15. There is just one minimal upper Ssemi-continuous
decomposition, 2, refined by 2(R).

Proof. For the first statement of the theorem, let &, and &, be
upper semi-continuous decompositions refined by 2(R) and define &
to be the collection of all sets of the form B, ~ E, where E;e&. If E; ~ H,
intersects B, ~ E,, then B, ~ E; #@ and E;, ~ B; # @ which implies
that E, = B, B, = B, and B, ~ By = E; ~ B,. It follows that & is
a decomposition of M. Certainly & is refined by 2(R). A simple argument,
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based on normality of M and following the argument used in Theorem
14, shows that & is upper semi-continuous. Thus the collection of upper
gemi-continuous decompositions refined by 2(R) is directed downwards
by refinement and a minimal element must be unique. ||

TEEOREM 16. If 2(R) has at least two elemenis and every element,
of D(R) s dlosed, then M is of type A.

Proof. Let  and y be points between which M is irreducible,
and let & be the collection of non-degenerate elements of 2(R); & is
countable. Define the relation < on & as in Theorem 13 (here, M will
play the role of the continuum K used in Theorem 13); < is a linear or-
dering of 4.

Suppose that there exist distinet elements E, and H, of & such that
B, < E, and no F in ¢ distinct from F, and F, satisfies B, < F < E,.
Then, in the notation of Theorem 13, the following collection of sets
forms a non-trivial upper semi-continuous decomposition refined by
2(R):

X, +8, HBy+Y,, '{mlw‘ Yin Ya] .

Thus, if & has gaps relative to <, then Theorem 14 can be applied to
show that M is of type A.

Suppose, then, that between every pair of distinct elements of &
there lies a third element. In this case we shall bypass Theorem 14 and
construct a monotone, continuous function mapping M onto I. The method
of construction is that used in the proof of Theorem 10. Assume, for
convenience, that there exist elements E, and E, of & such that »eE,
and yeH, Take E, distinct from F, and H,, so that ¥, < F, < E, and
define Wy, = X;. Take F, and E; distinct from F,, B, and F, and such
that B, <E,< By <BE;< B, and define W,, =X, and W,;, =X,
Continuing in this way, and defining W, = M, we get a collection of
open connected sets, {W,|+ is a diadic rational in (0,1]}, such that for

r<8 W,c Wyand W,—W, is connected. As in Theorem 10, the function,
Jy defined on M by f(2) = inf{f| 2¢W;} is continuous, monotone and
maps M onto I as required.||

The aim of the preceding work has been to find conditions on a contin-
uum M which imply or are equivalent to the condition that M be of type
4 or type A’'. We next give some simple examples relating to this work,
and finish the chapter with some results on the structure of admissible
decompositions.

In what follows a simple closed curve plus its interior will be used
to represent an indecomposable continuum. If M and NV are indecomposable
continua and there exist composants Oy, and Oy of M and N, respectively,
such that M ~ N « Oy ~ Oy, then it is easy to see that M 4N is irre-
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ducible between each pair of points, # and y, such that z¢M —C, and
yeN—Oy. Two or more indecomposable continua, M;, M,, ..., inter-
secting in this way, will be represented by the corresponding number
of simple closed curves, Oy, C,,...; the fact that M; ~ M; # @ will be
represented by drawing C; touching C;.

Consider the continuum, M, obtained by running a string of inde-
composable continua, each touching its neighbors as above, up to the
interval J = [(0, 0), (0,1)] in the plane, so that the result resembles
a sin(1/x) curve. Clearly M is irreducible between every point of J and

J—>

My M

Fig. 2

every point of M, not on the composant of M, which meets M, 2D(R)
has only one non-degenerate element, namely M —.J, and the other ele-
ments of 2 (R) are the sets {«#} where xeJ. This example shows that, in
Theorem 12, condition (c¢) implies neither (a) nor (b), and indicates why
condition (¢) had to be strengthened to the condition in Corollary 2 of
Theorem 13 in order to obtain the reverse implication. Algo, in this
example 2 ig trivial.

As an example of a continuum of type 4 in which 2(R) has an abun-
dance of non-degenerate elements consider the set in F* obtained as follows.
Let I denote the interval [(0, 0), (1, 0)] and, abusing the notation, re-

<e

x@

place the interval [1/3,2/3] on I with an indecomposable continuum
M, of diameter 1/3, so that [0,1/3]+M,-+[2/3,1] is irreducible from
z=(0,0) to y = (1, 0).

Next, replace [1/9, 2/9] and [7/9, 8/9] on I by two indecomposable
continua M, and M, of diameter 1/9 so that the result is irreducible
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between z and y. The continuum obtained by continuing this process
may be pictured as in Fig. 4.

Mq Ms

Q0G0

)

“ !
7

>
”

S

7

Z

s

i

7

0DOgD0De;

In this example, the collection of non-degenerate elements of 2(R) is
precisely the family # since no two elements of J/ intersect. Hence the
elements of 9(R) are closed and by Theorem 16, M is of type A. Notice
that between any two M;’s there is a third; i.e., there are no gaps relative
to the partial ordering established in Theorem 16. Thus the construction
used in the proof of Theorem 16 applies to this continuum and actually
provides us with a ‘‘nice” function mapping M onto I; that is, M, is
squeezed to the point 1/2¢I, M, and M; to 1/4 and 3/4, respectively,
and go on. The degenerate elements of 2(R) correspond to points of the
Cantor set which are not endpoints of deleted intervals and these are
mapped onto the complement in I of the diadic rationals.

If a subset, 4, of a continuum M has the property that every pair
of points of 4 can be joined by a subcontinuum of M lying in A4, then
A is called strongly connected (relative to M or in M). For example, in the
gin(1/®) curve, B, the subset consisting of the points off the vertical line
segment plus the midpoint of the segment, is not strongly connected
relative to M, although this subset is connected.

TeHEOREM 17. Let M be of type A and feF (i.e. f is a monotone, con-
tinuous function from M onto I). Then the following hold.

(a) If C is comnected in I, then f~'[C] is strongly connected in M.

(b) If r # 8 im I, then f~'[r] and f~' [s] are contained in strongly
connected open Ssets whose closures are disjoint.

Proof. (a) If C is connected in I, then there cxist sequences {r;},

{s;}in 7 such that ... <7y <7, <71y <8, <8, <8 < ... and € = [y, 8.
=1

Since f is monotone, each f*[[r;, 8;]] is a subcontinuum of M; thus, f~'[C],
being the increasing union of subcontinua of M, is strongly connected
in M.

. (b) Ifr #£sin I let U, V be open intervals containing » and s respect-
ively, such that 7 ~ V = @. Then f~(U) and f~!( V) are strongly connected
open sets in M containing f~'[r] and f~'[s], respectively. Since f is con-
tinuous, U A ¥ = @ in I implies f~(U) ~f(V) =@ in M.
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CorOLLARY 1. With M and f as above, suppose that f(z) =0 and
f(z) = 1, where M is irreducible from @ {0 y. Let'r be a point of (0,1) and
X, Y the separated sets whose union is M—f~'[r] with veX,ye¥. Then
X =f0,r) and ¥ = f[(r,1]].

Proof. Sinee £7'[[0, 7)] is (strongly) connected and meets X and
since ¥ is separated from , f~*|[0, )] must lie in X. Similarly for the
other half. ||

We now introduce an important concept which is due to F. B. Jones,
see [8] and [9]. Let » and y be distinct points of a continnum M. We
say that M is aposyndetic at @ with respect to y provided there is a sub-
continuum of M containing x in its interior and not containing y. If this
condition fails, i.e., if every subcontinuum of M which contains # in its
interior contains ¥, then M is non-aposyndetic at » with respect to y. If M
is the sin(1/z) curve and z lies on the vertical interval, then M is non-
aposyndetic at ¢ with respect to every other point on the vertical interval
and M is aposyndetic at 2 with respect to every point of the vertical
interval.

Given a continuum M and a point z in M, let us denote by K (z)
the collection of points yeM such that ¥ =2 or M is non-aposyndetic
at 2z with respect to ¥ and by L(z) the collection of iy« M such that y =2
or M is non-aposyndetic at y with respect to 2. It is well known and easy
to prove that, for each ze M, K (2) and L(z) are closed in M and L(2)
is connected and hence a subcontinuum of M.

CoROLLARY 2 (of Theorem 17). With M and f as in Theorem 15,
if rel and zef~'[r] then K (2)+L(z) < f[r].

Proof. If yeM and y¢f'[r], then yef~'[s] where sel, s #r. By
part (b) of Theorem 17, there are open connected subsets ¥ and W such
that f[r] < V, f'[s]< W and ¥ ~ W = @. Thus V is a subcontinuum
of M with 2z in its interior missing y, which implies that y¢K(2).
Similarly the properties of W imply that y¢L(2). Thus, y¢f'[r] implies
y¢K (2)+ a(z) as asserted. ||

N

Let M denote the accordionlike continuum with points and decom-
position elements labeled as in Fig. 5. Here, A is one side of the
decomposition element f~'[1/2], and #z, is the vertex of f~'[1/2], while
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z is a point of 4—{z}. From the definitions it is easy to see that
K(2) = L(#) = A. On the other hand, K(2,) = L(2,) = f~ 11/2] and
E(z) = L(2) = f'[0]. Thus, in a sense, 2, and #; completely determine
the decomposition elements containing them, while 2, does not. The
natural question raised by this observation is answered in the next result

and the example following.

TaEOREM 18. Let M be of type A', irreducible from o to vy, and let
f be a function such that 2(f) is the minimal admissible decomposztion.
For every rel there is a point, 2, of f~'[r] such that f~'[r] = K(z)
= L(2).
Proof. We deal first with the case 0 <r < 1. For convenience
agsume f(z) =0 and f(y) =1. With the usual notation, we have:
M—f[r] = [0, #)1+f[(r,1]] = X+ Y. Since f'[r] has no interior,
there is a point z lying in X ~ ¥. Thus z¢f~'[#] and, by Corollary 2 of
Theorem 17, L(z)+ K (2) = f'[r]. Let L be any subcontinnum of M with
z¢L°, Then, by choice of z, L meets both X and Y. These sets are strongly
connected (by part (a) of Theorem 16) and it follows that L+-X+Y = I
which implies f~![] < L. This shows that f~![»] lies in every subcontinuum
of M containing 2z as an interior point. Since K (¢) is obviously the inter-
section of all such continua, f~'[r] = K(2). With the reverse contain-
ment having already been established, we conclude that K (z) = f~'[r].
Next suppose wef '[#]; we wish to show that z is in K (w) for this
clearly implies weL(z). If weX ~ Y, then, by the result just proved,
K(w) = f~'[r] and 2eK (w). Thus suppose w¢X ~ ¥; then w lies in one
of X—Y,Y—X, say weX—Y. Now let L be a subcontinuum of M with
weL® If L meets both X and Y, then, as before, I contains f~'[r].
The other possibility is that I = X4f~*[r] = X+ ![#]. In this case, L°
is a subcontinuum of X containing w in its interior. Since X is irreducible
from # to X ~ f'[r] and since weX ~ f![r], it follows that L contains
all of X ~ f~'[7] and hence zeL. Thus, in either case, ze L, and we have
proved that every subcontinuum of M containing w in its interior
containg 2, hence z lies in K(w), as desired.
Our orginal assumption wag that 0 <7< 1. If » = 0 or 1, then
a mmphﬁca.tlon of the above proof shows that for every #ze f“[r], ()

=l

In the preceding theorem we cannot replace the hypothesis “M is
of type A" by “M is of type A”. To see this, let M consist of three in-
decomposable continua M., M,, M, and two arcs A,, 4, joined together
as in Fig. 6 so that M is irreducible from = to y. It is easy to see that M
is of type 4 and that the minimal admissible decomposition has exactly
one non-degenerate element, namely, M,+M,+ M, However, for any
veM,+M,+ M, K(2)+L(z) is the sum of at most two of M,, M, M,.



Chapter 1 27

M My M

— DD

Fig. 6

!

> @

We now give another characterization of continua of type A4’ in
terms of aposyndicity.

THEOREM 19. Let M denote a continuum trreducible from » to y. Then
the following are equivalent.

(a) M is of type A'.
(b) For each ze M, K (2)° = Q.
(c) For each zeM, L(z)° = @.

Proof. We first show that (a) implies (b) and (c). If M is of type
A’ and ze¢ M, then K (2)-+L(z) lies in some element of the minimal admis-
gible decomposition of M (by Corollary 2 of Theorem 17). Since each such
element has void interior, the same is true of K (2) and L(z).

To prove that (b) implies (a), suppose that M contains an irreducible
subcontinuum XN such that N° # 0@ (in view of Theorem 10, this is
precisely the assumption that M is not of type A’). We want to find 2
in M such that K (2)° = @. If N = M, then, for any ze¢¥M, K(z) =N
= M, 50 we may assume N is proper in M. By part (a) of the lemma
preceding Theorem 11, N° = N,

There are two possible cases to handle.

Suppose, first, that zeN go that M —N = Y is a connected set con-
taining ¥, Y is irreducible from y to N ~ Y, and N is irreducible from
#t0 N~Y. Let we N ~ Y and let z be any point of N°. If Lis any sub-
continnum of M and zeL° then we can choose subcontinua H and K
of M lying in the #-composant and w-composant of N repectively such
that H joins 2 to L and K joins w to L. Then H + L+ K joins # to w whence
H4L+4+EK+Y = M. Since H and K have void interior relative to N
and since N°~ Y =@, we have N° < L°. This shows that N° c K (2)
and, therefore, K(2)° # @. Our second case is that N contains neither
o nor y. Here M —N = X+ Y, separated, z¢X, ye Y and X is irreducible
from # to N~ X, Y from y to N ~ Y, and N is irreducible between
two points ueN ~ X and veN A Y. If #2¢N° and L is a subcontinuum
of M with zeL°, then, as above, N°c L° Thus for any ze¢N° N°
< K(z)°.

So, if (a) fails, then (b) fails and (b) implies (a). The above arguments
also show that if (a) fails and N is an irreducible subcontinuum of M
with non-void interior, then for any zeN°, N° = L(#), i.e., (c) fails. Thus
(e) implies (a). ||
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COROLLARY. A continuum M is of type A' if and only if M is irre-
ducible between a pair of its poinls and every open subset of M contains a pasir
of points & and such that M i8 aposyndetic at « with respect to y.

Recall that a continuum is locally connected at the poini z provided
every neighborhood of #z contains a connected neighborhood of 2. Aposyn-
dicity is & weak form of local connectedness as is the following concept
due to G. T. Whyburn, see [9]. A continuum is semi-locally-connected
at the point z provided that if U is an open set containing 2, then there
is an open set V such that z¢eV < U and finitely many components of
the complement of ¥ cover the complement of U.

The following result relates the preceding concepts to the minimal
decomposition in irreducible continua.

TEEOREM 20. Let the continuum M be irreducible from » to y. Then
for each ze M, (a), (b) and (c) are equivalent. If M is of type A and De4,
then (d) implies (2), (b) and (¢). If M is of type A’ and 2 is the minimal
decomposition, then all four conditions are equivalent.

(a) M is aposyndetio at z with respect to every other point of M.

(b) M is semi-locally-connected al z.

(¢) M 7s locally comnected at .

(d) {z}e2.

Proof. Suppose that M is aposyndetic at 2z with respect to every

other point of M and let U be an open set containing 2. For each ye M — T,
let Hy be a subcontinuum of M such that z¢e Hy° <« Hy < M —y. Then

M —Hy° has at most two components, one of which, Ky, contains y.
Now Ky is a continuum satisfying ye Ky° « Ky « M —z. By compactness
there exist ¥, ..., yoe M —U so that Kyi,..., Ky, covers M —U. Then
M—~(Ky,+...4+Ky,) = V is an open set containing 2, lying in U such
that a finite number of components of M —V cover M —U, i.e., M is
semi-locally-connected at 2. Thus (a) implies (b).

Next we show that (b) implies (¢). Assume that (b) holds for zeM
and let U be an open set containing 2. We may assume that U is a proper
subset of M. Choose an open subset V of M such that z¢eV =« ¥V =« U and
M —U is covered by a finite number, K, ..., I, of components of M —V.
We may assume each K; has non-void interior relative to M. In the fol-
lowing construetion we shall apply various parts of Theorem 1 without ex-
plicit mention at each step. M —K, is the sum of at most two connected
open sets one of which, Z,, contains 2, and Z, is irreducible between some
point and Z, ~ K,. Notice that 07, c K,,Z, ~ K, c V<= U and
Z,~ K{ = @. Thus Z, meets at most n—1 of the sets Ky, ..., Ko; also,
for each 4, Z, meets K; if and only if K; « Z,. If Z, meets no K;, then
4; < U and Z, is a connected open set containing z and lying in U a8
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required. If Z;, meets some K;, say Kj, then Z,—K,—K, is the sum of at
most two connected open (in M) sets and we let Z, be the one containing z.
Then Z, is irreducible between some pair of points and misses K°-K2.
Continuing in this way we obtain, in not more than n steps, a connected
open set Z,, containing z with the property that Z, misses K{4-... +-K°.
Thus, Zy is & connected open set, lying in U and containing 2z as required.
So, (b) implies (c).

In any continuum (¢) implies (a).

Suppose that M is of type 4, D4 and {¢}¢2. We show that M is
locally connected at z. Choose fe& such that 2 = 2(f) and let f(2) =rel,
so that {¢} =f7'[r]. By an argument analogous to that used in prov-
ing part (b) of Theorem 17, it is easy to prove that if U is an open set
containing {2}, then there exist an open connected set W in I containing
r such that V = f~'(W) lies in U. By part (a) of Theorem 17, V is con-
nected. This shows that M is locally connected at z.

Finally, suppose that M is of type A’ and 2 is the minimal admis-
sible decomposition. Suppose for some z< I that (a) holds, i.e., K (z) = {z}.
If D is the element of 2 containing ¢, then, by Theorem 18, there is w eD
such that D = L(w) = K(w). But zeL(w) implies w ¢ K (z) which implies
w =2 Thus D = K(z) = {2}.|

Consider the continuum consisting of the boundary of the unit
square in the plane plus the line segments L; = [(1/i, 0), (1/i, 1)] and
let z = (0,1/2). Then (a) and (b) hold at 2z but the continuum is not
locally connected at z. Thus, unless M is irreducible, (a) and (b) together
need not imply (c).

Let M consist of a chain of indecomposable continua “converging
to a point 2’’ plus an are, A, joined together as follows:

A

Fig. 7

Then M is of type A and is locally connected at z but {z} is not an
element of any admissible decomposition for 1. Thus, (¢) may fail to
imply (d) even for the minimal decomposition of a continuum of type
4, unless M is of type A'.

Perhaps the most obvious application of the theory we have de-
veloped so far is to characterizations of arcs and simple closed curves.
We shall give two examples of such applications; the first one is evident.

THEOREM 21. A necessary and sufficient condition that the conlinuum
M be an arc is that M be of type A and that, for some Ded, every element

of 2 is degenerate.
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Proof. Necessity is obvious. Conversely, if for some 2 in 4 every
element of 2 is a single point, then choosing fe & such that 2 = 2(f),
we gee that f is one-to-one and hence & homeomorphism of M onto Z.||

Before stating the next theorem we recall a few definitions. A con-
tinuum M is a simple closed curve provided M is the union of two arcs
having only their endpoints in common. A subset N of a continuum M
cuts between the pair of points » and y of M provided every subcontinuum
of M containing # and y intersects N. If it is not important to display
a pair of points between which N cuts, we shall merely say, “N cuts®.

THEOREM 22. Let M be of type A’ and 2 = D(f) (feF) the minimal
admissible decomposition of M. If p and q are distinet points of £~ [01(f~[1])
then p cuts q from every point of M—f~'[0] (M—f'[1]). If 0 <7 < 1 and
p ef [0, 7)] ~ [fr, 1], then p culs every other point of f~ 1[r] from
every point of M—f'[r].

Proof. Suppose p, ¢<f~'[0] and let z <M —f~'[0]. Then f(2) =7 > 0.
If K were a subcontinuum of M joining ¢ to 2 missing p, then K7~ [[r, 1]]
would be a proper subcontinuum of M joining ¢ to a point y of f~'[1].
Since M is irreducible from ¢ to y (by Theorem 8), this is impossible.
Thus p cuts ¢ from z.

Suppose 0<r<1, p is as above, gef~'[r] and zeM —f'[r], say
f(2) = s, where 0 <8< r. Now if K is a subcontinuum of M joining 2
to ¢, then K contains f~'[(s,r)] and thus contains f~*[(s, )] which con-
tains p, and, again, p cuts ¢ from z. ||

We shall use the following fact, due to I'. B. Jones, see [8].

If M is a continuum no point of which cuts, then there is a dense
G, set G in M such that, for each @, M is aposyndetic at # with respect
to every other point of M and M is semi-locally - connected at z.

THEOREM 23. The following are equivalent for a continuum M:

(a) If o, y, 2 are distinct poinis of M, then x does not cut z from y, while
if @,y are distinct points of M, then there exist points z and w of M such
that z, y, 2 and w are distinct and {z, y} cuts z from w in M. (Briefly, no
point cuts and every pair of points culs.)

(b) No point cuts and no subcontinuum of M separates DM.

(c) No subcontinuum N of M outs between a pair of points in M —N

(d) M is a simple closed curve.

Proof. The following relationships are clear: (¢) implies (b) and (d)
implies (a), (b) and (¢). We show that (a) implies (b) and (b) implies (d).

Suppose that 4 is a subcontinuum of M and M —A4 = U+ V separated
and non-void. Let ze U, yeV. If (a) holds, then there exist z and w such
that =, y, 2, w are distinct and every subcontinuum of M joining z and
w contains @ or y. Suppose ze U; since « is not a cut point, there is a sub-
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continuum K of M joining 2z to some point of the continuum A + ¥V missing
w. Let H be a subcontinuum of K irreducible from 2 to A+V. Then H
misses V (because V < (A-+7V)°) and meets A (because 9(4-+V) c A).
Thus we have a subcontinuum H of M joining 2 to A missing # and v.
Such a continuum, H, also exists if z¢V or (frivially) if 2 e4. The same
argument shows there is a subcontinuum, Z, of M joining w to 4 and not
containing # or y. Then H--L4-A is a subcontinuum of M joining 2z to
w, missing @, and y, which is a contradiction. Thus, if (a) holds, no gub-
continnum of M separates M, i.e., (a) implies (b).

Now assume (b) holds for M. Suppose first that M is semi-locally-
connected at the point ». If U is an open set containing x, then let ¥ be an
open subset of M containing « such that a finite number of components,
Ky .ooyEy of M—V cover M—U. Since z is not a cut point, there is
a gubcontinuum K, of M such that K misses ¢ and K a point of each K.
Then K+K,+... +K, = H is a subcontinuum of A missing @. Since
H does not separate M, M —H is an open subset of M containing 2.
Since the K; cover M —U, M —H < U. This shows that if (b) holds and
M is semi-locally - connected at x, it is locally connected at . Thus M
is locally connected at every point of some dense G, set.

Let 2 and 4 be points of M at which M is locally connected, and let
{U:}, {V} be sequences of open connected sets in M guch that U, ~ ¥, =@,

o0 =]
U,o20,2U,2..,V,2V,2V,o..., M U = {a}, andiﬂVi = {y}.
]

i=1

Suppose that, for some ¢, M —(U;+V;) were connected. Then M —
—(U;+7V,) would be a subcontinuum of M which separates, a contra-
diction. Thus, for each i, M —(U;+7;) is disconnected. There i§ a com-
ponent ¢ of M —(U;+7V,) such that ¢ meets both U; and V;. Since
C+ U, 7, is a subcontinuum of M, it does not separate M and this implies
that M —(U;+V;) has only one component besides C. Thus, for each
i, M—(U;+7V;) is the sum of two disjoint connected open sets and we
can label these sets so that M —(U;+V;) = A;+B;, open and connected,
where A, c A, c 4; < and B,c Byc Byc... Since NU; = {w}

=1

and (\V; = {y}, we see that M —{», y} is the sum of the two disjoint
=1

open connected sets 4 = | J 4; and B = B
‘=1

Tl
To complete the proof of the theorem, we show that 44{w, y} is
an arc with endpoints z and . (Since the same result will hold for B+4+{z, ¥},
M will be a simple closed curve.) Since B is open, 4 = 4 +{z, ¥} and,
dually, B = B+{»,4}. Let ¢ be irreducible in 4 from @ to y. Then
M—C = (4—0)+B and, since ¢ does not separate M, we conclude that
A—C = @, whence A = C and A4 is irreducible from # to y.
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Because M is locally connected on a dense @, it contains no inde-
composable subcontinuum with non-void interior. Since 4 inherits thig
property, it is, by Theorem 10, of type 4'. _

Let 2 be the minimal admissible decomposition for 4 and let f be
a function on A4 to I such that 2 = 2(f). For convenience, assume f(z) = 0
and f(y) = 1. If f~*[0] contains a point z +# @, then we know from Theorem
22 that » cuts #z from y in 4. .Since B ~ 4 = {&, y}, it is obvious that
z would also cut z from ¥ in M, a contradiction. Thus f~ '[0] = {z} and,
similarly, f~*[1] = {y}. In the same way, if, for 0 <7 <1, f~'[r] were
non-degenerate, then by Theorem 22 there would be distinet points 2, w
in f~1[r], such that z cuts w from both of # and ¥ in 4. From this it follows
readily that z would cut w from both of # and y in M. This contradiction
implies that f~'[r] is degenerate. Thus every element of 2 is degenerate,
and, by Theorem 21, 4 is an are. |

In [2), R. H. Bing gives several characterizatios of arcs and simple
closed curves. Most of the characterizations in that paper can be obtained
by applying our decomposition theory. In particular, Theorem 10 of
his paper is the statement that (b) is equivalent to (d) in our Theorem
23, while his Theorem 11 is the statement that (a) is equivalent to (d).

We remark that weaker forms of our Theorem 10 appear in the lit-
erature. In a study of unicoherent continua, [13], H. C. Miller proves
that an irreducible continunm containing no indecomposable subcon-
tinua has an admissible decomposition. In an earlier paper, [156], W. A.
Wilson proves the existence of admissible decompositions for irreducible
continua having a dense set of points at which the oscillation of the con-
tinuum is zero (if # is such & point, then {z} is a member of the minimal
admissible decomposition). Although these conditions are sufficient for
a continuum to be of type 4', they are far from being necessary.



CHAPTER 2

DEFINITION 1. A continuum M is hereditarily of type A’ if and only
if every non-degenerate subcontinunm of M is of type A'.

With each continuum hereditarily of type A’ we shall agsociate a
sequence of decompositions. This sequence will be indexed with a subset
of the set of ordinals not greater than the first uncountable ordinal. It
suffices for our purposes to use the deseription of this set’ given on page
29 of [10]. Thus, by £' we mean an uncountable set which is linearly
ordered by a relation <, and having a largest element £, such that < well
orders 2’ and for every « # 2 in Q' there are at most countably many
B in 2 such that f < a. We will use small Greek letters for elements of £2';
the ordinal Q is called the first uncountable ordinal and the other elements
of ' are called countable ordinals. Since < well orders £’, every countable
ordinal « has an immediate successor, denoted by a+1. Elemeonts of £’
which have no immediate predecessor are called limit ordinals. The first
few ordinals are denoted by 1,2, 3,... and their supremum by cw,.

For convenience, the minimal admissible decomposition of a con-
tinuum M of type A will be denoted by 2(M). If M is single point, then
2(M) will mean M itself. Moreover, we shall drop the adjective ‘‘admis-
gible” so that, unless otherwise stated, ‘‘decomposition” means “admis-
sible decomposition’”. Where convenient we shall use the 4 and & notation
of Chapter 1.

Let M be hereditarily of type A’; for each ordinal, a, in 2’ define
a decomposition, 2,, of M in the following way. First of all, 2, = 2(M).
Let aef’ and suppose that the decomposition 2, has been defined for
each g in Q' for which # < a. Then 9, is defined in one of two ways. If
a is not a limit ordinal, then there is fef2’ such that f+1 = a. In this
case, 9, = | J {2(D)| DeD,}. If a is a limit ordinal, then for each ze M
and for each 8 < a, let Z, be the element 2, containing 2. Let Z, = ({Z|
B< a} and let @, = {Z,| ze M}. (In this case, 9, is the infimum, relative
to refinement, of the decompositions preceding it.)

Using transtinite induction (i.e., the fact that Q' is well ordered)
it is easy to verify that the above process actually does define a sequence
of decompositions of M. One also obtains the following facts:

(1) If a, B’ and a << B, then D, refines D,.
(2) The elements of each 2, are subcontinua of M.

Rozprawy Matemalyeczne L 3
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DEFINITION 2. The sequence {2, aef’} is called the decomposi-
tion sequence of M (or, associated with M).

If ze M and ae ', then the element of 2, containing 2 will frequently
be denoted by Z,.

THEOREM 1. For each zeM there exists a countable ordinal, a, such
that for each B in Q' with § > a, Z, = Zy = {z}. There exists an ordinal
ae®' such that, for each zeM, Z, = {2}, i.6., D, = |{z}| zeM]}.

Proof. Fix zeM and observe that, by definition, Z, = () {Z,| a< 2}.
Since the Z, are closed and M is compact metric, we can choose a count-

o0
able subcollection of {Z,| a < £} whose intersection is Z,, say Z, = p Zo,y
=l
where, for each ¢, ;< 2. Let @, be the supremum of the ordinals
o
{a| ©=1,2,...}. Then a is countable and Z, = (2, =2Z, If Z,
'tnl
were non-degenerate then Z,,, would be a proper subcontinuum of Z,
containing Z,, a contradiction. Thus Z, is degenerate, i.e. Z, = {z},
ag asserted. For the ordinal, a, of the second sentence of the theorem
we may take the supremum over all ze M of the ordinals obtained
above. Since each of the latter is countable, their supremum is not greater
than Q.|

DEFINITION 3. The order of a point ze M, denoted by O(z), is the
least ordinal a such that Z, = {z}. The order of M, O(M), is the least
ordinal a such that for each ze M, Z, = {2}. Thus, by Theorem 1, O(z)
i3 countable for each ze M and O(M) = sup{0(2)|zeM}Q2’.

In the sin(1/z) curve O(z) =1, if z is not on the vertical line segment,
while O(z) = 2 otherwise. In the accordionlike example every point has
order 2.

We now construct a continuum M such that O(M) = w,. This con-
tinuum will also provide examples of other behavior of interest to us later
on. Let §, denote the sin(1/s) curve in the plane. Let ¢ be a homeomorph
of (0,1] in the plane whose closure in the plane is the disjoint union of
C and a copy of §;; call this closure S,. Thus, 8, is 8, with the vertical
interval replaced by a sin(1/z) curve. In general, the continuum &, is
obtained from 8, , by replacing the vertical interval in §; by a copy
of 8,_,. It is easy to see that, for each 4, §; is hereditarily of type A’ and
O(8;) = i+1. Moreover, the set of points of §; which have order i-+1
is an are, A;.

We now string copies of the S§; together in the following way. Let
B, be the interval [(0, 0), (0, 1)] in the plane, and for, i > 1, let B; be the
interval [(1/4,0), (1/i,1)]. For 4> 1, place a copy of 8; in the closed
rectangle bounded by the lines y = 0,y =1, s =1/i, 0 = (1fi4+1/(i-1))
(replace 1/(¢—1) by 1 in the last expression if ¢ = 1) in such a way that
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A, coincides with B;. Thus, we have placed the 8, so that the arcs Ay = By
converge homeomorphically to B, and, since each point of §; is within
$(1/(i—1)) of A; (i >2), the 8; also converge to B,. Let § denote the
compact subset of the plane ebtained so far.

Now, for each ¢, the minimal decomposition, 2(8;), of 8; has exactly
one non -degenerate element (the copy of §;_,). Among the other elements
of 2(8;) there is exactly one, {y;}, which does not separate §; The last
step in our consfruction is to join §; to §;,; with an are, 0;, such that
Or~n 8 = {Y141y (1/%, 0)}, and such that C; lies in the closed rectangle
bounded by ¥ =0, ¥y =1, y =1/i, y =1/(341).

The continuum, I, obtained in this way can be pictured as in Fig. 8.

S3 ) S
— e, (e —_———
1 fﬁ
B3=A3 v,
By
c
L —_x-axis--

This continuum is irreducible from ¥, to every point of B,. It is here-
ditarily of type A’; in particular, 2(2) has a countable number of non-
degenerate elements, the arc B,, the copy of 8, lying in S, the copy
of 8, lying in 8,, etec., and the are B,, For each ¢ > 1, the order in M of
the arc, B;, is ©+1, hence O(M) = w, We shall refer to the continuum
of this example as the continuum with increasing oscillations.

In investigating the relationship between a continuum and its
decomposition sequence, we will use the notion of an inverse limit. We
shall develop the basic definitions and facts needed below. A discussion
of inverse limits, in a somewhat more restricted setting than ours, can
be found in [7]. We shall also assume a knowledge of Moore-Smith limits
a8 found in [10].

To begin with, let {X,| acA4} be a collection of (non-void) sets. The
Oartesian product of the X, will be denoted by [[{Xa| aed}, or, if no
confusion will result, by I7. Let P, be the usual projection map of I7 onto X,.
By <(=,), we mean that point, @, of IT such that P,(2) = x, for each acA.
If each X, iz a topological space, then the weakest topology for II with
respect to which each P, is continuous is called the product topology for II.
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Now let A be a set linearly ordered by a relation, <, and, for each
aeA, suppose that X, is a non-void topological space. Suppose also that,
for a,bed and a<b, there exists a continuous function fp, from X,
into X, such that f,, is the identity map on X, and, if a < b< ¢, then
foa = fraOfer- Let X, be the subset of IT consisting of all points, (z,),
guch that, for a,bed and a < b, fou(®) = @ The maps fu, are called
bonding maps and the space X, with the relativized product topology,
is called the inverse limit space {X,} with bonding maps of {fus}. Unless some
restrictions are put on the X, and the fi, the inverse limit space may
well be empty. The restriction to X, of the projection map P, will be
denoted p,. Notice that, automatically, each py is continuous on X,. Also,
if @ < b, then p, = fog0ps on X

Adding some restrictions we obtain the following useful

REMARK ON INVERSE LiMITS. Suppose, in the above, that each X,
is non-void, bicompact, and T, (but not necessarily Hausdorff) and that
each bonding map is onto. Then, for each bed, p, maps X, onto Xp; in
particular, X, is non-void. Moreover, the topology for X, has a base con-
sisting of all sets of the form py'[U] where bed and U is open in X, Each
Py 15 an open map, X, is closed in II, bicompact and T',.

Proof. Fix bed and yeX,. Let % be the collection of finite subsets,
C, of A whose least element is b. For each C¢%, let F'(C) be the collection
of points (@,)> in IT such that, if ¢, deC and ¢ < d, then fi(zs) = =,
where we define @, to be the point y. Using the fact that each bonding
map is onto, it is easy to see that, for each Ce%, F(0) is non-void in /7.
Also, if C,De¥%, then F(C+D) < F(C) ~ F(D). Finally, suppose that
{#'} is a net in F(C) converging in IT to the point x. Write 2* = (a});
then if ¢, de0 and o < d, ¥, = hxana:ﬁ = ]ifnfdc(wf;) = fz(®g). Thus zeF(C)

and we have shown that F(C) is closed. Since {F(C)| Ce%} is a family
of closed non-void subsets of /7 with the finite intersection property and
since II is bicompact, there i3 a point ze() {F(0)| Ce¥}. Then clearly
xeX, and p,(z) = y. This shows p, is onto.
There is a base for the topology of X, consisting of all sets of the form
n
VA X, where V = QP;;[Ui], biy ...y bued, and U; open in X, for
1=

=1, ..., n. Suppose that V is of this form; we may assume that b, <...
n

< by Let U =iﬂ Jop;[U:J; then U is open in X, . A simple compu-
=]

tation shows that V ~ X, = P;'[U] ~ X, and this latter set is, by
definition, p;'[U] This proves the assertion about the base for the
topology of X,.

Final.ly, fix bed. To prove that p, is open, it is enough to prove
that the image under p, of every member of some base for the topology
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of X, is open. Let ¥ be the base described above and let V be in ¥
Write V = p;'[U] for some aed and some open set, U, in X,. Then,
since pp i onto, P, (V) = Xy, if a # b, and U, if a = b; in either case,
py(V) is open.

That X, is closed in /7 follows from a simple convergence argument,
such as the one used above to prove F(C) closed in /7. Thus, X, being
a closed subset of a bicompact space, is bicompact. X, is T, because
any product of T, spaces (and any subspace of a T'; space) is T, ||

We now return to M and its decomposition sequence, {2, a<2’}.
For each ordinal, a, such that « <O(M) let M, denote the quotient space
of M with respect to the decomposition 2, and let g, denote the quotient
map of M onto M, We shall retain the use of the symbols {Z,|ze M} to
denote the points of M,. If a < < O(M), then there itz a natural map-
ping fs, of M, onto M, defined as follows: for Zse My, fpo(Zp) = Z,. If
a < f, then D, refines 2., so the function fg, is well defined and maps My
onto M, Moreover, if o < f <y <O(M), then f,. = f,50fsa. Finally, if
a < B <K O(M), then fa, 18 continuous. To see this last faet first notice that,
on X.,, qa = fs© gp- By definition of the quotient topology, a subset U
of M, is open in M, if and only if ¢;'[U] is open in M. This happens if
and only if g5 [fz [U]] is open in M and, again by definition of the quo-
tient topology, this is equivalent to the statement that fsi[U] is open
in M,. Thus, not only have we proved fz continuous, but also: if a < i}
< O(M), then M, has the quotient topology induced by the map fp, of M,
onto M,. We make one more observation, namely, if a < O(M), then the
functions foana and q, coincide on M.

THEOREM 2. Assume the above notation. Then, for a < O(M), M,
is bicompact, T, and connected and the following are equivalent: (a) M,
is metrizable; (b) M, is Hausdorff; (¢) 2, is upper semi-continuous, and
(d) g, is a closed map. If a < f < O(M), then f, is monotone. (In partic-
ular, if a< O(M), q, s monotone.)

Proof. Since g, is continuous and maps M onto M., M, is bicompact
and connected. It is T, because the elements of 2, are closed in M.

Trivially, (a) implies (b). If 2, is not upper semi- continuous, then
there exists a sequence {D;| ¢ =1,2,...} of elements of Z,, an element
De9,, and two sequences of points, {z;} and {y;}, where, for each i =1,
@;eD; and y;eD;, such that {a;} converges to a point of D and {y;} con-
verges to a point, ¥, of M —D. Pick E in 9, such that y ¢B. Then, in the
quotient space M,, every open set containing D (or F) contains almost
all the D;. Thus any two open sets containing D and E intersect, and
M, is not Hausdorff. This shows that (b) implies (c). The above argument
is easily reversed to show that (¢) implies (D). Virtually the same proof
establishes the equivalence of (¢) and (d). Finally, by the remark on quo-
tient spaces, (¢) implies (a).
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Suppose a < ﬂ < O(M); note that for ZaeMa) ﬁal [Za] = qﬂ(qEI [Za]).
Hence the preimage in My of a point in M, under the map fs, is a sub-
continuum of M,. (We need to argue further because fy, is not necessarily
closed.) Let K be a closed subset of M, such that fg [K] = E+F,
separated, in M, Then Z and F are closed and, by the above remark,
each consists of complete preimages of points of K. Now because M,
has the quotient topology induced by fsay foa(H) and fs,(F) are closed
in M,. Since these sets are digjoint and K is their union, K is not
connected. This proves that fz, is monotone.]|

Notice that M; and Mgy are metric, indeed M, is an arc and Moy,
is homeomorphic to M, but none of the M, between M, and Mgy need
be metric. This is the case in the example of the continuum with increasing
oscillations. If M denotes the continuum of that example and » and y
are distinct points of the left hand vertical interval, By, then for every
integer ¢ >2, X; and Y; (which are {z} and {y}, respectively) cannot
be separated with open subsets of M;. More specifically, for each ¢ > 1, let
#* be the point (1/i,0) of A, in M. Then, for any integer j > 2, the
sequence {Xi| i =1,2,...} converges in M; to the distinct points X;
and Y; of M;.

DEFINITION 4. Let M be hereditarily of type 4’ and suppose O (M)
is a limit ordinal. Assume the notation established above. Then the in-
verse limit space associated with M, denoted by M., is the inverse
limit space of the sequence {M,|a<<O(M)}, with bonding maps {fs]
a< < O(M)}.

THEOREM 3. If M is hereditarily of type A' and O(M) is a limit ordinal,
then M, is bicompact, T, and connected. There is a one-10-ome, onto
continuous function, gy, from M onto M, defined as follows: for zelM,
ou(?) = <{Z,>. The following are equivalent: (a) M, is metrizable; (b) oy is
a homeomorphism (c) @y is closed (open), and, (d) M, is Hausdorff.

Proof. By Theorem 2, each M, (a< O(M)) is bicompact and T,
and by the remark on inverse limits, this implies M is bicompact and
T,. That M is connected will follow from the fact that ¢j; is continuous, so
we now turn to the assertions concerning ¢,.

Firgt of all, for 2 e M we have O(2) < O(M) so that {2} = (M {Zi
< O(M)}; thus, if 2 and w are points of M, then z = w if and only if ze W,
for each a < O(M), i.e., if and only if Z, = W, for each a < O(M). This
shows that gy is well defined and one-to-one. Let y be a point of M;
then, for a, B2’ and a < f < O(M), Pa(y) = fsa(ps(y)) (recall that p, is
the projection of M, onto M,). This translates into the statement that, in
M, ps(y) is a subcontinuum of the continuum p.(y). Thus, for yeM,,
{Pa(¥)] @< O(M)} is a monotone collection of subcontinua of M and
therefore there is a point 2z, belonging to each p.(y). Since p.(y) is an
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element of 9., we have, by definition, that Z, = p,(y) for each a < O(M),
and we may write: g (2) = <(Z,> = (p.(y))> = y. This proves that g, is
onto.

A function into a subset of a product space is continuous if and only
if the composition with each coordinate projection map is continuous.
If a < O(M) and 2 is & point of M, then p.(pa(2)) = Pa({2ad) = Za = a(2),
i.e., PaO @y i8 just the quotient map, ¢, of M onto AM,. Since each ¢, is
continuous, @z is continuous. .

Since the continuous image of a connected space is connected, @z (M)
= M, is connected.

Any one-to-one, continuous funetion from a compact metriec space
onto a compact metric space is a homeomorphism, hence (a) implies (b).
Any homeomorphism is a closed map, so (b) implies @y is closed and,
since @y is one-to-one, it preserves complementation and is closed if
and only if it is open. Thus (b) implies (¢). Suppose that # and y are distinct
points of M and let U and V be disjoint open sets containing # and v,
respectively. If gy is open, then @y ( U) and ¢ (V) are disjoint, open and
contain gy (x) and @y (y), respectively. Since ¢, is one-to-one, this shows
that (c) implies (d). If M, is Hausdorff, then it is metric by the well - known
proposition that the continuous image of a compact metric space is met-
rizable if it is Hausdorff. (As a matter of fact, the latter proposition is a
simple consequence of the remark on quotient spaces.)||

If M is the continuum with increasing oscillations, then M, is not
Hansdorff; for let 2; = (1/¢,0) (¢ =1,2,...), then {py(x;)} converges
to par(w) for every point z of B,. However it is easily seen that if we modify
M by squeezing B, to a point, the new continuum is homeomorphic with
its associated inverse limit space.

After developing some facts about sequential convergence we shall
prove that ¢y, is monotone. The methods used previously to prove a func-
tion monotone do not work here because, in the most interesting cases,
@ 18 not closed nor does M., have the quotient topology induced by gy

From now on, we shall use the term ‘‘standard notation” to mean
the collection of symbols D., M, Z,, Goy Pay fsay 304 @a Whose meanings
are defined in the preceding paragraphs. Here we understand that a
ranges over the set of ordinals less than O (M).

Perhaps it is appropriate to point out at this place that the decom-
position sequence, bonding maps, and the inverse limit space associated
with a continuum hereditarily of type A4’ are topological invariants.
To begin with we prove the following result.

LEMMA, Let M and N be continua such that M is irreduoible between
some pair of points and N 18 of type A. If h is a monotone, continuous map
of M onto N and D is an admissible decomposition of N, then {(h~'[D]| De2}
18 an admissible decomposition of M, whence M is of type A.
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Proof. Let f be a monotone continuous function from N onto I
such that 2 = 2(f). Then the composition, g = foh, is monotone, con-
tinnous and maps M onto I. By the remarks preceding Theorem 4 of
Chapter 1, M is of type 4 and Z(g) = {+~'[D]| De2} is an admissible
decomposition of M.

Using the Lemma, one easily establishes the following two results:

TEROREM 4. Suppose that h is a homeomorphism of the topological
space M onto the space N. Then one M, N is a continuum of type A’ if and
only if both are, in whioh case, @(M) = {h"'[D]|DeD(N)}.

TrEOREM 5. Let M and N be continua hereditarily of type A' and
let b be a homeomorphism of M onto N. Then O(M) = O(N) and for ecach
zeM, O(2) = O(h (2)). Suppose that O(M) is a limit ordinal; for each
a< O(M) there is a homeomorphism, h,, of M, onto N,. If a < f< O(M)
and fpay Gpa denote the bonding maps for M and N, respectively, then the
following diagram commutes:

Jta

M, «— M
ha hﬁ

9pe )
Neg «—— Ng

The functions {h, a < O(M)} induce a homeomorphism, ﬂ, of M, onto N,

In connection with Definition 4 and Theorem 3, notice that we require
that O (M) be a limit ordinal and that the ordinal subsecripts for the inverse
limit sequence yielding M, go up to, but do not include, O(.M). The reason
for these restrictions is this. We want to approximate A in some way
by reassembling its successive decompositions. Clearly, if a < < O(M),
then M, is a better approximation to M than M, However, it is not
fair to use Po ) because the quotient space is just M itself. Having agreed
not to use Zgy, we have problems if O(M) is not a limit ordinal; for,
if there is a in £’ such that a+41 = O(M), then the best available
approximation to M will be M, In this case the quotient mapping ¢,
of M onto M, (which is the natural map to use for comparison
purposes) must map at least one non-degenerate arc in M onto

a point of M, As an illustration, let §,, S,, be the continua
we string together to get the continunm with increasing oscillations;
then, for each 7> (8;) =i4+1. Let (8, (8%, ..., (8 be the

first 2+1 quotient bpaces of §; so that (8%, is an arc and (8° ).“,1 is
(homeomorphic with) 8;. Then it is easy to verify that, for 7 > 2, (8%
Is homeomorphic with §;_
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Before continuing our investigation, we prove a wuseful fact about
continua hereditarily of type A’. A continuum 7 is called a #riod provided
there is @ subcontinuum § of T such that 7—8 = §,+8,+8; where the
8; are pairwise disjoint, non-void and open in 7. A continuum, 7, is
unicoherent provided that, if P and @ are subcontinua of T and T = P+-Q,
then P ~ @ is connected; T is hereditarily unicoherent provided every
subcontinuum of T is unicoherent.

THEOREM 6. If the continuum M is hereditarily of type A', then M
is hereditarily unicoherent and contains no triod.

Proof. Suppose that T is a triod and § is a subcontinuum of 7 such
that T—8 = 8,+8,;+8;, non-void, disjoint and open in 7. For each
i, 8;+ XN is a subcontinuum of 7. If # and y are points of 7, then there
exist ¢ and j such that §;4 N -+S; contains # and y. Thus T is irreducible
between no pair of its points. Thus no continuum of type 4’ is a triod
and a continuum hereditarily of type A’ contains no triod.

Now suppose that P and ¢ are proper subcontinua of M and P+4Q
= M.If P ~ Q = A+ B, separated and non-void, then choose p in 4 and ¢
in B. Let H and K be subcontinua of 4 and B, respectively, each irreducible
from p to ¢. Note that H—K # ( since H ¢ B and, similarly, K —H # @.
Now H 4K is irreducible between a pair of its points, say # and y. Not
both of z and y lie in H, for if so, then H+K = H and K—H = @. Thus
for suitable relabeling, e H—K and yeK—H. Let D, be the element
of 2(H-+K) containing x; then D, i3 contained in H—K. For if not,
then D,+K = H+K and H—K < D,, and since H— K is open in H+ K
and D, has void interior relative to H -+ K, this is impossible. Thus D,
is a subcontinuum of H—K with void interior in H+4K and hence also
with interior relative to H. It follows that D, lies in some element, D,
of 2(H). Next, let D, and D, be the elements of 2(H) containing p and
g, respectively; then D, misses D, and D, For if D, ~ D, # @, then
D;+D,+K = H+I{ and H—K < D,+D,, and, again, this is impossible
gince both D, and D, have void interior relative to H K. Now let L, be
a subcontinuum of H irreducible from D, to D,. Then D +Ly+K = H+ K

which implies H—(D,+4Lpy) ¢ K—H. Let E = H—(D,+L;); then E
is a subcontinuum of H ~ K joining ¢ to the element D of 2(H) in which
D, lies (and whose existence we established several lines above).

Summarizing, we have a continuum, F, lying in H ~ K and joining
¢ to D. Similary, we can get a continuum, F, lying in H ~ K joining p
to D. But then E+F+D = H which implies H—K < D and this is
impossible. So, after all, P ~ @ is connected and the proof is complete. i

COROLLARY 1. Let M be hereditarily of type A’ and let x and y be
points of M. Then there is a unique subcontinuum of M irreducible from
z to y.
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Proof. Let H and K be irreducible from » to y. Then H 4K is unico-
herent; hence H ~ K is connected. This implies H~AK=H=ZLK.|

COROLLARY 2. Let M be hereditarily of type A', K a subcontinuum
of M and aeQ'. Let &, = {De2.| D~ K 5 0}; then all but at most two
elements of A, are coniwined in K.

Proof. If D,, D, and D are in 9, and D;—K # O for i =1,2
and 3, then K+D;+D,-+D, would be a triod in M, contradicting the
theorem. ||

We now characterize sequential convergence in the M, and in M,
in the following theorem and its corollaries.

TeEOREM 7. Let M be hereditarily of type A’ with O (M) a limit ordinal,
and assume the standard notation. Let {«'| i =1,2,...} be a convergent
sequence in M, w a point of M and a an ordinal such that a < O(M). Then
(X%} converges to W, in M, if and only if lifa sup e X: intersects W,

(Recall that ]ijtnsupMXf, =iﬂ [CIM(}J XI)). It is well known that
-] -1

if K.y K,,... are subcontinua of & continwum M and there exists
a convergent sequence of points {y;}, where y;eK;, then limsupyK;
is a subcontinuum of M.) t

Proof. If limsup, X% contains ze W,, then, for each 7, we can pick
1
#zeX, so that {;} converges to 2. Then {g.(#)} converges to g,(z) in I..
Since ¢, (2;) = X, and g,(z) = W, this proves the “if”’ part of the theorem.
Conversely, suppose that (limsupyX:) ~ W, = @; then there is
i

an integer j such that [clM(Q’Xf,)] ~ W, =@. Let K be the continuum
limsupy X; and let o, = {De2,|D ~ K # @}. Now, by Corollary 2 of
Tiheorem 6, U {D|Dex,} is a subcontinuum, L, of M; L contains K and,
since W,¢X,, misses W, Let F = L+iQXf,; then F is closed in M,

F is the union of elements of 2, and F misses W,.. Hence g,(F) is closed
in M, because I/, has the quotient topology relative to g, Since g,(F)
contains almost all the X% and misses W, and is closed in M, {X%} does
not converge to W, in M,.||
CorOLLARY 1. Let M, {wf}, and w be as im Theorem 7. For each
a< O(M), let K, = limsupyX,. Then {qoM(wi)} converges to op(w) in M,
1

if and only if we(){H,a< O(M)).
Proof. If weK, for each a< O(M), then, by the theorem, {Xi}

converges to W, for each a < O(M) and therefore {(X:)} converges to
(W in M.
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Conversely, if {q:M(m‘)} converges t0 g (w), then, for each a << O(M),
{Xﬁ} converges to W, and, by the theorem, XK, ~ W, # @, for each
¢ < O(M). Fix a < O(M); then, for a < < O(M), Ky = K, and K, ~ W,
SHyrn Wp#0. Thus N{E, ~n Whla << O(M)} = K, ~ {0} #0,
ie., well,.|l

COROLLARY 2. Let M and {z'} be as in Theorem 7. Por each a < O(M),
the set C, of points w of M such that {X} converges to W, in M, is a sub-
continuum of M and q.(C,) 18 a subcontinwum of M.. The set O of poinis
w of M such that {pn(2')} converges to py(w) in M, is a subcontinuum of
M and pu(C) is a subcontinuum of M.

Proof. For a< O(M), let K, be the set defined in Corollary 1,
go that weC, if and only if W, ~ K, = @. Thus, C, = U{De2, D~ K,
# @}. By Corollary 2 of Theorem 6, this last set is a subcontinuum of M.
By definition, ¢,(0,) is closed in M, and, since ¢, is continuous, ¢.(C.)
is connected. For the second assertion, we note that 0 = (M) {C,| a < O(M)}
and since the C, are nested continua, C is a subcontinuum of M. By def-
inition @(C) is closed in M, and therefore, since g,; is continuous, @z (C)
is a subcontinnum of M.||

It is natural to try to replace sequential convergence by net con-
vergence (i.e. convergence in general) in Theorem 7. The straightforward
attempt at generalization would read as follows: “Let M be hereditarily
of type A’ with O(M) a limit ordinal and let {2*|2eA} be a convergent
net in M, w a point of M, and a < O(M). Then the net {X2} converges
to W, in M, if and only if limsup, X, intersects W,.”

A

Here limsupyX; = () [ely((J X4)] may not be connected. In any
A Aed ui

case, the “if" part of the generalization goes through easily. However,
the ‘“only if” part fails, as the following example shows. Let M be the
continuum with increasing oscillations and let # = (0, 0). Let H be the
collection of points # of M such that O(¢) =1 and the y-coordinate of
# is not less than 1/2. Then every point of M whose y-coordinate is not
less than 1/2 is a limit point of H. If a < O(M) and U is a neighborhood
of X, in M,, then p7'[U] contains almost all of the vertical intervals
{Bil i =1,2,...} and in particular p;'[U] meets H. From this, and the
characterization of the base for the topology of M, it follows that gx(z)
is a limit point of p(H) in M. Let ¥ = {y*| AeA} be a net in H such
that {pun(y*)| AeA} converges in My, to pu(®). Let {#*| ued'} be a subneb
of N which is convergent in M; then {pa(#”)| ued’} still converges to
eu(®) and, therefore, for every a < O(M), {X3} converges to X,. Butb
each #* iy in H, so, for a >1, X% = {z*}. Hence for every a such that
1< a< O(M), limsup,X* misses X, = {z}, and the generalization
B

fails badly.
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TEEOREM 8. Let M be hereditarily of type A' with O (M) a limit ordinal
and assume the standard notation. The function gur is monotone.

Proof. Supposethat K isa closed subset of M, and ¢3; [K] = E+F,
separated, in M. Since ¢, is continuous, E and F are closed and since
@y is one-to-one, K is the disjoint union of the sets @ (F) and p,(F).
To complete the proof, we need only show gn(¥) and ¢,vM(F) are separated
in M,. Suppose this is false, then there is a sequence {y'} of points in
F and a point y of F such that, in My, {¢u(y )} converges to @n(y). Since
E is closed in 1/, there is a subsequence {2} of {y} converging in M to
a point w e E. Thus {pu(z )} converges to @y{(w) and to ¢u(y). Let C denote
the set of points, 2, of I such that {pul(a")} converges to @p(2). Then
pa(C) € K, because K is closed, and, thus ¢ < @37 [K]. But, by Corollary
2 of Theorem 7, € is a subcontinuum of M and since ¢ contains weF and
yeF, we have a contradiction. ||

We will now give a necessary and sufficient condition for M, to
be Hausdorff (i.e. for ¢, to be a homeomorphism). Recall that a topo-
logical space, S, satisfies the first awiom of countability provided there
is a countable base for the neighborhood system of each point of § and,
in this case, a point, #, of § is a limit point of a subset, 7, of § if
and only if some sequence in T' converges to x. In this connection, notice
that, in the example preceding Theorem 8, no sequence in ¢ (H)
converges to @y(z) (otherwise Theorem 7 would fail) and hence M,
(M is the continuum with increasing escillations) does not satisfy the
first axiom of countability. Also, for a < O(M), there exists zeM such
that X, has diameter 1. These two observations suggest the following
theorem.

THEOREM 9. Let M be hereditarily of type A’ with O(M) a limit
ordinal. Then M, is Hausdorff if and only if: (1) M, satisfies the first
axiom of countability; and, (2) for each positive integer n, there is an
ordinal, ay, such that a, < O(M) and, for every meM, diam X, <1/n.
(If A is a subset of a metric space with metric d, then " diam A

= sup{d(w, y)|wed,yeA}.)

Proof. Suppose that M, is Hausdorff; then it is metric and (1)
holds automatically. If condition (2) fails, then there is a positive integer
n and, for each ¢ < O(M), a point 2"« M such that diam(X%), >1/n.
Let 4 = {¢| a < O(M)}; we consider {»°| aed} as a net in M. Now M
is blcompact 80 there is a subnet {y*|1eA} converging to a point of M.
Since { y"| Aed} is a subnet, there is a function g mapping A into 4 such
that §* = 2® and for each fcA there is ped such that 1> x and Aed
imply g(4) > .

For aed, let L, = IilmsupM(I’ ).; then the net {py(y")| AeA} con-

verges in M, to par(w) for every point w of M for which we() {L,| aed}.
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Fix aeA and pick ued such that 1> u implies g(1) > a. Then

L, = limsupy(¥*), > limsupy(¥*), = limsup (X??),.
A Az=n Ay

But g(4) > a implies (X@), o (X*®)y; hence, for A > u, diam (X°®),
> 1/n. Therefore L, containg the limit superior of sets of diameter at least
1/n and therefore diam L, > 1/n. This holds for each aeA and, since the
L, are nested, we conclude that (1) {L.] aeA} has diameter at least 1/n.
Thus the nebt {pa(y")| AeA} converges to at least two points of M, and
§o M, is not Hansdorff.

Now suppose that condition (1) holds; then M, is Hausdorff if and
only if every convergent sequence in M, converges to exactly one point
of M. Let {z'} be a sequence in M and w a point of M such that {par(a*)}
converges t0 @u(w). By choosing a subsequence of the z; if necessary,
we may require that {#‘} be convergent in M. Given ¢ >0, let n be a
positive integer such that 2 /n < ¢ and let a, be the ordinal corresponding
to » given in condition (2). Then L, = lim sup(X®), has diameter not

greater than 2/n. This result, together W1th Corollary 1 of Theorem 7,
implies that {py(s°)} converges to exactly one point, namely @ (w),
of M|l

CoroLLARY. If M, is Hausdorff (i.e. if pu is @ homeomorphism), then
O(M) is countable.

Proof. If M, is Hausdorff, then (2) holds. Let ¢ be the supremum
of the o, given in condition (2). Then a is countable (since no sequence
in ' has £ as its supremum) and clearly O(M) = a.||

We have seen, Theorems 3 and 8, that M is a reasonable approx-
imation to M in the sense that there is a continuous, one-to-one, mono-
tone function from M onto M, and Theorem 9 gives necessary and suf-
ficient conditions for this function to be a homeomorphism. The question
naturally arises as to whether M, characterizes M. More precisely, if
M and N are hereditarily of type A’ and M, and N, are homeomorphic,
then are M and N homeomorphic ¥ We do not know the answer to this
question. The results which we do obtain along this line assume a homeo-
morphism between M, and N, and an extra condition on one of M, N.
(This condition is satisfied by every continnum we know of which is here-
ditarily of type A’ and whose order is a limit ordinal.)

For the next theorem we shall assume that M and N are hereditarily
of type A’ and that % a is homeomorphism from M, onto ¥,. The induced
function g = px'ohog iz well defined, one-to-one and maps M onto N.
If it is continuous, then it is a homeomorphism.

TrEOREM 10. In addition to the above, assume that D is a dense subset
of M with the property that for each positive integer n there is an ordinal,
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ay, Such that a, < O(M) and for each xeD, diam X, < 1/n. Then the func-
tion, g, defined above i8 conlinuous.

Proof. If {m} is a sequence in M convergmg to we M and if {g(a* )}
converges to g(y)eN; then, in M, {pum(z")} converges to both gy(a)
and gz (y). This follows from the facts that h~'o gy is continuous from ¥
to M, and that gy = b~ opyog. Using Corollary 1 of Theorem 7, and
following the argument of the last paragraph in the proof of Theorem 9,
we can then show easily that if {»’} is a sequence in D, converging to e,
then {g(«)} converges to g(z) in N.

We now prove that g is continuous. Let {#} be a sequence in M con-
verging to zeM and, extractmg a subsequence if necessary, let y be
a point of M such that {g(z )} converges to g(y). We wish to show 2z =y,
Let d be a metric for M and, for each paar of positive integers 7 and j,
let w, be a point of D such that d(af, 2) < 1/2%7), Thus for each i,
{zfl j =1,2,...} converges to 2. By the above remark, {g(zf)] j = 1, 2,...}
converges to g(z) for each 4. Since {g(z")} converges to g(y), a dla,gona,.
lization process yields a sequence of the form {g( zf,i )| ¢ =1, 2,...} which
converges to g(y) But {2} converges to z in M, because, for each 1,
d(z %) < d(2 2')+1 /2(”"‘*) By our opening rema.rk this implies g(z)
= g(y), i.e, 2 =1u.||

CorOLLARY. If M and N are hereditarily of type A’ and h 18 a homeo-
morphism of M, onto N, then each of the following implies M is homeo-
morphio with N.

(a) O(M) 48 uncountable, i.e., O(M) = Q2

(b) For each positive tnteger m, there is an ordinal a, such that
diam X, < 1/n, for every we M.

(¢) M has a dense set D such that for some ordinal a, a < O(M) and
X, = {&}, for every xeD.

Proof. Condition (b) and (¢) are stronger forms of the condition
in Theorem 8. If condition (a) holds, then let D be any countable dense
subset of M. For each weD, O(X) is a countable ordinal (by Theorem 1
of this chapter) and therefore, if we define a = sup{O(z)| zeD}, then «
is also countable, i.e., a < O(M). Hence D satisfies condition (e). ||

We now prove two theorems about inverse limits of continua hered-
itarily of type A’ which, together, yield a method for constructing more
complicated examples.

If we have a countable collection X, X,, ... of spaces and continuous
mappings f; from X; onto X;_, (i > 2), then, defining gy = f;..0...0f;_19f
for j >+ and gy = identity on X;, we obtain a family of bonding maps

and can form the corresponding inverse limit, X.. In this case, we 8ay
1
X, is the inverse limit of X, < X, « : ...; we shall retain the use of p; for
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the projection map of X, onto X; and we shall write a point, ®, of M,

in its coordinate notation, # = {w;) where w; = p,(2), fori =1, 2, ...
TEEOREM 11. Let My, M,,... be a sequence of continua, each heredi-

tarily of type A’y and for each i > 1, let f; be a continuous, monotone function

from M; onto M;_,. Then the inverse limit, M, of M, by s 5 :f- oo 18 heredi-
tarily of type A'; indeed, if K i8 a non-degenerate subcontinuum of M, and
iy the least imieger, i, such that p,(K) is non-degenerate in M, then
{27 [D] ~ E| De2(ps(K))} is an admissible decomposition for K. If D ds
an element of D (p;(K)) which separates p; (K), then pi;'[D] c K.

Proof. To begin with, the cartesian product of the M; is metric
because there are only countable many coordinate spaces. Hence M,
is a bicompact metric space.

Fix ¢ > 1; we will show that the projection, p; is monotone. Note
that, since p; is continuous and M, and M; are bicompact metric, p;
is a closed map, so it suffices to show that, for we M;, p7'[#] is connected
in M. For each j > 1, p;(p7'[#]) is connected in M;. (For the non- trivial
cases, i.e., j >4, this reduces to the fact that the bonding maps, being
compositions of the f;, are monotone). Hence if p;'[z] = 4+ B, non-void
and closed in M, then, for each j =1, p;(4) ~ p;(B) # @. Thus, for
each j > 1, the set 0; = p;'[ps(4) A~ p;(B)] is a non-void closed subset
of M. Also if 1 € j <%, then (; o Oy and, by compacteness, there is

a point 2 = <#&;) in () ;. This implies that for each j>1,2ep;(4)
=l

and, since A ig closed, this means that ze 4 ; similarly 2eB. Thus A ~ B # @
and this implies p7'[#] is connected. In particular, M, = pi'[M] is
connected and, hence, is a continuum.

Let K and %, be as in the statement of the theorem. For each j < 4,
2,(K) is of type A’ and irreducible between a pair of elements of 2(p,(K));
call these X; and ¥;. Let L be any subcontinuum of p;(K) which meets
fi+1(Xy41) and fy,1(¥,,1) (these sets are contained in p;(K)); then fi3;[L]
is & subcontinuum of M;,; joining X;,, to ¥;,,. By unicoherence and the
fact that p;,,(X) is irreducible from X;., to ¥,,, we conclude that
P141(K) < fii[L). Therefore, p;(EK) = fr41(Ps+1(K)) = L and py(K) = L.
So, p;(K) is irreducible from f;,,(X;) to f;1.(Y;) and, for suitable
relabeling, Xy > fi 11(Xig+1) @ frgr1 (frps2(Zigya)) @ ... and similarly for
the Y’s. Thus, in M,, we can pick

(== (-]
ge( p7'[X;] and  ye() pi [Y)].
7"“0 1""0
It is clear that # and y are points of K between which X is irreducible.
We now show that X has an admissible decomposition. Let

K= Pi-ol[pfo(K)]' Then the restriction of p; to K is monotone and, by
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the lemma preceding Theorem 4, 9 = {p'[D]] DeD(ps (K))} is an
admissible decomposition of K. Let X and Y denote the two elements

of 2 which do not separate K ; then X joins X and Y (indeed iy (X)
= X;, and 24, (Y) = Y5 if we label properly). From Theorem 5 of
Chapter 1 it follows that {D ~ K| ps@} is an admissible decomposition
of K and that if De2 separates K, then D < K. The elements of 2

which separate K are precisely the preimages under p; of the elements
of Q(pio(K)) which separate p;,(K). This completes the proof. ||

In what follows, we shall use the term ‘‘¢-th decomposition of M,
where M is hereditarily of type A’, to denote the decomposition which
in standard notation for M we have denoted 2;. The reason for this is
that we will be dealing with decompositions of several continua simulta-
neously.

THEOREM 12. Suppose, in addition to the hypotheses of Theorem 11,
that the following conditions hold.

(a) M, is a non-degenerate arc and, for i > 1 and we M;_,, either p;'[x]
is a single point or else fi'[x] is a non-degenerate arc in M.

(b) If 2<i<j and E 48 a nondegenerate element of the (i—1)-st
decomposition of M, then for each zeE, (fi10...0f;_,0f;)~ [x] has no in-
terior relative to (fi,,0...0f;_10f;) ' [E].

Then for 1 <i< j, the i-th decomposition of My is {(fiz10...0f;_10f;) " [@]|
we M}, and, for 1 < i, the i-th decomposition of M, is {p;'[x]| e},

Proof. Suppose that, for some ¢>1, we have proved the
second assertion of the theorem. Fix j >4 and, letting f denote the
identity map of JM; onto itself, consider the sequence: M, Ii M, <.
M, , i’- M; <{- M, j— M;<.... It is clear that this sequence satisfies all
the hypotheses of Theorems 11 and 12. Hence, if N denotes the associa-
ted inverse limit space of the new sequence, then the %-th decom-
position of N is {n;'[#]| w¢ M;}, where for ¢ > 1, =; denotes the projection
of N onto M;. But it is easy to verify that =; is a homeomorphism
and hence the ¢-th decomposition of M; is just: {m(mi'[2])| xeM}
= {(fey10 ...0f;_10f) 7 [®]| e M,;}. So, if, for some i>1, the second
assertion has been proved, then for each j > 1, the first assertion also holds.

We now verify the second assertion for ¢ = 1. By Theorem 11, and
the fact that M, is an arc, {p7'[2]] <M } is an admissible decomposition
of M. Condition (b), plus the fact that the projections of M, onto the
M; are open, implies that, for xeM,, p;'[#] has void interior in M.
Thus, this decomposition must be the minimal decomposition (first de-
composition) for 2.

Suppose that the second assertion has been proved for all ¢ such that
1 <4< n—1. Let D be a member of the (n—1)-st decomposition of M,;
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then there is z e M,,_1 such that D = p;?, [#]. Assume that D is non- -degene-
rate and let B = f;'[z], so that the non- degenerate arc, B, is an element
of the (n—1)-at decomposition of M, and D = p;'[E].

Define a new sequence of contmua. and bonding maps as follows.
Let B, =E, E, = f 1[B], By = f 2:[B,], ete., and let g, = = fas1| By,

gs = funi2| B, etc. Then the sequence B, bl E, il I}, «-... satisfies the hy-
potheses of Theorem 11 and the associated inverse limit space is D, Let
n; denote the projection of D onto E;. We assert that the.sequence also
gatisfies the hypotheses of Theorem 12. Condition (a) is easy to verify,
so we will proceed with condition (b). Suppose that 2 < i< j and F is
a non-degenerate element of the (i—1)-st decomposition of ¥; and z 7.
E; is an element of the (n—1)-st decomposition of M,,; , and, there-
fore, F is an element of the (n+4i—2)-nd decomposition of M,H_i - By
condition (b), f,mo +Ofn45-20fni1-1)" [#] has void interior in (f, 0..
. Ofnii—20fnis_1) [F] In terms of the g¢;’s this is the statement that
(§i410++.0g1105)~ !'[#] has void interior in (9i410...097_,0g;)7'[F], q.e.d.

We can now apply the result proved in the case 1 = 1 for our original
sequence to this new sequence to conclude that 2(D) = {a7'[2]| z<E,}.
This is precisely the statement that 2(D) = {p;'[z]| «<E,}, which com-
pletes the induction step and proves the theorem

For emphasis, we restate Theorems 11 and 12 as follows:

Let M, 3 M, 2 M, ... satisfy the hypotheses of Theorems 11 and 12.
For 1 € 1< j define f;; to be the map fi,,0...0f;_,0f; and, for 1 < §, define
fu to be the identity map of M; onto itself. Then M, is hereditarily of type
A’ and the collection of spaces {M,| ¢ =1, 2, ...}, together with the family
of functions {f;;] 1 <1 <j}, is the decomposition sequence associated with
M, In particular, O( M) = w, and (My)e = M.

Before proceeding with our work we introduce a new notion. A con-
tinnum N is said to be snake-like provided that for each e > 0 there is a
finite collection, U,, ..., U, of open subsets of N such that N = U,+
+...4 U, diamU; < efori=1,...,n and if 1 <4,j < n, then U; ~ U;
# @ if and only if |[{—j| < 1. A ﬁmte collection of open sets satisfying
the last two properties above is called an e-chain; thus, N is snake-like
if and only if, for every ¢ > 0, there is an ¢-chain covering N. For the basic
properties of snake-like continua, see [3]. We shall have more to say
about snake-like continua in Chapter 3; at this point we mention several
well-known facts about them.

(1) A snake-like continuum is irreducible between a pair of its poinis.
(2) Bvery subcontinuum of a snake-like continuum is snake-like.

(8) A hereditarily decomposable, hereditarily umnicoherent continuum

containing no triod is snake-like.

Rozprawy Matemalyczne L ¢
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(4) If N is a snake-like continuum, then there is a subcontinuum of the
plane which is homeomorphic with N.

Facts (3) and (4) are to be found in [3] and fact (1) can quickly be
proved by combining several results in [3]. The proof of fact (3) given
in [3] uses a decomposition theorem, and with the aid of our uniqueness
theorem, Theorem 6 of Chapter 1, it can be seen that the decomposition
given there is just the minimal admissible decomposition. To prove (2),
let K be a subset of the snake-like continuum N. Given ¢ >0, let U, ...,
U, be an &-chain of open subsets of N covering N. Let s be the least integer,
1, such that U; ~ K # @ and ¢ the largest integer, ¢, such that U; ~ K # 0.
Let V; = Uy~ K for 2 =3, ..., t. If, for some j such that s < j <1, we
have Vy~ Vi1 =0, then Vo+4...+V; and Vy1+...+V, are disjoint
open subsets of K whose union is K, i.e., K is not connected. Thus, if X
is connected, then V,, ..., ¥V is an e-chain covering K.

It is convenient to combine these facts in the following simple result.

TEEOREM 13. A hereditarily decomposable coniinuum 18 hereditarily
of type A’ if and only if it i3 snake-like.

Proof. The “if”’ part follows from facts (2) and (1); the “only if”
part, from fact (3) and Theorem 6 of this chapter, which states that a
continuum hereditarily of type A’ is hereditarily unicoherent and contains
no triod.||

We now apply the preceding results to obtain an important example.

The continnum of this example will be the inverse limit of a sequence
1 1
M, & M, & M,« ... which satisfies the hypotheses of Theorems 11 and

12, In what follows, I denotes the unit interval and, for # > 1, I" denotes
the cartesian product of n unit
intervals. For convenience we
shall use «- and ¥-coordinates
- in I? and -, %-, and 2z- coordi-
jgxgz  Dates in I’ but for » >4 we
label coordinates with the sub-

seripts @y, ..., %,.
(i} 1* The construction of the

2-axis

?zxis M;'s proceeds inductively. We

X~ ax[y begin by fixing a copy, M, of
the accordionlike continuum of

Fig. 8 Chapter 1. It is convenient

to assume that M is actually
constructed as in Chapter 1; in particular, then, M is irreducible from
{0}xI to {1}x1I, lies in IX I and each element of P (M) is either a line
segment irreducible from a point with y-coordinate 1 to a point Wwith
y-coordinate 0, or the sum of two such line segments intersecting in
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a point with y-coordinate 1 or y-coordinate 0. We also fix a function
fe# such that 2(f) = ().

Now let M, = I and let M, = M. Let f, = f so that f, is a map of
M, onto M. To get M, we shall replace each element of M, with a copy
of M. To start with, notice that M, x I is a continuum in I° joining {0} xI*
to {1}xI% M,XI is certainly not irreducible between these two sets
because for any zel, M X {z} lies in M,xI. We remove enough of M,x I
to ma:ke it irreducible, doing this in & ‘‘uniform’ fashion, as follows.
Let M be the image in I° of M under the rotation (z, ¥, 2) > (2, «, y) of I*.

Then define My = (MyXI) ~ (Ix M)

zZ-axis

7 \y—axis

x—ax[y /

Fig. 10

It is easy to verify that M, is hereditarily decomposable, hereditarily
unicoherent and contains no triod. Hence, M, is hereditarily decomposable
and snake-like and, by Theorem 13, hereditarily of type 4’'. (As an al-
ternative, one can proceed directly to prove M; snake-like by actually
constructing an e-chain cover for each & > 0.)

It is easily seen that the elements of the first decomposition, 2 (M,),
of M, are copies of M, each perpendicular to the zy plane and projecting
downwards onto an element of 9(M,). Bach element of the second decom-
position of M, is either a line segment irreducible from & point with 2-co-
ordinate 1 to a point with z-coordinate 0 or the union of two such segments
intersecting in a point with z-coordinate 0 or z-coordinate 1. There is
& homeomorphism, %, of the second decomposition space (I,), of M, onto
M,. 11, as usual, ¢, denotes the quotient map of M, onto (M), then fy
= hog, is a monotone, continuous mapping of M, onto M, such that if
ze M, then f;'[«] is a non-degenerate arc. Also condition (b) of Theorem 12

f 7 ]
holds for the three term sequence: M, iy 2 2 M,. We can actually defi-
ne f, explicitly. If f denotes the map we choose of M onto I such that 2(f)
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= 9(M), then fy(z, ¥y, 2) = (%, (¥, 2), 0) is, for some homeomorphism
the map given above. Roughly speaking, f; is projection of M, onto the
ay plane except that instead of projecting directly downwards we project
a f.
" fThe last statement above indicates the general construction. To get
M, from M, ; c I"! we replace each of the arcs in the (n—2)-nd de-
composition of M,_, by a copy of M in I" so that projection (via f) down-
wards into I"! gives the arc back again. Explicitly, having constructed
M, ,cI"™" (n>3),let M be the image of M < I" under the rotation
(@) Loy -+ 0y Tpy Tn) = (B35 + v vy Tny Tyy Do) and let M, = (Mu_;XI)~ (I"?

~ JT). Lt (@1, Bay +eey Tnosy Bn) = (T1y Doy -0y [(®n_1y Tn), 0). The sequence

M, 2 M, 2— oo M,_, < M, <... satisties all hypotheses of Theorems 11
and 12; as usual, let I, denote the inverse limit. We shall refer to M,
as the inverse limit continuum.

There are two properties of M, of immediate interest. The first of
these is evident from the construction, namely: For each 2ze M, O(2) = w,.
The second property is harder to state but might be roughly summarized
as follows: Every noun-degenerate subconlinuum of MM, i8 almost homeomor-
phic with M. We shall break down the second statement into four more
precise ones. First of all, from Theorem 12, the n-th decomposition of
M, is {p7'[2]| veMn} = {par[fri:(2]]] zeM,}. Fix » in M,; then
D = fpr1[2] is an arc in M,,,, and from the construction process, it is
clear that p,;,[D] is homeomorphic with M. Thus: For each n >1,
every element of the n-th decomposition of M,, 18 homeomorphic with M,.

Let L be a subcontinuum of M; with non-void interior relative to

M,. Then I° (both operations taken relative to M 3) is homeomorphic with

I, and L—I is the sum of at most two connected sets whose closures
in M, are homeomorphic to subcontinua of M,. Each of the latter sets,

if non-void, is either an arc or a copy of M, joining L° along a common
edge with (possibly) an arc attached to the other edge. This possibility
ig illustrated as in Fig. 11.
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In any case, the complete preimage, p;'[L], of L in M, is homeo-
morphic with 2, since this is true of each of the pieces. The same result
holds for any n > 1: If L is a subcontinuum of M, (n > 1), then p;*[L] is
homeomorphic with M.

Let K be any subcontinuum of M ; then, for each n, p, (K)is a sub-

continuum of M, and K = (M 27" [p.(E)] (because K is closed). Combin-
Nl

ing this with the preceding remark we see that: Every subcontinuum
of M, is the intersection of a mested sequence of subcontinua of M, each
homeomorphic to M.,

The final result is & sort of dual to the preceding. Let K be a non-
degenerate subcontinuum of M, and 7, the least integer 4 such that pi(EK)
is non-degenerate. In proving Theorem 11 we showed that if X; and ¥,
are the elements of @(pi(l()) between which p;(K) is irreducible (¢ > 4,)
then, for suitable labeling, K is irreducible from every point of

Q p7'[X;] = A to every point of q pi'[¥;]=RB (and that 4 and B are
=19 1=

non-void subsets of K). Now choose a function f from K onto I such
that 2(K) = 2(f) and, for >3, let K;=f"'[[1/i,1—1/i]]; then
each K; misses A4B and {K;| ¢ =3,4,...} is an increasing sequence
of subcontinna of K whose union is f~'[(0,1)]. For % >3, there is j;
such thab p;,(K;) misses X;+ ¥;. By Theorem 11, pj;'[p;,(K;)] = K and
we can choose the j; so that j; < j,< ... Since each p,;‘[p,i(lﬁ)] is
homeomorphic with M., we have proved the following result:

Let K be a non-degenerate subcontinuum of M., and f a function such
that 2(K) = D(f). Then there exists a countable increasing family of sub-
continua of K, each of which is homeomorphic with M., whose union 18
F7(0, 1)1,

G. W. Henderson, in [6], proved that a decomposable continuum
which is homeomorphic with each of its non-degenerate subcontinua is
an arc. The previous example was an unsuccessful attempt at a counter-
example (made before seeing Henderson’s proof). In Theorem 2 of Chapter
3 we show that M., contains subcontinua K such that the two elements
of 2(XK) which do not separate K are degenerate. We also remark that
L. K. Barrett, in [1], sketches the construction of a snake-like continuum
which is very possibly homeomorphic to our inverse limit continuum.
Our Theorems 11 and 12 set up machinery for investigating the decom-
position properties of continua constructed by inverse limits. As no com-
parable machinery exists for construction by e-chains, we cannot be
sure that our example and Mrs. Barrett’s are the same.

That our example is snake-like follows from our next theorem.
(This theorem does not seem to be in the literature but is probably

well known.)
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TaroreM 14. Let {M;| i = 1,2, ...} be a countable collection of snake-
like continua and, for i > 2, let f; be a continuous map of M; onto M;_;
then the imverse limit, M, of the M; i8 snake-like.

Proof. As usual, we use p, for the projection of M., onto M;, also
for 4> 1, let d; be a metric, for M;. We assert that, for each e >0,
there exist positive integers ¢ and j such that if » and y are points of
M, and di(z,y) < 1/j, then the diameter of P [0]-+p7 Y] in M, is
less than e.

Assume the assertion is false. Fix ¢ > 1; then, for each j > 1, there
exist points @; and y; of M, such that d;(wy, y,) < 1/j and diam (pi*[a/]+
47 [y7]) = e. We may assume that @; and y; converge in J; to a common
point #(¢) of M, A simple calculation ghows that djam(pi“[z(i)]) >e
in M.

Now for each i, let w; be a point of p; [2(7)]. We may assume the w;
converge to a point w in M,. (We do not exclude the possibility that
w; = w for infinitely many ). Let K = limsupp; ' [2(¢)]; then diam K > .

)

Let 2K and let {w;} be a sequence converging to # such that z; epi[2(4)]
for i>1 For 1<i<j, pulm)eps(py (20)]) = (fisao .. 0f)e(i)), and
this is a point of M. Since w; also lies in p; [2(j)], we conclude that, if
1< 1<, piloy) = pi(w;). Bolding ¢ fixed and using the fact that p; is
continuous, we see that, for each 4, p;(#) = p;(w). This holds for each
zeK, hence p;(K) = pi(w) for 4 > 1. From this it follows that K is degen-
erate in M., which contradicts diam K >e. Thus our original asser-
tion holds.

Now let ¢ be a positive number; we may, by the assertion, choose
positive integers ¢ and j so that if U is a subset of M; of diameter less
than 1/j, then p;'(U) has diameter less than ¢ in M. Let U, ..., U, be
& 1/j-chain of open sets covering M;. Then p; ' (U,), ..., pi (Ux) is a col-
lection of open sets, each of diameter less than e, and this collection covers
M,,. Also this is a chain, for p;*(U;) ~ p7'(Ux) # @ in M, if and only
i.f Ujﬁ Uk ?‘-‘g iJl M,;."

From Theorem 14 and the fact that every snake-like continuum is
homeomorphic with a subcontinuum of the plane, we conclude that the
inverse limit continuum is homeomorphic to a plane continuum.

We end this chapter with some results on embedding certain con-
tinua of type 4’ in other such continuna. The 2-sphere is the one point
compactification of the Euclidean plane. We shall use the following char-
acterization of the 2-sphere, due to Kuratowski, [11]:

If 8 48 a bicompact, melric, connected, locally conmected space (i.e.
a Peano space) such that every subcontinuum of 8 which does mot separate
8 18 unicoherent and such that mo point of 8 separates 8, then S is
homeomorphio with the 2-sphere.
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Conversely, the 2-sphere, 8§, is a Peano space with no separating
points and a result of Janiszewski (see [12], pp. 353 -354), states that any
subcontinuum of 8 which does not separate § is unicoherent.

THEOREM 15. Let M be a mowhere dense, closed and compact subset
of the 2-sphere, 8, and D an upper semicontinuous decomposition of M each
of whose elements s a compact subcontinuum of 8 which does not separate S.
Let & be the decomposition of 8 whose elements are the elements of 9D
together with the family of sets ({w}|m¢M}. Then the quotient space, T,
of 8 relative to & is homeomorphic with 8 and, if q denotes the quotient
map, then the restriction of g to 8—M is a homeomorphism of S—M onto
T—q(M).

Proof. First, notice that & is upper semi-continuous because M
is closed and compact and 2 is upper semi-continuous. Since each element
of & is closed and compact, the remark on quotient spaces (see the in-
troduction) applies and T is metrizable, bicompact, connected and locally
connected. The quotient map, ¢, is monotone because the elements of
é are connected and ¢ is closed.

T has no separating points because no element of & separates S.

Let I{ be a subcontinuum of 7' which does not separate T and sup-
pose that the continuum ¢—'[K] separates 8. Since S is locally connected,
every component of ¢~'[K] is open; M contains no open subset of 8,
so there are points # and y of §—M which lie in different components of
8—q '[K]. Now q(x) # q(y) and neither point lies in K, and since T is
locally connected, there is a subcontinuum, L, of T such that g(z)eL,
q(¥)eL and L ~ K = @. Then ¢ '[L] is a continuum in § joining @ to ¥
and missing ¢”'[K] which is impossible. Thus, if the subcontinuum K
does not separate 7T, then ¢~'[K] does not separate S.

With K as above, suppose that P and @ are subcontinua of K with
K = P+Q. Then ¢'[P], ¢~*[Q] are subcontinua of ¢~*[K] and ¢~'[K]
= ¢~'[P]4q~'[Q]. Since ¢! [K] does not separate §, Janiszewski’s result
implies that it is unicoherent and therefore g~'[P] ~ ¢~'[Q] is connected.
Since ¢ is continuous q(q'[P]~ ¢~ '[Q]) =P ~ @ is connected. Thus
K is unicoherent.

We have shown that S satisfies all hypotheses of Kuratowski's the-
orem and we conclude that 7 is homeomorphic with §.

The assertion about g follows immediately from the definition of &.]|

COROLLARY. Let 8 denote the 2-sphere and B an aro in 8. Let M be
a compact subcontinuum of 8 which is of type A and has an admsissible
decomposition, @, no member of which separates 8. Then there 18 a con-
tinwous monotone function, h, mapping 8 onto 8 such that h(M) = B,
(h'[z]| weB} = 9, and the restriction of h to 8—M is a homeomor-
phism of S—M onto S—B.



50 Monotone decompositions of irreducible continua

Proof. Obviously a subcontinuum of 8 which contains an open
subset of & is not irreducible between any pair of its points; hence If ig
nowhere dense in §. We may apply Theorem 15 to M and 2 and, using
the notation of that theorem, we see that ¢(M) is an arc and that there
is a homeomorphism, y, of § onto 7. Now y)(q(M )) and B are ares in §,
hence, a8 is well known, there is a homeomorphism, ¢, of § onto 8 such
that tp(w(q(.M)) = B. Let h = goyogq; then h has the desired properties, ||

THEOREM 16. Let M and N be continua hereditarily of type A’ in the
2-sphere, S, and let D be a non-degenerate element of the a-th decomposition
of M, where a<< O(M). Suppose that D satisfies the following condition:
If L is & subcontinuum of M such that L~ D # @ and L—D + @, then
L is irreducible from some point of L—D to every point of D (so, in par-
tecular, D < L).

Then there is a continuum M' < 8, hereditarily of type A', such thai
N c M', N is an element of a-th decomposition of M'y M'—N is homeo-
morphio with M —D, and N satisfies the above condition relative to M'.

(We remark that the condition on D can be rephrased as follows:
If I is a continuum in M such that I ~ D # @ and L—D #* @, then D
is contained in one of the two elements of 2(L) which do not separate L.)

Proof. If a decomposable subcontinuum 7' of § separates S, then
T is not unicoherent; thus no element of 2(D) or 2(N) separates 8.
Fix an are, B, in § and apply the previous corollary to D and to N to
obtain continuous monotone mappings g and & of § onto 8§ such that:
g(D) = h(N) = B; {g7'[#]| weB} = 2(D); {h~'[2]] w<B} = D(N), the
restriction of g to §—D is a homeomorphism of §—D onto §—B, and
the restriction of # to §—X is a homeomorphism of §—XN onto §—B.

Let M’ = h~'[g(M)]; since h is monotone and g is continuous (and
closed), M’ is a subcontinuum of S containing N. We can also write
M = h7'[g(D)+9(M—D)] = v [B—g(M~D)] = N+h~'[g(M—D)].
It is eagy to see that A~'og is a well defined function on S—D and,
in fact, a homeomorphism of §—D onto §—N. It follows that M —D is
homeomorphic (via h~'og) with M’'—N.

We now show that M’ is hereditarily of type A’. Let K be a sub-
continuum of M’; we first show that K is decomposable. This is trivial
if <N or K= M'—N, 80 we assume K ~ N %= @, K—N # @. The
continnum L = g~'[k(K)] then satisfies I ~ D = @, L—D = @. Since
M’ is hereditarily of type 4’ and Z and D are subcontinua of M, there
exist proper subcontinua, P and @, of L such that L ~ D =« Q—P and
P+Q = L. Then h™'[¢y(P)] is & proper subcontinwum of K with non-void
interior relative to K, and this implies that K is decomposable. In par-
ticular, M’ is hereditarily decomposable.

With K and L as in the preceding paragrapl, let us prove K is ir-
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reducible between a pair of its points, The condition on D implies that
D c L and that L is irreducible from a point, #, of Z—D to D. Now
E—N =h7'[g(L—D)] is connected, contains the point h~'[g(2)] and
its closure meets N. If ¢ were a proper subcontinuum of K —XN joining
h'[g(2)] to N, then K—N—Q % @ and g~'[A(Q)] would be a subcon-
tinuum of L joining @ to .D missing the non-void open subset g~ [k (K —N —
—@)] of L—D. Since this is impossible, we conclude that K —X is irre-
ducible from h~'[g(2)] to E—N ~ N.

Suppose K —N ~ N = A+ B, separated and non-void. Let K’ be ir-

reducible in X —N from A to B. Then K’ is a subcontinuum of M’ such
that X' ~ N # @ and K'—N # @ and applying the same argument to
K' as we did to K, we conclude that E'—X is irreducible from a point
of K'—N to K'—N ~ N, which is absurd. So, after all, E—N ~ N is
connected. The facts that L—D contains D and {,~'[z]| zeB} = D(¥)
imply that K—N ~ N meets every element of 2(XN), and, therefore,
K—NA~AN=N, ie, Nc K—N. Thus K—N =K and K is irre-
ducible between a pair of its points.

We have proved that M’ is hereditarily of type A’ and, moreover,
that N satisfies the same condition in M’ as D does in M. It remains to
show that D is an element of the a-th decomposition of M’. To this end,
we shall prove the following statement by induction: If 8 < a, then the
collection of all sets of the form h~'[g(E)], where F is a member of the
f-th decomposition of M, is the g-th decomposition of M’.

If § =1, then {,~'[g(®)]| E<2(M)} is a decomposition, &, of M’
whose elements are continua, all except two of which, say A~ '[g(H)]
and h~'[g(F,)], separate M'. Now D lies in one of E,, E,, say D < E,
and, in this case, N < h~'[g(F,)] (equality is not excluded). Now N has
no interior relative to any subcontinuum of M’ which contains it and
this, together with the fact that M —E, is homeomorphic with M'—
—h~'[g(B,)], implies that each member of & has void interior relative
to M’ and that & is upper semi-continuous. Thus & must be the minimal
decomposition for M’, and the statement is established for § = 1.

Suppose that 8 < a and that for every y < f, the statement holds.
If B is a non-limit ordinal, then the statement holds for that ordinal y
such that y4+1 = . Let I be an element of the y-th decomposition of
M'; then F = h~'[¢(F)] where H is in the y-th decomposition of M. The
argument used in the case f = 1 then applies and 2(F) = {(h~'[g(H)]|H ¢
2(E)}. Letting F run through the y-th decomposition of M, we see that
the statement holds for y41 = . If # is a limit ordinal, then a direct
application of the definition of the f-th decomposition plus the fact that
h~'og is one-to-one on M —D, yields the desired result. ||
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The mapping of M, onto M, induced by the one-to-one corres-
pondence between the f-th decomposition given above is easily seen to
be bicontinuous. Hence we have the following:

COROLLARY TO THE PROOF. If M, N,D and a are as in Theorem
16, then the continuum M’ can also be chosen so thai, for every f < a, M,
and M, are homeomorphic.

In Theorem 16, the condition imposed on D is used mainly to prove
that every non-degenerate subcontinuum of M’ is irreducible between
a pair of its points. We believe it should be possible to remove this con-
dition.

We do not know whether there is a continuum hereditarily of type
A’ whose order is Q. If M were such a continuum, then it would contain
an uncountable family, 4, of subcontinua which could be indexed by
the set A = {aeQ'| a < Q}, Bay A = {K,.| aed}, in such a way that,
for each @ in A, the order in M of every point of K, is at least a. Hence
one step towards constructing a continuum of order 2 would be the
construction of a family % of continua each hereditarily of type 4’,
such that for each countable ordinal, ¢, some member of 2#° has order
at least a. A promiging, but so far unsuccessful, approach to this last
problem is to attempt to construct 2" inductively, using the embedding
Theorem 16 to get from each countable ordinal to its successor, and using
the inverse limit Theorems 11 and 12 at the limit ordinals.



CHAPTER 3

In order to shorten some of the statements in this chapter, we shall
introduce the following notation. Let M be of type A’, 2 an admissible
decomposition of M, and let f be a function such that 2 = 2(f). For
each point s of I, let D, denote the element f~*[s] of 2. Let L, = f1[[0, )]
if 0<s and let Ly = D,. Let B, = f~'[[s,1]] if s <1 and let R, = D,.
Thus, for each s in I, L, and R, are subcontinua of M. If 2 = 9(M),
then L,+R, = M. (The capital letters L and R stand for left and right,
respectively.)

DEFINITION 1. Let 2 be a decomposition of a metric space §, and
D an element of 2. We say that 2 is continuous at D provided that, if
{D;} is a sequence of elements in 9 and there exists a point z;¢D; for
t = 1,2, ..., such that the sequence {x;} converges to a point of .D, then
lim_ sups D; = D. We say that 2 is continuous provided it is continuous

1

at each of its elements.

Notice that a continuous decompositions is automatically upper
semi - continuous.

Let M denote the accordionlike continuum; then 2(M) is not con-
tinuous at any of the V’s or A’s, but is continuous at each of its other
elements, i.e., at each straight line interval.

There is an example of a continuum of type A’ whose minimal de-
composition is eontinuous. By a pseudo-arc we mean any non-degener-
ate, snake-like, hereditarily indecomposable continuum. Any two of these
are homeomorphic and, therefore, each non-degenerate subcontinuum
of a pseudo-arc is a pseudo-arc. See [4] for further properties and his-
torical remarks. In [4], R. H. Bing and F. B. Jones gave an example of
what, in their terminology, would be called a continuous circle of pseudo-
arcs embedded in the plane. The construction of this continuum and
the derivation of its properties are too complicated to give here, however,
a simple modification of that construction yields a continuous arc of
pseudo-ares. This is a continuum, M, with the following properties.

(a) M is snake-like and a subset of the plane.

(b) M is of type 4.

(¢) Every element of 2(M) is a pseudo-arc of diameter at least 1.
(d) 2(M) is continuous.
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Our first theorem says that if M is of type A, then any admissible
decomposition is continuous almost everywhere.

TaEorEM 1. Let M be of type A, 2 an admissible decomposition
and f a function such that @ = D(f). The set of poinits r in I such that 9
is continuous at f~'[r] is a dense Gy set, G, in I.

Proof. For each positive integer ¢, let X; be the set of points z in
M such that if U is an open subset of M containing # and diam U < 1/i,
then f(U) is not a neighborhood of f(z) in I.

We show that X; is closed in M. Let {x;} be a sequence in X;
converging to zeM and let U be an open subset of M containing z with
diam U < 1/i. Let N be a positive integer such that, for j > N, x¢U.
Then, for j > N, f(U) is not a neighborhood of f(#;) in I, and there
is a point y; in I such that |o;—y;| <1fj and y;¢f(U). The sequence
{y;] j = N} lies in I—f(U) and converges to x, 8o f(U) is not a neigh-
borhood of f(z). Thus X; contains all of its limit points in M and
is closed. Since f is a closed map, f(X;) is closed in I.

We next show that f(X;) is nowhere dense in I. Assume, to the con-
trary, that f(X;) contains a non-degenerate interval, [r,s], in I. Let
Uy ...y Uy be a cover of X; with open sets of diameter not greater than

1/4i. Then f(T,)+...+f(T,) contains f(X;) and this implies that, for
some k, f(ffk) contains an open subset of [r, s]. We may reorder so that
f (51) contains an open subset of [7, s]; hence there exist 7, s, in I such
that r < 7, < 8, < 8§ and [7y, 8] = f(Ul) Let #, and 8, be points of I such
that r, <7, <8, < 8; then we assert that U~ f“[['rl, s 11~ X; = 0.
To see this, let U1 {meMl dist(z, U,) < 1/44}. Then U, is open and
diam U1 < 3/4¢ and U1 S U1 Let e U, ~ Xi, then f(U ) is not a neigh-
borhood of f(z). Since [7,, 8;] < (7, 8o) = f( Ul) < f( Ul), this means that
f(z) cannot Lie in [ry, s,], i.e., w¢f " [[ry, 8,]] Let Vy = U,—f'[[ry, 5,]];
then V,, U,, ..., U, is a cover of X, with open sets of diameter not greater
than 1/4i and f(V,)) A~ [ry, 8] =0

No_w[rl, 8;] < f(X;) and since f(V,) ~ [74, 8;] = @, there is k > 2 such
that f(U,) contains an open subset of [r,, s,]. Reordering if necessary, we
may assume k_ﬂ and choose points r,, 8, in I such that r, <7, < 8, < 8
and [7y, 8,] < f(U,). Let 75, 8, be points of I such that 7, < 7y < 85 < 8
then, as before, U, f* [y 811~ X; =@. Let V, = sz_l [[73, 8511
then V,, V,, Uy, ..., U, is a cover of X; with open sets of diameter not
greater than 1 /41. A.lso [73 8a] © f(X;), but [f(V)+F(V)] A [73 8] =

Continuing for n—2 more steps, we obtain points 7, , < $3,_1 and
open sets Vl, ey Vi 8uch that [19,_y, S30_1] € f(X:) € F(VD) ... LF(Va)

but [f(V,)+.. +f ]~ [Tam—1y S2n_1] = @. This contradiction shows
that f(X ) has void interior in I as asserted.
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Let G =1 _¢U f(Xy); then @ is a dense G, in I. It is easy to see
-1
that 2 is not continnous at D,e2 if and only if D, contains a point which
lies in some X;, i.e., if and only if re ¢U f(X;). Thus re@ if and only if 2
=1

is continuous at D,.

COROLLARY. Assume the hypotheses and notation of Theorem 1; then
for every reG, D, = B, A L.

Proof. Suppose that 0 < < 1 and 2 is continuous at 7. Let a,, a,, ...
be a sequence in [0, r) converging to 7. Then, for each i, D,, = Fro, 7)1;
hence, D, = limisup u Do, e L. Similarly D, < R,, s0o D, < B, A L,. The

reverse containment always holds. The argument for r = 0 or 1 is obvious
from the above.l||

Before stating our next major result, we need some preparatory
remarks concerning e-chaing. In Chapter 2 we defined the term “¢-chain
cover’ in order to explain the term snake-like. We now extend this con-
cept. Let S be a metric space and ¢ a positive number; an e-chain in S
is a finite ordered collection, U, ..., Uy, of open subsets of § such that the
diameter of each U, is less than e and U; ~ U; # @ if and only if [{—j| < 1.
By a chain in S we mean a collection of open sets, Uy, ..., U,, satisfying
the last condition above. There is some useful terminology commonly
used in discussing e-chains, Let Uy, ..., U, be an e-chain in the metrie
space 8. The U; arc called the links of the chain and U, and U, are called
the first and last link respectively. If 1 <s <t < n, then U,,..., U, i8
called a subchain of Uy ..., U, and if s =1 (! = n), then U, ..., U, is
called an ¢nitial (a terminal) subchain. We shall always use script letters
to denote chains. If & is a chain, say ¢ = {Uy, ..., Uy}, then by mesh
€ we mean the number min{diam U;| ¢ =1, ..., n}, and by % we mean
the chain obtained by reversing the order of the links of ¢, i.e., &
={Vy..., Vs} Where V; = Up_y, for i =1,...,n.

DDFINITION 2. Let 8 be a bicompact metric space and € = {Ul, vy Un}
an e-chain in 8. Then ¥ is called a strong &- chain in 8 provided Ui~ U, #0
if and only if | — j| < 1.

Remark. If € = {U,, ..., Uy} 18 an e-chain cover of the bicompact
metric space, S, then there is a strong s-ohai'n cover, 2 = {Vy, ..., Va},
of 8 such that V;< U; for i=1,. o .

Proof. Suppose that, for 1 < z<3 n, Uy~ Uy #@; now Ui
U, cdU; ~n U, c Uy n U; and this is non-void only if Uiy, U; # 9,
in which case, j—(i+1) <1, ie, j=1<2. Thus, U; A U, @ it
li—j] = 3.

We define the V; successively by shrinking the U; where necessary
and we will agsume n > 4 so that we can illustrate the process. Let F
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— T, n Us; then F < U, If F' = @, then we define V; = U, and W, = U,
If F @, then there is a positive number, ¢, such that the closure, m,
in § of the & neighborhood of I lies in U,. (This fact follows easily from
the compactness of F.) We shrink U, and U, away from each other as
follows, Let V, = U;—N,(F) and Wy = Us—N,(I'). In either case,
F =@ or F # @3, consider the collection, V,, Uy, W3, Uy, ..., Uy, of open
gubsets of § we have defined. Since N,(F) = U,, this is an e-chain cover
of 8 whose j-th link lies in Uy for j = 1, ..., n. Moreover V; ~ W; =0
and by our first remark V, ~ U; =_0 for_ i >4,

At the next step we let F=U,n U, E F =0, let V, = U, and
W, = U, If F + @, then let ¢ be a positive number such that ¥,(F) =« W,
and define V,= U,—N, (If’) and W,l = U,,——N (F). Then V,, V, W,
Ws ..., Uy is an e-chain cover and Va ~ W,, = .

Smce we already know that Wa P V1 = @, the next step will only
involve shrinking W, away from U, to get V, and W,. This proccess ter-
minates in # steps with the degired strong e-chain.||

DEFINITION 3. Let ¥ and £ be chains in a space §; we say that 2
i8 deeply embedded in ¥ provided the closure of each link of 2 is contained
in some link of . If U is a subset of 8, then 2 is deeply embedded in U
means that 2 is deeply embedded in the one link chain % = {U}. We
say that 2 loops in ¥ provided 2 is deeply embedded in % and both end
links of 2 lie in the first link of ¥ while some link of 2 lies in the last
link of €.

We now prove two facts. The first one, which we will call a remark,
is probably well known but we include a proof for the sake of com-
pleteness. The second is a lemma which we use in proving the major theo-
rem of this chapter.

Recall that if § is a metric space with metric d, and 4, B are subsets
of 8, then dist(4, B) = inf{d(»,y)| x4, yeB}.

Remark on nested chains. Let M be a continuum and {%i
=1,2,...} a collection of chains in M such that mesh ¥; < 1/i, for i =1,
2y ... Suppose that €., is deeply embedded in %;, for ¢ =1,2,...; then
00

ﬂ (LU {C| Oe¥y}) is a snake-like subcontinuum, K, of M. If, in addition,

the closures of first and last links of ., are contained, respectively, in the
first and last links of %, for i =1, 2, ..., then K is irredducible from the
intersection of the first links to the mtersection of the last links.

Proof. Let G = UA{Cl C<%} for i =1,2,...; then G; is open
in ¥ and ¢,2GF,5¢,5G,>50,> ... and the intersection, K, of the
G; is a non-void closed subset of M. If K is not connected, then we write
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K = A+B, non-void and separated. By compactness, there is a positive

integer, 4, such that 3/ < dist(4, B). No link of %; meets both of A and

B and each of 4, B meets some link of #;, hence there is a link 0 of %;

guch that C ~ (4 +B) = @. It follows that there is an increasing sequence

of integers, 1 < 4; < i3 < ..., and a sequence of links, C;, where Cre¥uy
o0

guch that ¢ 50, 2 0, G, o 0, ... But then (") C; is 2 non-void closed

i=1

gubgset of K which lies in C. This contradiction shows that K is connected.
K is snake-like since, for each 4, the sets {0 ~ K| O is a link of %, such
that 0 ~ K # @} form a 1/i-chain cover of K. For each %, let F; be the
first link of %; and L, the last link of %; and suppose that F, > F, o F,

5Fyo..and LioL,>L,oL;>... Let {} = NF; and {y} = NI
1e=1 i=1

and suppose that L is a subcontinuum of K joining # to y. Then for each
i, the Fy ~ L # @ # L; ~ L; hence every link of ¢; meets L. If L were
proper in K, then some link of some %; would miss I, hence L = K, Thus,
K is irreducible from @ to .||

LEMMA. Let M be a snake-like continuum and, for ¢ =1,2,..., let
¥; be a strong 1[i-chain covering M. Let &, be a subchain of €, with at least
three links and let F' and L denote the first and last links of %,, respectively.

For some integer, n, either €, or €, has a subchain, B,, with an initial sub-
chain, Sy, and a terminal subchain, T ,, such that:

(a) B, ts deeply embedded in #,; and,

(b) S and T, have at least three links and are deeply embedded in F
and, L, respeciively.

Proof. Write €, = Uyyee.y Ugy ey Uy ..., U, Where &, = U,, ..., U
Let Wy = (Uy+ ... +Uy)—U,pq 2and Wy = (Up+... + Un)— U,y If no com-
ponent of M —(W,+W,) joins W, = Uy ~ 80Uy, to W, = U~ 0U;y,
then we may write M —(W,+W,) = A--B, separated, where dW, < 4
and 0W, = B. But then M would be the union of the non-void,
separated subset W,+.4 and W,+B, which is impossible. So, some com-
ponent, K, of M —(W,+W,) joins W, to W, This means that K is a
subcontinuum of M joining U, to U, and lying in Us+... + U;. Let  and
y be points of K ~ U, and K ~ U, respectively, and pick a positive number
e such that dist(w, M —U,) and dist(y, M — U,) are each greater than 4e.
We may also take ¢ small enough so that, for each ze K, {y e M|d(z, y) < 2¢}
lies in U,+-... 4+ U, Finally, we may require that ¢ be less than one-half
the Lebesgue number of the cover U, ..., U of K.

Choose a positive integer, n, such that 1/ < e. The collection of all
links of %, which meet K i a subchain, o, of €, If L is a link of &/,
then diam L < 1/n < 2¢. The last two restrictions on & imply that L lies
in gome link of #,. Now &, contains at least one subchain one of whose
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endlinks contains # and the other y. Reversing the order of %, (and
hence of &,) if necessary, let #, be a subchain with first link contain-
ing ¢ and last link containing y. Since 4/n < dist(z, M —T,), there
is an initial subchain, S, of %, having at least three links such that
#, is deeply embedded in U, = F. Similarly, #, has a terminal subchain,
T ., With at least three links, deeply embedded in U, = L.||

The following theorem generalizes the results of Henderson, [6],
and Barrett, [1]. For completeness, we shall include a proof which, except
for an application of the preceding lemma, is essentially that of Henderson,

THEOREM 2. Let M be a snake-like continuum and suppose that,
for some positive number, ¢, every non-degenerate subcontinuum of M having
diameter less than ¢ is decomposable. If U and V are disjoint open subsels
of M, then there is a subcontinuum, K, of M irreducible from a point, z, in
U to a point, y, in V such that the complement in K of the x-composant
of K is {y}, 1.6, {2<K| K is irreducible from ¢ to 2} = {y}.

Proof. Let I" denote a sequence, %,, ¥, ..., of strong chain covers
of M puch that, for each ¢, mesh ¢; < min(¢/2, 1/i);

There is an integer j, > 1 such that €; or ¢; has a subchain, %,
with at least three links whose first link, ¥, lies in U and whose last link,
L, lies in V.

We assert that there is an integer j, >j, and a subchain %, of ¢,
or ‘6’,2 with a terminal subchain 7, such that the following hold:

(a) 4, is deeply embedded in %, and the closure of its first link lies
in F,.

(b) 7, has at least three links and is deeply embedded in L,.

(c) If ¥l and & is any subchain of ¥ or & which is deeply embedded
in #, and the closure of the first link of & lies in the first link of 4,, then
no terminal subchain, 7, of Z loops (see Definition 3) in 7.

Assume the assertion is false. By the lemma, there exist j,, %, and
7, satisfying conditions (a) and (b) Thus condition (c¢) must fail and there

is an integer j; such that €, or % has a subchain %; with a terminal
subchain 7, such that 4, is deeply embedded in #,, the closure of the
first link of &, lies in the first link of #,, and -, loops in 7 ,. Note that
we must have j, >j, >j,. Since #; and 7, satisty (a) and (b), it fails
to satisfy (c). The above argument then yields j,, #,, 7,, such that %,
is deeply embedded in 4,, the closure of the first link of 4, lies in that
of #Z; and 7 loops in 7.

Let us consider the sequence of chains ,, 7, ... obtained by con-
tinuing the above process. For each i >2, 7,,,, is deeply embedded

in, and loops in, 7. By our remark on nested chains, the set T = ﬂ (U{T|
{m
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TeJ :}), 18 & subcontinuum of M. It is proved in [1] and in [6] that, because
each J;,, loops in 77, the continuum 7 is indecomposable. On the other
hand, ¥, is deeply embedded in L,, the last link of &,, and diam I, < /2.
This implies that diamT < ¢/2 and, by hypothesis, T is decomposable.
The contradiction proves the assertion.

The assertion now applies, with #, and 7, replaced by %, and 2
to yield #, and J, with properties (a), (b) and (c) (relative to #, and %)
In fact, proceeding inductively, we obtain a sequence, j, < j,< ..., of
integers and, for each %, a subchain %; of €, or %;,i with a terminal subchain
g, (where J| = L;) such that if F; and L; denote the firgt and last links
of #;, then:

(A) For ¢ >1, 4,,, is deeply embedded in #; and F,,, c F;.

(B) For 2 > 1,7 ;,, has at least three links and is deeply embedded
in L;. (Notice that, in particular, E+1 c L, for i > 2.)

(C) Fori > 2, if ¥l and £ is any subchain of % or € which is deeply
embedded in #; and the closure of the first link of # lies in the first link
of #;, then no terminal subchain of #Z loops in 7.

Let K = p (U{B| Be#;}); by our remark on nested chains K is
-2
a subcontinuum of M, irreducible from % to y where @ = () F; and y
1=l

= p L;. Since weF; « U and yeL, < V, all that remains to be proved is
-]
that {#| K is irreducible from « to 2}, which we shall denote by ¥, contains

exactly the one element .

Assume, to the confrary, that w is a point of ¥ distinet from y. Let
U be an open subset of M such that yeU and w¢U. The component
C of K ~ U which contains ¥ has a limit point in @TU. Let H denote C,
then H is a subeontinuum of K containing ¥ but not w. If H contains
a point, #z, of K—Y, then let L be a subcontinuum of K joining o to 2.
Now L misges Y, hence H+ L is a subcontinuum of M joining  to y missing
w which contradicts the definition of ¥. So, after all, H ~ (K—-Y) = 0,
i.e., H is a non-degenerate subcontinuum of K lying in ¥.

Let 2 be a point of H distinct from y and let N be an integer such that
1/N is less than one-half the distance from y to 2. In particular, L,y con-
taing y but not 2 and therefore, ( ) {T| T e¢J x,.} contains y but not 2. Let
w be a point of K—Y which also lies in Ly, and let E be an integer such
that R > N+1 and 1/R is less than one-half the distance from w to H
and less than one-half the Lebesgue number of the cover #y,, of K.

Let U, and U, be links of #5 containing w and 2, respectively. Then
every link of #x between U; and the last link, Lp, of #r meets H and
therefore misses w. Hence U, precedes U; in %g.

Rozprawy Matematyczne L
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Now @y is ‘strongly embedded in %y, and w lies in the last link
Ly, of @y, By choice of E, the subchain of #r consistinig of those
links preceding U, has a link whose closure lies in the first link of 7y,
and we let U, denote the last link preceding U, with this property. Then
the subchain Uy, ..., Us of #g is deeply embedded in I y_,. Similarly,
the terminal subchain Uy, ..., Uy ..., Lg of #x must contain a link whose
closure lies in the first link of  y;,, and if U, denotes the first link fol-
lowing U, with this property, then Uy, ..., U,is deeply embedded in Fy.,,.

Let # be the initial subchain, Fpg, ..., Up, ...y Ugy .vuy Uy of By
and let T = Upy ...y Usy ooy Uge Then & s a subchain of %, or ¢,
which is deeply embedded in Zy,, and the closure of the first link of
4 lies in Fy,;. By construction, the terminal subchain, 7, of # loops
in 7 y,,. This violates condition (¢) and we have obtained a contradiction
to the assumption that ¥  {y}.||

It is convenient to shorten the hypothesis of Theorem 2 to the
statement I does not contain small non-degenerate indecomposable
subcontinua.”

We point out that, although we shall only apply Theorem 2 to our
decomposition theory, one may apply this result to investigate any snake-
like continuum which does not contain small non-degenerate indecom-
posable subcontinua.

We now give several applications of Theorem 2.

TEHROREM 3 (Henderson). Let M be a non-degenerale continuum which
i8 homeomorphic with each of ils mon-degenerate subcontinua. If M is de-
composable, then M is an arc.

Proof. Certainly M is hereditarily of type A’. By Theorem 2, there is
a non-degenerate subcontinuum, K, of M such that one of the two elements
of 2(K) which do not separate K is degenerate. Thus, one of the two
elements of 2(M) which do not separate M is degenerate and this in
turn implies that every element of 2 (M) is degenerate, i.e., M is an arc.||

THEOREM 4. Let M be a snake-like conlinuum of type A which does
not contain small non-degenerate indecomposable subcontinua, and let f be
@ function such that 2(f) = 2(M). With the notation at the beginning of
this chapter, either there is r in I such that D, & L, or @ = {rel| D, 18
degenerate} 18 a dense @, set in I.

Proof. If @ is not a dense @, in I, then, for some positive integer,
n, the set {reI| diamD, > 1/n} has non-void interior. Pick ¢ and ¢ in I
such that $ <t and, for each r in (s, t), diam D, > 1/n. Let N denote the

continuum f~*[(s, t)]; Theorem 2 applies to N and there is a subcontinuum,
K, of N irreducible from & point z of f~![(s,(s+¢)/3)] to a point y of
f7'[(2(s+2)/3,1)] and the complement in K of the -composant
of K is {y}.
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Write f(K) = [8;,?] where 8 <s, <1t <t and suppose that, for
each 7¢[s, 1], Dy = L,. Then, in particular, Dy, < K and, of course, YyeDy.
Suppose that L is any subcontinuum of M joining @ to D,. Then, by
Theorem B of Chapter 1, L contains f~'[(s,,?,)]; therefore, weD, < L
and, by irreducibility, L = K. This means that K is irreducible from x
to every point of D, i.e., D, is contained in the complement of the »-com-
posant of K. Since diam D, > 1/n, we have a contradiction and we con-
clude that, for some re[s, t], D, ¢ L. ||

We remark that the some result holds with L, replaced by R,.

THEOREM 5. Let M, f and G be. as in the preceding theorem and denote
by L and R, respectively, the sets | ) {D,—L,|r eI} [G), U {Dy—RJr < I} +
+f'[G]. Bach of L and R is dense in M,

Proof. Let U be an open subset of M; we show that U~ L # @. If
there exists 7eI such that U < D,, then U ~ D} = @ and D! c D,~L,
80 U~ L # . Suppose then that U meets at least two elements of 2(M).
Using Theorem 2, one can easily construct a subcontinuum K of M ir-
reducible from D, to some point of U such that the complement of the
proper composant of K which meets D, is {y}. Let f(K) = [0, ], where
0 < s; then yeD,; and K contains L, (by definition of I,). We now con-
sider two cases.

Case 1. Suppose K = IL,; since L, is irreducible from D, to D, ~ L,
we must have {y} =Dy~ L,. If {y} = D,, then {y}ef*[@] < L, and
we are done. If {y} # D,, then since U contains y, U meets D,—{y}
= Dy—1L, = L, q.e.d.

Case 2. Suppose K # L,; then y¢L, (by irreducibility of K),
hence yeDy—L, = L and we are done in this case.

Dually, U contains a point of R.||

In [4], Jones obtaing the continuous circle of pseudoares by starting
with a pair of accordionlike continua intersecting in the end elements of
their decomposition and then replacing each V, A, and straight line in-
terval by a pseudoare. It is pointed out there that, by modifying the
construction, one can replace each V and A with an indecomposable
continuum, retaining the straight line intervals, so that the collection
of continua thus obtained will be continuous. Theorem 4 applies to this
intermediate example to show that the continua used to replace the V
and A must not only be indecomposable, but, for each positive integer,
i, a dense collection of these continua must contain non-degenerate inde-
composable subcontinua of diameter not more than 1}i.

DEFINITION 4. Let M be of type A and let f be such that 2(M) = 2 (f).
For rel, we say that 2(M) is continuous from the left at D, ( = 7D
provided that if {r;} is a sequence in I converging from the left to r, then
ﬁmsup D,, = D,. A similar definition holds for “continuons from the right.”
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Notice that 2(M) is continuous if and only if it is continuous from
the left and from the right at each of its elements. Also, if 2 (M) is con-
tinuous from the left (right) at D,, then D, = L, (D, < E;), but the con-

-yerse is not true.

THEEOREM 6. Let M be a snake-like continuum of type A which does
not contain small non-degenerate indecomposable subcontinua and let f be a
function such that D(M) = D(f). Suppose, also, that (M) is continuous
from the left ai each of its elements; then, for 0 < r << 1, D, is degenerate.

Proof. Continuity from the left implies that for each r<I, D,—L,
= @. By Theorem b, this implies that @ = {reI| D, is degenerate} is
dense in I. If r > 0, let {r;} be a sequence in G converging from the left
to r. Then each D,,is & gingleton and, by left continuity, D, is a singleton. ||

COROLLARY. Let M and f be as in Theorem 6. Then M is an arc if and
only if D, i8 degenerate.

At this juncture we should mention a result of Eldon Dyer, In [5]
he proves the following result: No drreducible continuum has a continuous
decomposition whose elements are non-degenerate indecomposition continua.
In our teminology this can be phrased as follows: If M is of type A and
9 (M) is continuous then some element (possibly degenerate) of D(M) is
indecomposable. In one sense this is stronger than our results because
M is not agsumed to be snake-like. On the other hand, if we add the hypo-
thesis that M is snake-like, then we obtain much stronger conclusions,
e.g., either M is an are or else M contains arbitrarily small non-degener-
ate indecomposable subcontinua. Indeed, stronger conclusions are ob-
tained with much weaker forms of continuity.

We now introduce a notion of sidedness for certain subcontinua
of the 2-sphere, 8. We begin by defining this notion for an arc in §.

DEeFINITION 5. Let 4 be an arc in § and let B and C be subcon-
tinua of § each of which meets 4. We say that B and O meet A on the same
side provided there is a simple closed curve C in § such that A4 is contained
in ¢ and (B—4)4(C—A4) lies in the same component of §—C. (Note:
S—C has exactly two components; these are frequently called the com-
plementary domains of C.)

Fix an arc 4 in 8 and define a relation on the collection of continua
in § which meet A as follows: B and C are related provided they meet
4 on the same side. As a consequence of our definition, this relation is
not transitive. It is possible to modify Definition 5 so as to make the
relation transitive, but this introduces complications in our results which,
we feel, are not justified.

Let X be a continuum of type 4 in § and 2 an admissible decompo-
sition of K no element of which separates § and extend 2 to the decom-
position & of § whose elements are those of 2 together with the collection
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of sets {«}, where ¥¢S—K. If T denotes the quotient space of 8§ modulo
&, then, by Theorem 15 of Chapter 2, there is a homeomorphism, A, of
T onto 8. If ¢ denotes the quotient map of 8 onto T, then hogq is a con-
tinuous mapping of § onto § and h(g(K)) is an are.

DrrFINITION 6. Assuming the hypotheses and notation of the pre-
ceding paragraph, let B and C be continua in § each of which meets K,
We say that B and O meet K on the same side relative to @ provided h{g(B))
and h(g(C)) meet h{g(K)) on the same side in the sense of Definition 5.

We must prove that Definition 6 is independent of the choice of the
homeomorphism h. Let » and g be any two homemorphism of T onto
8 and suppose that (hg(B)) and h(g(C)) meet h(gq(K)) on the same side.
Let C be a simple closed curve in 8 such that h(g(K)) = C and [h(gq(B))—
—h{g(E))]+]r(g(C))—h(q(K))|, which we will denote by @, lies in one
complementary domain of C. Then goh~'is 2 homeomorphism of § onto 8
taking h(q(K)) onto g{g(K)) and taking @ onto [g(q(B)—g(q(E))+
+[g{¢(C)—g(g(K))]. Moreover, being a homeomorphism, goh~ maps ¢
onto a simple closed curve, O, in § and maps the two complementary
domains of C onto those of C’. Therefore, g(¢(B)) and ¢(g(C)) meet
9(q(X)) on the same side in the sense of Definition 5, q.e.d.

Notice that Definition 6 does depend on the particular admissible
decomposition of K chosen. As a simple illustration (in the plane rather
than 8) let K denote the unit interval, B the interval {(z, y)|z =1/2,
0 <y <1} and C the reflection of B in the z-axis. If 2 = 2(K), then
B and C do not meet K on the same side relative to 2. However, if 2 con-
gists of the subinterval {(z,¥) 0 <2 <1/2,y = 0} of K together with
{tz, ¥)}|1]2< 2 <1,y = 0}, then B and C meet K on the same side
relative to 2.

Until further notice we will work under the following hypotheses
and notation. All continua lie in 8; M is a continuum of type 4 and K
is a subcontinuum of M of type A meeting at least two elements of
2(M), and 2 is the admissible decomposition of K whose elements are
(DA K| De2(M),D ~ K #@}. We assume that no element of 2
seperates S. Extend 2 to a decomposition of § as usual and let ¢ be
the induced quotient map and % a homeomorphism of the quotient space

onto S (see the paragraph preceding Deﬁnit‘i_on 6). Let K = cly (int u(K));
then K is a subcontinunm of K and k{g(K)) = h{g(K)).

Remark. If C is a simple closed curve in S containig b (q(K)) and W is a
complementary domain of C, then there is a sequence By, B,,...,of arcs in

g [A7' [ W] such that lim sup B, contains K ; in particular K coslg~ [k [W])]).
1

Proof. Let A,, Ay ..., be a sequence of arcs in W such that
limsup 4; = h(g(K)), and let C; =g '[p'[4]] for i =1,2,.... Since
i
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hog is a homeomorphism on §—K, the C; are ares in ¢~'[A~'[W]] and
limsupC; lies in K.

i It is not hard to show that there is a subsequence, B,, B,, ... of the
¢; such that, if B; has endpoints a; and b, then {a;} and {b;} converge
in 8 to points ¢ and b in Ba[q-‘[h-l[W]]] such that (g(a)) and h{g(b))
are the endpoints of h(g(K)).

By Theorem 8 of Chapter 1, X is irreducible in K from a to b. Since
limsup B; is & subcontinuum of K containing ¢ and b, K < limsup B,.

THEOREM 7. Assume the standing hypotheses on M, I and K., let
0 be a simple olosed curve containing h(q(K)), and let W be a complemen-
tary domain of C. Suppose that U and V are disjoint open sets in S such
that U+V = 8, U and V have common boundary, say, 0s(U) = 0g(V) =L
and suppose, also, that I meets both U and V. Then h(q(L)) meets W.

Proof. Since hogq is a closed and continuous map,

rg(T)) ~ R(g(V)) = k(g(T)) ~ R{g(V))
= h{g(U+IL)) ~ h{g(V+L)) = b(g(K))+h(g(L)).

Now by the remark, I < dg(g~* [A={W]]), and since K contains no open
subset of S and .fif meets U, there is a point, @, of ¢! [L~'[W]] ~ (T—E).
Then h{g(w)) lies in W ~ intg(h(g(7))). Similarly, W ~ ints(h{g(V))) # ©.

Now assume the theorem false. Then W misses k(g(L)). Since W also
misses h(q(K)), it follows from our initial computation that W misses

h(g(TU)) ~ h(g(V)). But this contradicts the fact that W is connected
and meets the interior of each of %(¢(U)) and A{gq(V)).li

We shall use Theorem 7 to prove Theorem 8 which, in a restricted
form, says that if B and ¢ are continua which meet K on the same side,
then there is an are, J, meeting K on the other side. Before proving The-
orem 8 we establish a useful result.

LemMmA. Let C be a simple closed curve in 8, let A be an arc lying in
C with endpoinis a and b and let W be a complementary domain of C. Suppose
that L is a locally connected continuum in 8 with the property that if J 18
an arc in L which meets A and J—A < W, then J ~ A < {a, b}. Then 8
contains a simple closed curve, ¢!, containing A such that one complemen-
tary domain of C' lies in W and maisses L.

(What this lemma says is that if I satisfies the given conditions,
then ‘“‘inside” C there is another simple closed curve O’ which bounds
L away from A-—{a,b}.)

Proof. We may assume that C is the boundary of the unit square,
IxI, in the plane, 4 =IX{0}, a = (0,0),b = (1, 0), and W = {(z, ¥)|
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0<2<1,0<y<1}. For » >3, let a, = (1/n,0) and b, = (1—1/n, 0).
We assert that, if n >3, there is a positive number d, such that
LA{lmy)a<2<by, 0<y<d,} =80. If, for some n, this were false, then
L ~ W would contain 2 sequence {z;} converging to a point z of the form
z = (¢, 0) where a, <¢ < b, Let U be an open subset of § such that
#zeU and diam U < 2/n. Since zeL and L is locally connected, U ~ L
would contain an arc joining some z; to 2. This arc would contain a subare,
J, meeting 4 such that J—A4 < W. Since this is impossible, the assertion
is proved.

We also require that the d; be monotone decreasing to 0. The simple
closed curve (' is then the set A4+A4;+4,+..., where 4; = {(z, y)| a
e <Lbyy =dg}+H{(®y) ® =a; or x =b;, and d, <y <dy} and, for
iz24 4 ={®y) a<e< o 0r b <e<h, and y = d}+H{(z,y)|
=a; OT = b, and d;y; <y < dg}.

THEOREM 8. Assume all the hypotheses of Theorem T on M, K, U, V,
L and, in addition, assume that L is locally connected. Suppose that B and
C are continua in 8 meeting K on the same side relative to 2. Then there
is an arc, J, lying in L, with endpoinis x© and vy, such that J ~ (K+B+4-C)
=J~nK=uaoo0ry.

Proof. Let D be a simple closed curve in § with complementary
domains W, and W, such that h(¢(K)) < D and [k(g(B))—h(q(K))]+
+[2(q(C)) —h{g(K))] lies in W,. By Theorem 7, h(q(L)) meets W,. Since
h (g (L)) is locally connected, it contains an are, I, such that I ~ k(g(K)) # @,
I—h{g(K)) = W, and I ~ h(q(X)) is neither endpoint of h{g(K)). For
if this fails, then we may apply the lemma to get a simple closed curve,
D', containing h(g(K)) such that one complementary domain of D’ lies
in W, and misses & (g(L)). This violates Theorem 7, so there is such an
arc I in h(q(L)). By taking a subarc of I if necessary, we may also require
that I ~ h(g(K)) be an endpoint, p, of I.

Denote by J the closure of h~[¢~![I—p]]. Then J is an arc lying in L.
Also J ~ K is an endpoint, &, of J. Since I—p « W,, J —2 = b ~|¢" [I—2]|
misses (B—K)+(C—K). Hence J ~ (K+B+C) =J ~n K =a.||

We are now ready to prove our final structure theovrem.

TuwoREM 9. Let M be a plane continuum of type A and write 2( M)
= {D,|reI}. Suppose that each element of D (M) is either degenerate or of type
A and that, for each non-degenerate D,, no element of 2(D,) separates the
plane. Let R denote the set of rel such that D, contains a subconiinuum K,
of type A meeting at least two elements of 2 (D,) such that R, and L, meet K,
on the same side relative to the decomposition {D ~ K, De2(D,), D ~ K, # @}
of K; then R is at most countable.

Proof. Let R, denote the set of reR such that K, meets at least

two distinct horizontal lines in the planc. Notice that if re<R,, then I;T..



72 Monotone decompositions of irreducible continua

= intp_(K,) also meets at least two distinct horizontal lines in the plane,
Assume that R, is uncountable; then there is a horizontal line I, with
upper and lower half-planes U and V, such that for uncountable many

rin Ry, K, meets U and V;let R’ denote the set of such 7.

Let < be the usual (left to right) ordering on L. By Theorem 8 there
is, for each # in R', an arc J, in L, J, = [z, ¥,] where 2, < y, in L, such
that J, ~ (K, +Re+L,) = @, or ¥,y ie,y, Jrn M =, of y,. If for r #3g,
we have J,~ M =ux, and J, ~ M = a,, then J, ~ J, = @ (otherwise one
of these would contain two points of L). Since L contains at most count-
ably many disjoint arcs, the set P = {reR'| J, ~ M = x,} is at most
countable. Similary @ = {reR’|J, ~ M = y,} is at most countable. Since
R' = P+Q, R’ is at most countable and we have a contradiction.

So R, is countable; the complement in E of E, is just the set {reR| K,
lies in a horizontal line}. Applying the same argument as above, only
with L replaced with a suitable vertical line, L', in the plane, we see that
R—R, is countable. Thus R is countable.||

The conclusion of this theorem could be roughly summarized by
the statement ‘“All but countably many of the non-degenerate elements
of 2(M) are deeply embedded from both sides in M”. If M is the accor-
dionlike eontinuum, then the set R is precisely the set of » in I such that
D, is a V or A. Theorem 9 says that, in the above sense, any plane con-
tinuum of type 4 (which has reasonably nice decomposition elements)
enjoys this property.
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