COLLOQUIUM MATHEMATICUM

VOL. LIl 1987 FASC. 1

ON TRANSFINITE INDUCTIVE COMPACTNESS DEGREE
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1. The transfinite inductive compactness degree. We assume in this
note that the spaces are metrizable and separable. We shall consider the
extension by transfinite induction of the inductive compactness degree cmp
defined by J. de Groot [4], [6; Research Problem D, p. 121]:

cmp X = —1if X is compact, cmp X < a, a being an ordinal number, if
each point in X has arbitrarily small neighbourhoods V whose boundaries
Fr V have cmp Fr V <a, and we let cmp X be the first ordinal a with
cmp X < a, if such an x exists, or cmp X = oo, in the opposite case.

Since our spaces X have always a countable base, cmp X < w,,
provided that cmp X # oo.

Remark. If X is countable-dimensional, i.e. X is a union of countably
many zero-dimensional sets, then cmp X # oc if and only if the small
transfinite dimension ind X is defined, and then cmp X < ind X, cf. [§; Ch.
IV, § 6 (B)], [3]; this can be easily verified by induction, see [5; Ch. IV, § 6
(D)].

2. Main result. In this section we state the main result of this note;
the proof will be given in Section 4, preceded by a discussion of some
auxiliary facts, given in Section 3.

2.1. THEOREM. For each countable ordinal number x there exists a
separable, metrizable space C, such that a < cmp C, # oc. '

Each space C, contains a compact subspace S, with a locally compact
complement T, =C,\S, such that S, has a base of open-and-closed
neighbourhoods with finite-dimensional complements in C,.

The space C, has only countably many components and the components
of S, are finite-dimensional closed cells, while the components of T, are finite-
dimensional open cells.

22. Remark. Let Cmp and Com be extensions by transfinite
induction of the topological invariants considered respectively by de Groot
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[4], [6; p.- 121] and de Vries [13; 3.49], [8], and let Ind be the large
transfinite inductive dimension [9; VI1.3], [3]. Then, the structure of the
spaces C, desribed in Theorem 2.1 guarantees that Ind C, is defined [3; 3.16]
and

a<cmpC, <CmpC,<ComC,<Ind C, # x.

3. Auxiliary facts. In this section we collect some information which
we shall use next in the proof of Theorem 2.1.

3.1. The Effros Borel structure. Given a space E we denote by FE the
collection of all closed subsets of E endowed with the Effros Borel structure
B, ic. B is the o-algebra in FE generated by the sets {XeFE: XnU # 0},
U being an open set in E. Recall [1; Ch. 3], that for any totally bounded
metric inducing the topology in E, if dist is the corresponding Hausdorff
distance in FE [7; § 21, VII], then B is the family of all Borel sets in the
metric space (FE, dist). The space E we shall consider later on will be o-
compact, and then (FE, dist) is always an absolutely Borel space, which
allows one to speak about analytic sets in FE without any ambiguity [1; Th.
3.2] and, moreover, in this case the intersection operation (X, Y>> XY
is a measurable map from the product space (FE x FE, B®B) to the space
(FE, B) [1; Th. 3.10].

3.2. LemMMA. Let E be a space containing a compact set S with a locally
compact complement T = E\S and let f: E — I be a continuous map onto the
unit interval I. Then, for each countable ordinal a, the sets

F,=!XeFE: cmp X <aj,
I,={XeFIl: cmpf~Y(X)<a

are analytic with respect to the Effros Borel structure.

Proof. A closed set L is a partition in E into two disjoint closed
sets A and B if E\L is a disjoint union of two open sets ¥, W such that
Ac V and B c W ([2]. Since the intersection is a measurable operation (E
being g-compact), the set L(A4, B) of all partitions in E into the pair
(A, B) of disjoint closed sets is analytic in (FE, B) (indeed, L(A, B)
=proj \{L, X, Y>6eFEXFEXFE: AcX, BcY, LcXnY, Ln(AuB)
=0,XuY =E)).

We shall check that the sets F, are analytic by transfinite induction:
F_, =!XeFE: X is compact}eB, E being topologically complete; assume
that F, is analytic for B <« and let us consider F,. Let us choose in each of
the spaces S and T countable bases whose members have compact closures
and let ¢ be the collection of the closures of these sets; let us choose also a
countable base in the space E and let % be the collection of all finite unions
of its members. Given K;e X for i < m and an open set Ue # such that
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O K; c U, we put
i=1
(1) F(K,,...,Kn;U)={X€eFE:
@<Ly, ..., Lye ﬁ L(K;, E\U))(Vi < m)cmp(L; n X) < a}.
i=1

Then, since the set {<(X, L): LnXe | Fg} is analytic by the inductive
B <a

assumption, the set defined in (1) is a projection of an analytic set, and hence
it is analytic. To complete the proof, it remains to observe that
F,.= N N UKy, ....,Kn U):

Kex Uew
KU

Ky KpdeK" m=1,2,...,Kc | K; < U}.
i=1

To see that each I, is analytic, let us notice that, since E is o-compact,
the map X — f~!(X) from FI to FE is measurable with respect to the Effros
Borel structure in these spaces, and that I, is the preimage under this map of
the analytic set F,.

33. The space C,. Let I be the unit interval [0, 1], I“=1x1Ix ...
be the Hilbert cube, let I"= {(x)el®: X,4y =Xp,es=...=0] be the
n-dimensional cube, and let 0I" = |(x;)el": for some i< n, x; =0 or x; =1}
be its combinatorial boundary. Let us define

) C,=1°x100u U (I"\aI" x {1/n}.
n=1

Elzbieta Pol [10: Example 6.1] proved that
3 cmpC, = 7.

4. Proof of Theorem 2.1. The reasoning in this section is a version of
a reasoning from [11; § 2, Sec. 3], where some problems about transfinite
inductive dimensions were considered. We adopt the notation introduced in
Section 3.3; let p,. I“—>I" be the projection p,(x;, X3,...)
=(Xy, ..., X,, 0,0, ..) and let Q be the set of rational numbers from the
interval 1.

4.1. Let us arrange the rational numbers from [ into a sequence
4:, 43, ---, let us consider the product I xC_, (see 3.3 (2)), and let us attach
to each compactum {q,} xI° x {0} the cube I" by the map p,; to be more
specific, we define an upper semi-continuous decomposition of the product I
x C,, whose non-one-point members are the sets {g,} xp, ' (x) x {0}, where n
=1, 2, ... and xel" (notice that diam p, ! (x) < 1/n in the standard metric in
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I°). Let E be the resulting decomposition space and let q: I xC, — E be the
quotient map. Let us observe that for each n, the restriction gq|I x(I"\dI")
x {1/n} is a homeomorphism onto an open subspace E, of E, the sets E, are
pairwise disjoint, and each neighbourhood of the compactum E, = q(I xI®
x {0}) contains all but finitely many sets E,.

42. Let f: E— 1 be the continuous map induced by the projection
pr: IxC,—1, ie. pr = fogq. Then

(A) if tel is irrational, then f~!(r) is homeomorphic to C,,

(B)if X<=Q is a compact subset of rational numbers, then the
components of the compactum f~!(X) N E, are the sets f~'(g)nE, =1I",

top
for g,€ X, and each set f~!(X)n E, is homeomorphic to X x(I"\dI".

Therefore, for each compact set X = Q, the space C = f~!(X) has the
structure described in Theorem 2.1 (S = f~!'(X)nE, being the compact
subspace of C with the required properties).

43. We shall show that for each countable ordinal a« there exists a
compact subset X, of rationals Q such that cmpf~!(X,) > a. Then, the
spaces C, = f~!(X,) will satisfy the assertion of Theorem 2.1, by 4.2 (B).

Let us adopt the notation of Lemma 3.2. Each compactum Xel, is
contained in Q, as in the opposite case, X would contain a closed set f~'(r)
for an irrational tel, but then 4.2 (A) and 3.3 (3) would imply that
cmp f~1(X) = cmp f~ ! (t) = o0, contradicting the fact that cmp f ~!(X) < a.
Therefore, I, is an analytic subset of the set Q of all compact subsets of Q,
which is not analytic by the Hurewicz’s theorem [7, § 43, VII, Corollary 3],
and hence there exists a compact set X,eQ\I, which we are looking for.

5. Comments

5.1. Let us notice that the spaces C, we have constructed in Section 4
look much alike Smirnov’s “transfinite cubes Q*” [12] from which some of
the combinatorial boundaries of their components (which are finite-
dimensional cells) are removed.

§.2. The inductive character of cmp yields that each space C, in
Theorem 2.1 contains for each f < a a closed subspace Z; such that cmp Z,
= fB; notice that every Z; contains the compact set Z; NS, with a locally
compact complement. This extends the theorem of de Groot and Nishiura
[4; Th. 3.1.1] about the existence of spaces with arbitrarily large finite
compactness degree.

One can also demonstrate that for each natural n there exists a compact
set X, = Q such that (see sec. 4.2, 4.3)

n<cmpf~'(X,) <o.
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To see this, consider a compact set X < Q with the smallest possible Cantor—
Bendixon index such that cmp f~!(X) > w; the existence of compact sets
X, = X with the required property follows then easily. The spaces f~'(X,)
have a rather simple structure (see 4.2 (B)), but an essential defect of this
construction is that ind f~1(X,) = w.

53. Aarts [0] proved that cmp(Q xI") = n, Q being rational numbers;
the reasoning of Aarts yields also that, for any compactum K, with
ind K, = a, cmp(Q xK,) = a. However, neither this method nor the method
in [4; Sec. 3.1] yields spaces simultaneously complete and o-compact
and neither of them provides examples with Ind # o0 but cmp > w (cf.
Remark 2.2).
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