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A modern proof of the Maximum Principle

by ANDRzEJ W. Tursk1 (Katowice)

Abstract. A new prool of the Weak Maximum Principle {or parabolic partial differential
equations of the second order is presented. The method of proof may also be used for nonclassical
solutions (belonging to suitable Sobolev spaces).

1. Introduction. The Weak Maximum Principle is one of the most
important theorems concerning elliptic and parabolic partial differential
equations of the second order. All the classical proofs of the Principle make use
of the pointwise properties of solutions (see [2]-[4]) and hence cannot cover
the case of weak solutions in Sobolev spaces. [1] and [4] contain various
proofs of the Principle in Sobolev spaces for particular cases (when the
equation is in divergence form and the solution satisfies particular initial
conditions). In the present paper we give a non-standard proof of the Weak
Maximum Principle for the general form of linear parabolic equation of the
second order. The method of proof may also be used for weak solutions.

2, Preliminaries. Consider the equation (where all the sums are taken from
1 to n)

(1) u, = Z(a,-j(t, X)), + Zb,(z, X)u,, +c(t, X)u+f(t, x)
t.J J

in D = (0, T] x 2, where Q is a bounded domain in R" with suitably smooth
boundary. We assume that

(U) a function u satisfying (1) is continuous in D and has partial derivatives

U, Uy, Uzy, CONtinuous in D.
Moreover, the following conditions on the coefficients are assumed:
(A) a;and (a;),, are continuous in D and for every (t, x)eD and every (e R"

Zau(t, x)¢;&; =0,
iJ
(C) c¢(t,x)<h in D where h is a constant,
(D) f is globally bounded: [f(t, x)| <M in D.

3. Main theorem. Under assumptions (U), (A), (C) and (D) we have the
following:
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THEOREM. If b;, (b)),, are continuous in D forj=1, ...,n and u satisfies (1),
then for every t, 20 and t > ¢,

) lut, Meea < {max(lu(to, Mi=w, m)+ M) —1to)} exp(h(t—ty)),
where M(t) = sup,», | f(z, *)l|L= and m = supy |u(s, x)| for (s, x)€ [to, T]x Q.

Proof. Define , = {xeQ: o(x, 0Q) > 1/I} and D, = (1/I, T] x Q,, where
lis an integer and g(x, 0Q) denotes the distance from x to 6. The functions q,,,
b;, u and thelr derivatives (a;),,, (b)), Uy Uy (0 (i,j=1,...,n) are continuous
1n D,. Note that if (2) is true for every (2, in place of Q, then it is true for Q itself,
since for ! tending to infinity we have

(e, Me=@y— lult, Mo,  sup luls, x)| = sup |u(s, x)|.
seto, T sefto, T]
xedy xedf}.

Thus, with no loss of generality, we may additionally assume that

(B) ay, bj, u and (a;),,, (b));,s Me» Ux, are continuous in D.
Next, observe that instead of (2) it is sufficient to prove
3) lu(t, )= < max([uty, ‘)=, m)+M(t)(t—1,)

with (C) sharpened to c(t, x) <0. Indeed, the transformation wv(t,x)
= u(t, x)exp (—ht) yields (1) for » with é(t, x) = c(t, x)—h < 0.
First, we show (3) under the additional assumption

4 c(t,x) < —hy <0, where h; is a constant.

Multiplying (1) by 4?*~! (the number ke N, sufficiently large, is fixed until the
limit passage after (14)) and integrating the result over 2, we obtain

5)  [uurldx=[Y(a,u,),u tdx+ [ bu, u¥"ldx
[ Qi 2
+ [ ew? ax+ [ fu**~1dx.
) 2

The first and second terms on the right-hand side of (5) are integrated by parts
and the fourth is estimated using the Hélder inequality with p = 2¥(2¥—1)71,
q=2%

(6) j‘uz"dx J Y au, cos(n, x)u™"tds
09 i,j

— 2 =1 [ Y au, u,u¥* " 2dx+27% [ Y b;cos (n, x )u>*ds

2i,j an j

~ 2] (b dx+  cu dx+ ([ £ dx T (J udx) T2
Q] 0 Q o)
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Then using assumptions (A), (D), (E) and (4) we have
d k k
(7) aju" dx < 2*m¥™ " H +m* H,+ [ H,(t, x)u**dx
Q Q

+2XM (IR ([ u?dx) T2,
Q
where H,, H, > 0 are constants such that

Hy> sup [ [Yaylt, x)u,cos(n, x,)|ds,

to<t<T AN i,j

H,> sup [ |Y.b(t, x)cos(n, x))|ds,

to<$t<ToQ j

Hj(t, x) = 2%c(t, x)- ), [bj(t, x)]1,,
J

and || is the Lebesgue measure of Q.

Since [by(t, x)],, is bounded by (E) and c(t, x) < —h, <0, H,(t, x) is
negative for sufficiently large k. Set y,(£):= [lu(t, )|Z2%q, bi(t):= M®)I2*> ",
a:=2"%c.:=2m* " 1(2*H, +mH,) and fix a > 0 such that H,(t, x) < —a for
all (¢, x)eD. If m =0 (or equivalently ¢, = 0), then from (7) we obtain an
ordinary differential inequality for y,:

®) () < —ay, () +a” b (t)Dy ()] 7

Its solution satisfies
t

® %@ < {[n(to) 1 exp(a ato) + | by(z) exp(aaz) dz} “exp(—at).
to

If m>0 we obtain a strict ordinary differential inequality (compare the
definition of ¢, and (7)) for y,:

(10) V() < ce—ay () +a” b ()01 "

We will use the comparison technique to estimate the solution y, of (10).
Denoting the right-hand side of (10) by ¥(t, y,(t)) and defining

y¥(t) = {[n(to) + ci/al exp(aa(t + o))+ | by(z) exp (aaz) dz}” *exp(—at)

fo

it is easy to calculate that
(11) y¥(to) = [yi(to) +ci/al exp(ato) > yu(to)s
(12) (Y () = cpexplato) —ay*(Q)+a~ b,y (0] % = (1, y*()).
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From (10)~(12), and the comparison theorem ([5], p. 65, Th. 5) it follows
that y,(t) < y*(¢) for every te[t,, T1, hence

(13) y(®) < {[Vilto) +ci/al exp(ealt +1,) + j by(z) exp (xaz) dz} " *exp (—at).

Next we study (9) in the case m = 0 and (13) in the case m > 0. We only
have to consider (13), since the proof is similar in both cases.

Since M(t) = sup,s,||f(z, *)llL= the function b, (= M(t)|2|>7") is de-
creasing and we may write

exp (xat)—exp (aat,)

[ (0)]* < exp(aaty) [y, (to) +ci/al* + by(to) exp (—eat)

aa
or using the previous notation
- 2-k
(14) lu(z, *)llL24e) < exp(2~*ato)[2max (||u(to, *)IEz4a) ci/a)]
1—exp(—27%(t—1,))
+ b, (¢t5) 7k, .

For k tending to infinity we have [lu(t, *)|| 2% — lu(t, )lL=) ([6], p. 34,
Th. 1), 2271,

(c/a) ™ = (a1 2m® Y H, +mH,))* " >m,  by(te)~ M(to),
a '2*[1—exp(—27*a(t—1,))] = (t—¢t,).
Hence as a consequence of (14) we obtain
lu(t, )o@ < max([ulty, )l|L=w), m)+M(tx)(t—1t,),

which completes the proof under the strengthened assumption (4).

To cover the general case c(t, x) < 0, we take an arbitrary A, > 0, use the
transformation v(t, x) = u(t, x)exp(—h,t) and by the previous procedure we
obtain

ot ML= < max(lv(ty, M=y, my)+M,(te)(t—to),

where m, = supg, ) lexp(—h; 2)u(z, x)| for (z, x)g[t,, T]x0Q and M,(t,)
= sup,,,, lexp(—h,2) f(z, *)llL=(- It is easy to verify that the last inequality
yields for u

(15) exp(—h )]u(t, )= < max(exp(—h, t,) [u(t,, M=y exp(—hy to)m)
+exp(—h L) M(to)(t—to).
Multiplying both sides of (15) by exp(h,t) we have
lute, M= < {max(|u(ty, )lL=(), m)+ M (to)(t —to)} exp (y (¢ —to)).

Since te [y, T] and the above inequality is true for every h, > 0, (3) follows.
The proof is complete.
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In the above Theorem we may omit the assumption that b, and (b jhe, 8¢
continuous in D provided that the matrix [a;(t, x)];; is uniformly B]llptlc ie.:

(A1) there exists 4 >0 such that for every (t, x)e D and for every £eR"
Zaij(t x)fi '1252

Under assumptions (U), (A), (A1), (C) and (D) we have

PROPOSITION. If b, for j =1, ...,n is locally bounded in D and u fulfils (1),
then the estimate (2) holds.

Proof. The proof is similar to that of the Theorem. We need only observe
that b; is globally bounded in D, for every le N (see the previous proof) and
hence without loss of generality we may assume that

(El) (ay)s, and u,, are continuous in D and b; is globally bounded in
D@ij=1,...,n)

Next we integrate by parts the first term on the right in (5) and estimate
using condition (Al)'

16)  [Y.(a;u. ). u u?1ldx = | Y a;u, cos(n, x)u**"'ds
nij o0 1i,j
—(2*—1) [ Y ayyu, u,u* " 2dx
21i,j

m¥ U H, —(2*=1)A[ Y (u,)?u? " 2dx
ni
m¥ T H, —227 22— A [ Y [ 7)), ]%dx,
ni

where H, is the same constant as in the proof of the Theorem.
The second term in (5) is estimated using the Holder (p =g =3) and
Cauchy (ab < 27 'ea? 4 (2¢)~1b?) inequalities:

(17) _[Zb i, u¥ T ldx =21 "ZI 27, b dx
<21 kZ{ I [(uzk 1 xjjzdx}uz{_[b}uz"dx}”z
i 2 Io}
<27%e Y[, 2dx+2"*e~nB? [u?*dx,
Qj

2

where |b,(t, x)| < B by (E1) for all (t, x)eD, j =1, ...,n, and & > 0 is arbitrary.
From (5), (16) and (17) we obtain

= L [t dx < 2 H, + {e— (2 — D224 [ ¥ [02°), )2
o] 2 i

+ [ (nB*/e+2%c(t, x))u? dx+2* M ()| Q> "(f udx)* 27",
2

Q2
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Choosing & > 0 so small that e—(2“—1)227%4 < 0 for all k > 2 and fixing a > 0
such that nB?/e+2*c(t, x) < —a for k > k,, we obtain inequality (8) or (10) for
k > k,, which we may study in the same way as in the Theorem.

Remark. If g; =0 for all i, j=1,...,n, then our Theorem is applicable
to linear partial differential equations of the first order. Under (C), (D) and
assuming that (b)),, is continuous in D (for j = 1, ...,n) we obtain the estimate
(2) for solutions of the equation

u, =y by(t, X)u, +c(t, Ju+f(, x), (¢, x)eD.
i
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