ANNALES
POLONICI MATHEMATICI
LIV.1 (1991)

Remarks on absolutely regular and regular
A"'{M ,}-distributions

by S. Piirovi€¢ (Novi Sad)

Abstract. We give the definition of %" {M }-regular distributions and some characterizations
of absolutely regular and regular %”{M }-distributions.

1. Absolutely regular tempered distributions were studied by Szmydt [6],
[7] who noted an interesting property of a locally integrable function which
defines a tempered distributions. This was the motivation for several papers
concerning the relations between locally integrable functions and various
subspaces of Schwartz distributions. Dierolf [2] studied regular and absolutely
regular tempered distributions; he gave a detailed topological analysis of such
spaces. Klis and Pilipovi¢ [3] gave some remarks on these spaces.

The space &' is a JX'{M,}-type space where X#'{M,} is the
Gel'fand-Shilov space [1]). Pilipovi¢ [4] characterized absolutely regular
A" {M }-distributions.

The following properties of the sequence of functions M, are assumed
in [4]:

(1) IQMP(X)SMpq.l(X), XER, PEN,

(2) For any xeR there are only two possible cases: M ,(x) = co for all p or
M,(x) < co for all p;

(3) M, peN, is continuous with respect to x where the function is finite.
The set of points at which M (x) = oo is contained in (—«, «) for some
a>0;

(N) For every peN there is p'eN such that M /M .eL;

(4) Forevery peN there is Y, > 0 such that M, is non-decreasing on (Y, o)
and non-increasing on (—o0, —Y);

(5) For every peN there are p'eN and X,>0 such that M, (x+1)
SM,(x), x> X,, M (x=1) < M,(x), x< —X,.

(Assume X, =Y,)

Note that (1), (2), the first part of (3) and a stronger version of (N) are
well-known conditions from [1], p. 86, and p. 111.
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Recall that % {M,} is the space of all ¢&C™(R) for which the norms

li#ll, = sup{M,(x)|¢$“'(x); g < p, xeR}, peN,
are finite.

An fell. is called. an absolutely regular generalized function from
H'{M,} if fpeL for any pe " {M,}. We denote by #7,{M,} the space of
such elements from X”{M,}. Conditions (1), (2), (3), (N) imply that
const. € A, {M,} ([4]).

2. For the definition of a regular #"{M,}-distribution we need that
X"'{M,} is a subspace of 2'. Because of that, in the sequel we shall assume that
M, satisfies conditions (1), (N), (4), (5) and the following two:

(3) M,, peN, are continuous functions,

and ([1])

(P) For any peN, there is p’eN such that
‘llim M, (x)/M ,.(x) = 0.
X|[—* e

Clearly, condition (3) is stronger than (2) and (3).

Under these two conditions ([1], p. 96), 2 is a dense subspace of A" {M}
and the convergence of a sequence in 2 implies its convergence in 4" {M }. So,
A'{M,}cD'.

An fe L}, is called a regular X' {M ,}-distribution if f € X" {M }, ie. if for
any ¢ and any sequence 7, from 2 which converges to ¢ in X4 {M,} (as k- 0),

lim {f, ey = lim l{f(t)nk(t)dt =/, > < .

Denote by X,{M,} the space of such distributions. Obviously,
Ho{M,} = A {M_}. An example of a regular X" {M }-distribution which is
not absolutely regular is given in [4], Theorem 1.

Note that if feX{M,} and fPeLj., jeN, then Ve {M,}.

3. We need the following lemma.

LeMMA 1. Let ¢e X {M_}. Then there is ye X {M,} such that y > |¢|.

Proof Let us define J, =(k—3/2,k+3/2), I, =(k—1,k+1), keZ
(= —NU{0}UN), g, =sup{|¢(x)|; xel,}, keZ. Let weC* be such thal
@ 2 0, suppw < (—1/2, 1/2) and [w = 1. Let §,(x) = a,, xeJ, and \J,(x) = 0,
x¢J,, keZ. Put y, =, *w, keZ.

We have: ¢, 20, suppy, < (k—2, k+2), Y,(x) s a,, xel,, keZ. Put
¥ =Y 4ez¥,. Note that on I,

W =Yra+ -1+ +Yer 1 Hiea, kel
Let
d; = sup{lo¥(x)); xeR}, j=0,1,

bow =sup{M,(x); xel,}, keZ.
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Using (5) twice we see that for given peN there are p, and X, such that
(6) sup{M,(x); xeI,} <inf{M, (x); xel}, [kI>X,.
Let p, correspond to p, in (N) and p; and X, correspond to p, in (6). For
k| > X we have
inf{M,,(x); xel,} -sup{lp(x)|; xel.}
<inf{M,,(x)/M,,(x); xel,} sup{M,, (x); xel,} sup{|p(x); xel,}
< inf{M,,(x)/M,,(x); xel,}-inf{M,,(x); xel,} sup{|p(x)l; xel,}
< sup{M, (X)|¢(x)l; xel,}-inf{M,,(x)/M, (x); xel,}.
Since any x€R belongs to two intervals from the family /,, from (N) we
get
2 Y inf{M,,(x)/M,,(x); xel,}

[kl>Xp3

< Y [(M,,x)/M, (0))dx <2[(M,,(x)/M,,(x)dx < co.

|k|>x’p31k R

By using these inequalities we have
Y, bexay< Y, inf{M,,(x); xel,} sup{|lp(x)l; xel,}

1kl > Xy |k[> X psy

< ""Z,:? sup{M, (x)lp(x)l; xel} inf{M,(x)/M, (x); xel,}

< sup{M, (x)|$(x)]; xeR}j(M (x)/M . (x))dx < 0.

So, for any pe N we have ) 4z b, ., < 0. In the same way we prove that

Y bpx-igy <o for any peN and i= -2, —1,1,2.
keZ

Fix p and j. We have
sup{IM,(x)yV(x)]; xeR} < ) sup{M ()Y (x); xel,}

keZ,

< ) bpusup{W(x); xel}

kaZ
Z bpu(SUP{z WAL 244l xe]k})
keZ
dez byi(ar-2+  +agsz) <o00.
keZ

So, e {M,}. Obviously ¥ > |4|.

In the next proposition we give a characterization of an absolutely regular
A" {M,}-distribution. Note that we gave in [4], Theorems 2, 3, under
the assumptions from [4], several characterizations of absolutely regular
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X' {M,}-generalized functions. Assumptions from this paper allow us to
use the term absolutely regular X”{M }-distributions for such generalized
functions,

PROPOSITION 2. Let TeLl.. The following conditions are equivalent:
() T is an absolutely regular H™{M }-distribution.
(i) |Tle " {M,)}.

Proof. (i)=(ii) is obvious so let us prove (ii)=(i).
Take ¢ € " {M,} which is non-negative. There exists a sequence ¢, from
9 such that ¢, >0, neN, and ¢,—¢ in X' {M,}. We have

? IT(5) da(t)dt = (T ()], d(t)) <0, n—c0.

For almost all teR, |T(t)|¢,(t) =T (t)p(t), n— co. By Fatou’s Lemma we have
[IT@)$(t)dt < lim [IT®)¢,(t)dt < .
R n=wop

This implies that T¢el!.

If ¢ is an arbitrary element from X {M,} then by Lemma 1 there exists
a yexX' {M,} so that |¢| < . So, by the previous part of the proof we have
Toel.

4. Let TeL}.. We have
d ot
IT(@) = E;(CXPI( JIT () du))|,
0

where exp(i( JoIT()|du))eot,{M,}. So every non-negative function from
Lio. is the absolute value of some regular X'{M }-distribution.

In order to obtain a useful sufficient condition for a locally integrable
function to be a regular element from %™ {M,} we have to assume two more
conditions.

Since we shall use the notion of convolution we need:
(S) peX {M,} = dex {M,} where §(x)=(—x), xeR.

Note that (S) holds if M, peN, are even functions or, more generally, il for
every peN there are p'eN and C,, so that

M,(x)<C,yM,(—x), xeR.
The following condition is essential for the next proposition.

(I) There are functions @ and M defined on [0, ) such that
a) 0 > 1; M is continuous and monotonically increases from 0 to oo;
b) For every peN there is p’eN so that

pM,(x) < M(p'0(x])), xeR;
c) For every D > 0 there is p” such that
M(DO(x)) < p" M,-(x), xeR.
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With the assumptions on M, given above we have:

PROPOSITION 3. Let T'€ Liy.. Then Te X, {M,} if for any €D, T=¢ is an
M -slowly increasing function.

Proof. We shall use the idea of the proof of Théoréme XXII, p. 195 in [5].

We shall prove that T is of the form T =) 7., ¥ for some M -slowly
increasing functions f,, a = 0, ..., m. This implies that T can be linearly and
continuously extended to X {M,} by

<Ts ¢> ="1'i32<T1 ¢n>s ¢EX{Mp},

where ¢, is any sequence from 2 which converges to ¢ in X {M}, and since
TeLl,. we have TeX ,{M,}.
For ¢ex {M,}
(TE)*S@)(x) = (T (), x—1)> = (T(u+x), ¢(x)), xeR,
and thus, for any ¢€2 there is p=p,eN such that
KT (x+u), p)| < pM,(x), x€R,
ie.
M™Y(KT(x+u), pw))M 1 (pM,(x)) <1, xeR.

where M is from (I). (I) implies that for some p'eN

1/6(x) < p'/M~*(pM,(x)), xeR.

So, for ¢€2, the functions
x> h(x, ¢) = M~ Y((T(x+u), p))l)/0(x), xeR,

are bounded. For fixed xeR and a compact set K we find that

¢—hix, d), deDy,

is a continuous function because M~! is continuous.

Let us view ¢ = h(-, ¢) as a mapping from 2, into the space of bounded
continuous functions on R with the ustal supremum norm, denoted by €,.
Since 2y is of the sccond category there is a neighbourhood of zero %y in 2
such that

{x—h(x, §); PpeUy)

is a bounded family in €,. Thus, for a given constant D > 0 we deduce that for
every compact set K there exists a neighbourhood of zero % so that for every
ey

sup{M " (IKT(x+u), pu)>|)/0(x)} < D.

xaR
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By (I) there exists p” €N such that for every compact set K
KT (x+u), pDMp-(x) < p",  deUy.
Since for every compact set K, %, absorbs 2, we have for every ¢pe2
(T(x+u), p(u)>/M,.(x)eL".

This implies (see Chapitre VI, Théoréme XXII in [5]) that for a given open
bounded set 2 = R, 0eQ, there exist a compact neighbourhood of zero K and
meN such that for every ¢e 9%

{x = (T(t+h)*d(t))(x)/M (h), heR}
is a bounded family of continuous functions on €. On setting x = 0 we see that
h— (T »@)(h)/M,(h), heR,
is a bounded function for any ¢ e 2%. Now, by (VI, 6; 22) in [S] we obtain
T =@GExT)*M—yxT

where *M denotes the distributional derivative of order 2N, E satisfies
E?M =§ yeDy,y=!in a neighbourhood of 0 and Y € 2. I[ N is sufficiently
large, yE€ 2% and we get the required representation of T.

Condition (I) seems complicated but it is satisfied for all concrete
A~ {M }-type spaces which have been studied in the literature. For example:

() Let M,(-)=exp(p|‘|"), peN and let a>0 be fixed We take
Mx)=e"—1, 0(x)=x*+1, x = 0.

(if) Let m be a real-valued continuous increasing function defined on
[0, o0) such that m = 1 and that for every peN there is p'e N such that
pm(x) < m(p'x), x > 0. Assume that for M (x) = m(p|x|), xeR, the conditions
from Section 2 hold. Then (I) holds for M, with

M(x)=m(x)—m(0), 0x)=x+1, x=0.

Note that for every p >0 there is p’ and X, > 0 such that
m(p|x]) < m(p’|x)—m(0)  for |x| > X,
This follows from condition (P).

(iii) Let M,(-)=(1+]-]5"2, peN. We take

M(x)=e*—1, 0x)=In(x+1)+1, x=0.
(iv) Let M (-) =exp(-1"), peN. We take

M(x) =exp(expx)—e, O(x)=In(x+1)+1, x=0.

Let us remark that the converse assertion in Proposition 3 holds if we
assume instead of.(I) the following condition:
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(R) For any peN there are C,>0 and p'eN such that M px +u)
< C M, (x)M,(u), x, ueR.

Namely, for the converse assertion in Proposition 3 one has to use the
inequality

KT(®), ¢(x—tDI < S, llp(x—12)ll,

which holds for some peN and some §,> 0, and then use (R).

Note that (R) holds in all the examples given above. Let us prove that for
example (ii).

Since m is increasing and m > 1 we have

m(plx+ul) < m(p|x|+plu)) < m(2p|x|): m(2p|u)), x, ueR.
This implies the assertion.
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