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ON THE DETERMINATION
OF AN ADDITIVE ARITHMETICAL FUNCTION
BY ITS LOCAL BEHAVIOUR

BY

I. KATAI (BUDAPEST)

We call f(n) a completely additive function if f(mn) = f(m)+f(n)
for all pairs of positive integers. Let F be the set of completely additive
functions, and p; the i-th prime number.

Let A4 (N) be the smallest integer K with the following property:
if f(n)eF and f(n) =0 for all n in N<n<N+K, then f(p;) =0
for i =1,2,...,k.

We prove

THEOREM 1. For any fized k the inequalities

1) M(N) < e,V N
and
(2) lim sup log A () =c¢y (>0)

l/(logN ) (logloglog N)

hold with suitable constants ¢, and c,.
To derive (1) we prove the following stronger
THEOREM 2. Suppose that f(n)eF and f(n) = ¢ = constant in N < n
K N+ A(N). Then for A(N) >4V N we have fn) =¢=0 for n <VN.
Hence immediately follows

THEOREM 3. If f(n) and g(n) are in F and, for some sequence of integers
N, <N,<... and any j=1,2,..., we have f(n) = g(n) for all n in
[N;, N;+ 4@], then f(n) = g(n) identically.

First we prove Theorem 2 and then (2) in Theorem 1.

We shall start by proving Lemma (A), which is a weak form of
Theorem 2.
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LEMMA (A). If f(n)eF and f(n) = c = constant in N <n < 2N,
then f(n) = ¢ =0 for all n < 2N.

Indeed, in the interval [N,2N] a power of 2, say » = 2%, can be
found, whence af(2) = ¢ follows. Furthermore, f(2N) = f(N) = ¢ implies
f(2) = 0, and thus ¢ = 0 holds. For any m < N a § can be found such
that N < 2°m < 2N, whence 0 = f(2°m) = Bf(2)+f(m) = f(m) follows.

Let I, = [N |k, (N+ A(N))/k]. Using the assumption of Theorem 2,
we conclude that

(3) f(n) = e¢—f(k) for all nel.

Let A(N) > 4V N. Then it can be easily verified that

N+ A(N) N
(4) "—k—_l'_—l—— > 1+7
holds for all % in
(5) [VN]1<k<2[VN].

Furthermore, it follows from (4) that the intervals I; and I,
contain at least one common element. Consequently, by (3), we have
f(k) = f(k+1), i.e., f(k) = constant in (5). Usihg (A) we have f(n) = 0
for n <VN. This completes the proof of Theorem 2.

Now we prove (2). Let K > p;. Let

Ay = ”Paa bn_——npa’ N = Gpby.
p%n pYn
<K P°>K
Suppose that all the integers » in N <n < N+ K have at least
one prime divisor greater than K, i.e. that b, > 1. It is clear that

(6) (bnys bn,) =1 for all ny, n.e[N, N+ K], ny # n,.

Let x,,...,2; be arbitrary complex numbers. Then there exists
a function f(n)eF for which f(n) =0 in ne[N, N+ K] and f(p;) = «;
for ¢ =1,2,...,k. We can construct such a function as follows: let
f(p;) ==; for : =1,2,...,k and f(p) be arbitrary complex values for
the other primes p < K. For p > K we define the function f(n) so as
to have f(b,) = —f(a,) for all ne[N, N+ K]. This is possible since
b, >1 and (6) holds.

Now to have (2) it is enough to prove that for infinitely many N
all integers » in

(7) N<n<N+EKy, Ky =exp(cV(logN)(logloglogh))
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have at least one prime divisor greater than K. This immediately follows
from a known theorem of Rankin (!) stating that the number N(z, y)
of integers n < # all prime factors of which do not exceed y satisfies the
inequality

logloglogy

Nz, y) <o eXP(— Togy

logxz+ O(loglogy)), Yy — oo.
Hence it follows that N(z, K,) < #/2K,, when ¢ is small, i.e. for
infinitely many N all » in (7) have at least one prime factor greater

than K. This completes the proof of (2).

(}) See R. A. Rankin, The difference between consecutive prime numbsrs, Journal
of the London Mathematical Society 13 (1938), p. 242-247.
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