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1. Introduction. Siebenmann has proved in [4] that the space of
homeomorphisms of a compact polyhedron is locally contractible. The
author reproves this result * for 3-dimensional polyhedra using the same
techniques that Brown [1] uses to prove the Hauptvermutung for 3-com-
plexes, the most important one being the Munkres notion [3] of a com-
position space associated with a complex. With this tool we can analyze
the structure of a 3-complex so that we reduce the theorem to the result
for 3-manifolds which has been proved in [2] in much greater generality.

A. Composition space. If we call those points of the 3-complex K
that have no open cell neighborhood the singular points of K, then the

composition space (1% , P) is the result of tearing apart the original complex

along the singular set. In 3-dimensions, K is a complex such that the
star of each vertex is the cone over a 2-manifold. To be more precise we
define the following functions on |K|: d(x) is the local dimension of |K|
at x, i.e., d(x) is the largest integer such that « belongs to the closure of
a d(x)-simplex. i(x) is the index at x. It is the largest integer such that x
belongs to the interior of an ¢(x)-simplex in some triangulation of some
neighborhood of z. Let b|K| = {z | ¢(x) < d(«x)}, where b|K| is called the
singular set of |K|. Notice that components of |K|—b|K| are manifolds,
for b|K| consists exactly of those points which have no neighborhood
homeomorphic to the interior of a cell. In addition, one can show b|K|
is the polyhedron of a subcomplex bK of K. We define s(z), the singu-
larity of z, to be the smallest integer k so that, for arbitrarily small neigh-
borhoods U of # in |[K|, U—b|K| has k components. In fact, it is not
hard to show that if o is a simplex of K, then the constant value of s(x)
on ¢ is equal to the number of components in st(c; K) — b|K|. Following [1]

closely we can now define the composition space (K, p) of K as follows.

* Part of this research was supported by N.S.F. grant GP-29076.
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Let o be a simplex of K’ (the derived complex of K). For each com-
ponent C(o, i) of st(s; K') —b|K’'| we associate a simplex o; of K having
the same dimension as o. We write p(o;) = 0. Now, I, will be a face of
o; provided p(I;) is a face of p(s;) and C(I,j) o C(a, ¢). One can check
now that, in fact, K is a simplicial complex, and thus p is a simplicial map.

Let us denote by |K(r)| the points of index less than or equal to 7.
It is the polyhedron of a subcomplex K (r) of K. We denote by |k(r, m)]|
the points of index r and singularity m. Now, |K(r, m)| is the union of
a set k(r, m) of simplexes of K, but is not, in general, closed. \WWe now
quote two of Brown’s results in [1] which we will be using extensively.
We will give it with the numbering that he uses.

(3.9) If K is a complex with composition space (K, p), then the re-
striction of p to p~'|K (r, m)| s an m-sheeted covering map onto |K (v, m)|,

(2.8) (Isotopy Lifting Theorem). Let K and L be complexes, and let
fir |1K| - |L|, 0<t< 1, be an isotopy. For each t there exists a wunique
continuous map ﬁ: | K| — II:I 8o that the diagram

|K| ~> |L|
y/ D
L
|K| > |L]

commutes. The map f, i a homeomorphism, and if f, is piecewise linear
on the subcomplex M of K, then f, is piecewise linear on p~'(M’). Finally,
the family f, is an isotopy.

B. Deformations. We follow Edwards and Kirby [2] here. Suppose X
is a space and A and B are subspaces. A deformation of A into B is a map
¢: AxXI —>X such that ¢|lAx0 =1, and ¢(4 x{1}) = B. Al the
deformations in this paper will be deformations of a neighborhood P
of 15 in H(X), the space of homeomorphisms of X. For a subspace M
of X, a deformation ¢: PXI — H(X) is modulo M if ¢(h,t)|M = h|M
for all heP and teI. Suppose

¢: PxI -H(X) and y:@QxI—>H(X)
are deformations of subsets of H(X) such that ¢ (P x {1}) = @. Then the
composition of y with ¢, denoted by yx*gp, is defined by
@ (h, 2t) if te[0, 3],
1/)(¢p(h, 1), 2t—1) if te[4,1]. i

C. Miscellaneous notation. If |L| < |K|, P < H(|K]|), and each homeo-
morphism of P takes |[L| into |L|, then it makes sense to regard P

(p*@)(h,1) =
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in H(|L|). Denote it by P | |L|. Using (2.8), (3.10) and (3.11) of [1] we
ha,vg a map from H(|K|) into H(|K|). Denote the image of P < H(|K]|)
by P. Moreover, we will see that the above-mentioned results of Brown

allows us to use a deformation in H(|K|) to define one in H (lﬁ ).

2. Proof of the Theorem. In this section we first give the thread
of the argument used to prove the result. Next we state and prove the
necessary lemmas, and end with the proof of the main result.

If H,(|K|, |M|) denotes the space of homeomorphisms of K which
are the identity on a subcomplex M, then we are looking for a neighbor-
hood P of 14 in H,(|K|, |M|) and a deformation of P to 1. Denote by
K, the set of points of K of index less than or equal to 1. Lemma 1 below
provides us with a neighborhood P in H,(|K|, |M|) and a deformation ¢
of P into H,(|K|, |MuK,|).

Next restrict the homeomorphisms in ¢(P xI) to the total singular
set b|K|, where b|K| is at most 2-dimensional. Thus we can apply the
2-dimensional result given in Lemma 2 below to the homeomorphisms
restricted to b|K|. If one has been sufficiently careful at this point to
choose the deformation “small” enough, then one can lift each of the

homeomorphisms in P to lﬁl and also the deformation to p~'(b|K]|),

where p is the projection of K onto K. The deformation is extended to
all of |K|. Further deformations isotope the homeomorphisms in P to
the identity on a neighborhood of p~'(b|K|u|M|). Removal of this neigh-
borhood from |K| leaves a manifold with boundary. Here the Kirby and
Edward result [2] for manifolds provides the final deformation. Then
(3.11) of [1] allows us to push everything down to K, concluding the
proof.

LEMMA 1. Suppose L is a 1-dimensional subcomplex of a complex K
such that h(|L|) = |L| for all h in H(|K|). Then there exist a neighborhood
P of 1 in H,(|K|, |M|) and a deformation ¢ of P into H,(|K|, |MuLj|).
Furthermore, ¢ 8 modulo |K-st®(L; K)|, where st® means a star in the
2-nd barycentric subdivision of K. ‘

Proof. If 0e MNst(L; K), then the deformation must remain fixed
on ¢. Thus, if ceL, we must write (¢;h)(z) = h(x) = « for x in |o|. If ¢
has a 1-simplex of L as a face, we must again write ¢,h(x) = x for ze|o|.
Finally, if o has only a vertex v which is in L, then v will, in fact, be an
end of an interval I, on which the deformation will be fixed. Initially
choose a neighborhood P of 1x in H,(|K|, |M|) so that for all # in |K]|,
and heP, o(h(z), x) is less than the distance between any two vertices
of K. Let

S8 ={x|xeL, h(x) = for heP}.
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Each component of L — 8 has a constant index and singularity with
respect to K.

L — 8 being 1-dimensional, we infer that each component is either
an open interval I, or a simple closed curve C, on which P is invariant.
Let p, be a point on C,. We will first show there is a deformation of P
in H,(|K|, |M|) into H,(|K|,| MUl p,). This will be accomplished by

a composition of deformations ¢,, one for each C,. Instead of keeping
track of these deformations and their end result on P (i.e., (P X {1}),
we will start fresh each time calling P the resulting deformed neighbor-
hood of 1.

Case 1. Suppose some C, is the total set of singular points in st C,.
Since |K —K,| is a manifold ((2.9) of [1]), regular neighborhoods of com-
ponents of p~!(C,) are either homeomorphic to D x C,, where D is a disc,
or to I xC,, where I = [0, 1]. In the latter case C, sits on the boundary
of |[K —K,|. By (2.8) of [1], each homeomorphism % in H(|K|) has a unique
lift & to H(|K|). Moreover, by (3.10) of [L], we can, in fact, lift h in
H,(|K|, |M|) to h in H,(|K|,p (I M])). Call by P the image of P in
H (lKl , NI M))). Let paep‘l(pa) for p,eC,. It is clear from the structure
of the neighborhoods of components of p~'(C,) that there is a deforma-
tion ¢, of P in H,(K, M) into H,(K, Mup~(p,) which is modulo the
boundary of the regular neighborhoods. Furthermore, the deformation
can be done in such a way as to give rise to a desirable deformation ¢, on
H,(|K|, | M|). We do this for each C, which locally is the total singular
set and use the composition of these deformations.

Case 2. If some C, lies on a singular set of dimension two, then
each component C! of p~'(C,) is in the boundary of IK Kol Either

¢! is again a bounding curve of ]K Kol or it can be considered as the
center curve of a 2-dimensional regular neighborhood of €’ on the bound-
ary. In either case, simple deformations can be performed, and in the
latter case one can use collar neighborhoods of the boundary to extend

the deformation to all of K, so that now we may assume that our neigh-
borhood P has been deformed into

H, (K|, |[MuUpd|).

Using our convention we continue the argument calling this result-
ing neighborhood P. We continue assuming now that each component
of L— S8 is an open interval.

For each component I,, there is a deformation y, of P|I, in H,(I,, I,)
to 1; . Now P|L makes sense and each y, can be regarded as a deform-
ation in H(L). The composition of the p,’s gives a deformation y; on
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P|L in H,(L,S) to 1;. Note that y, preserves index and singularity
with respect to K.

We will now extend vy, to H, (|K|, | M|) by extending it to H (cl(st®1,))
modulo cl(st®I,) —st®I,. We do this by separating out three cases.

(1) There are no singular points on st®1I,.

(2) There are only points of index one on st®I,.

(3) st®I, has points of index two.

These cases are exhaustive, since I, has no points of index zero.

Case 1. Clearly, by regular neighborhood theory, (1) presents no
difficulties in extending v, to H(cl(st™1,)).

Case 2. We infer that st®I, has no singular 2-simplexes. Moreover,
st®I,— I, is non-singular, since all singular 1-simplexes are on I,. Hence
each component I} of p~*(I,) has a regular neighborhood st®Ii. Now,
st® I/ — I/ is homeomorphic via p: K — K to a component C; of st®I, —1I,.
Using the fact that cl C; is homeomorphic to cl(st®I—TI’) we infer,
in the case where dimst®I, = 2, that ¢l 0; is homeomorphic to (¢l I,) x I
if ¢l I, is an interval or to (el I,) x (I/0I,) X I, where I, is identified with
I, x {0}, if ¢l I, is a simple closed curve. In the case where dimst®I, = 3,
cl 0; is a solid cylinder with I, as core or a solid cylinder with 01, iden-
tified if cl I, is a simple closed curve. By (2.8) of [1], we can lift the de-
formation y;, to a deformation ¢, of P U cl I’ to the identity on U cl IZ.

,a

Using regular neighborhoods of (cl I’)’s in K, which are homeomorphlc
to the O,’s described above, we can extend y, to all of K so that it is

modulo cl (I% —UJ 0)). Since we can be careful to preserve index and sin-
gularity, (3.11) of [1] allows us to “lower” this deformation to K and
we now have the desired deformation in the case where st®I, has no
singalar 2-simplexes.

We start Case 3 assuming that P is the deformed neighborhood
gotten from Cases 1 and 2.

Case 3. Here we treat the situation in which there are singular
2-simplexes. I, < cl K(2,s) for some s, since the singularity function
8(x) is constant on open simplexes of K.

Hence all components of p~'(I,) are homeomorphic, by the com-
position function p, to I,. Note that p~'(K(2,s)) is contained in the

boundary of |K Kol So, for each component I’ of p~!(I,), we can define
a deformation first on a neighborhood of I in the boundary of IK K ol

and then extend it to all of |K| by using a collar neighborhood of the set.
Taking care to use the “same” deformation on each neighborhood of
I’ will ensure that we can “lower” this deformation to get our final desired
peformation.
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The next result is the relative version of the local contractibility
of the homeomorphism group of a complex of dimension 2. The following
proposition is the statement of Corollary 7.3 in [2] for dimension 2.

PROPOSITION. Let M be a compact 2-manifold with boundary and let A
be a set of isolated points interior to M. Then the homeomorphism group
H(M) s locally contractible in such a way that the contraction takes
H,(M,0M0UA) into tiself.

LEMMA 2. Let K be a 2-complex and M a subcomplex of K. Then
H,(|K|, |M]) is locally contractzble

Proof. We begin as Brown [1] does in his proof of the Hauptver-
mutung for 3-complexes. First eliminate int|M |, since all maps must
be the identity there. Start anew then assuming dim M < 1. We further
change K so that all 1-simplexes of M are in bK by adding a vertex v, for
each 1-simplex of M not in bK, and adding clo*v, to K. Extend all homeo-
morphisms of H,(|K|, |[M|) to be the identity on these new simplexes.
Notice during the proof that, since the deformations are small, our orig-
inal complex will be mapped into itself at each stage and that the de-
formation will be modulo our original subcomplex M.

Let K, = {#|i(x) < 2}. K, is invariant under H (|K]), since homeo-
morphisms preserve index. By Lemma 1, there is a neighborhood
Pof H,(|K|, | M|) and a deformation ¢ of P into a subset of H,(K, | M u K,|).
We continue, calling this deformed set P.

Taking (f( ,p) to be the composition space of K, we let N =
{wlweK d(z) = 2}. By the Munkres result (see (2.9)in [1]), NV is & 2-mani-
fold with boundary From (3.10) of [1], the image P of P in H(|K))
is, in fact, contained in

H,(K|,p~"(b|K|v|M|)NN).

The set p~'(b|K|u|M|)NN consists of N, and a set 4 of isolated
points interior to N. We restrict P to N and %pply the Proposition to
get a deformation yy of a neighborhood @ of 1yin Pto1lyin H,(N,0NUA).
Since

Nnc(K|—N) < p ' (b|K])

and each % in P is already the identity on p~'(b|K|), the deformation y,
trivially extends to a deformation 9 of a neighborhood R of 1z (R < P)
in H,(K,p~"(bKu M)). But since dimK = 2, we have K, = p~'(b|K)).
Hence p contracts B to 1z. By (3.11) of [1], ¥ can be lowered to K which
completes the proef.

THEOREM. Let K be a 3-complex and M a subcomplex. Then H,(|K|, |M |)
18 locally contractible.
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Proof. Step 1. Reductions. As in the proof of Lemma 2, we may
assume that dim M < 2 and that all 2-simplexes of M are singular. If
K, is the set of points of index less than two, then there are, by Lemma 1,
a neighborhood P and a deformation ¢ of P into H,(|K|, |Mu K,|). Now
this will allow us to start afresh under the assumption that all points
of |K| have dimension three. For if A is the set of points of dimension
less than three, cl A — A < K, on which ¢(P X {1}) is already the identity.
Hence, by Lemma 2, there is a deformation y, of some smaller neigh-
borhood of 1, 4 in H,(cl4, cl4 —A4) to 14 ,. This deformation y,, ob-
viously, extends to a deformation on H (|K|).

Step 2. Let us start here assuming P has been chosen small enough
so that the deformations used so far made sense on it. Further, as before,
iet us call P the result of the deformations performed so far. Let K (2, s)
be those points of index 2 and singularity s. Note that if heP, then
k(clK (2, s)) = ¢l K (2, s), and that clK (2, s)—K(2, s) < K,. So it makes
sense to restrict P to the pair

(clE(2,s), (K,uM)neclK (2, s)).

Lemma 2 essentially gives us a deformation ygq, of P|clK(2,s)
t0 1lygg,s. Bach yg, ) can be extended trivially to P |b|K|. The com-
position of all these deformations gives a deformation y,x of P|bK to 1.

Step 3. Since y,xz preserves index and singularity with respect to K,
we use (3.10) of [1] to lift this deformation to ¢,z on a neighborhood
of the identity in H,(p~'(bK),p ' (MuK,)). We now extend ,g to

a deformation of a neighborhood of 1z in H (K) as follows.
Let K, be the points of |K| of index zero. By (2.9) of [1], lK K ol
is a manifold with boundary. 9,z is already defined on P|d (K Ko),

since 0(K —Ko) are points of index 2, and hence singular.
Let -

N =c(p~ (pEuM|)nint |K — K,),

where int|K — K, means the manifold interior of |K K,|. This is a
1-complex lying mostly interior to the manifold IK Kol The deforma-
tions must be modulo N. Let R be the K-closure of the manifold boundary
of ll% —1%01. The closed star of R — N in the 2-nd barycentric subdivision
of K is a regular neighborhood of the manifold boundary together with
the points N N R. The structure of this set around a point NN R is a cone
over a 2-manifold. Since it is a regular neighborhood around the manifold

boundary points, give these points a product structure, namely, a
homeomorphism f from [cld | K —K, — N]x I onto this regular neighbor-
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hood which respects the cone structure. Let f(z, 0) = 2. We now extend
v,x t0 all of P as follows (it is denoted by p):

p(h, 0)f(2,8) = bf(h™ [px(h, t—$)](x),s) for 0<s<t,
#(h, 1) (p) = h(p) for pe[cld(K —K,)—N]x[0,1].

Since f(x, 0) = x, p is an extension of y,x, and since yyx(k,0) = h
p is a well-defined deformation. Note also that y is modulo p~'(|M]).
Thus ¢ takes P into H,(|K|,p  (bKu|M|)).

Step 4. We now find a further deformation of P to a set in which
each homeomorphism is the identity in a neighborhood of p~'(|bK uM]|).
Small neighborhoods in ff( | of vertices of p~!(|bK uM|) are homeomorphiC
to cones over 2-manifolds. Using Theorem 5.1 of [2] we get a nelghbor-
hood @ of 1 in H1(|K|,p‘1(leuM|)) and a deformation 4%, of Q such
that, for each vertex » in p~'(|bK uM|), there is a “cone” neighborhood
N,, where h(N,) = N, for heul(é x {1}). Moreover, each k is the identity
on the “top” of the cone. Using the cone structure of N, it is easy now
to get a deformation #, so that #,+#, contracts @ to

H\(K|, p (K uM)vU N,).

Let
K' = |K|—(J intN, for all v in p~*(bKuM).

v

Notice that the homeomorphisms of %, * %, (@ x {1}) are the identity on
the boundary of K'. The intersection p~'(M uKl)nf(‘ is a family of
properly imbedded arcs on which these homeomorphisms are already
the identity. The 2-nd regular neighborhood of such an arc is homeo-
morphic to the product of the arc with a disc, the end discs belonging
to the boundary. Again apply Theorem 5.1 of [2] to find a neighborhood
Rof1lin H(ﬁ ,p '(bKUM)) and a deformation %, so that homeomor-
phisms in #3(R x {1}) are the identity on these neighborhoods of the arcs
in p~'(MUK,)NK"

Let K* be the complement of the interior of these neighborhoods
in K'. Homeomorphisms in #4(R x {1}) are the identity on 0K, A final

~

apphca.tlon of Theorem 5.1 of [1] ylelds a neighborhood S of 1 in
H,(K?, 0K?) and a deformation 4, of S to 1g:. Continuing to use the

same naimes, S can be regarded as homeomorphisms on K which are
contracted by u, to homeomorphisms which are the identity on a neigh-



HOMEOMORPHISM GROUP OF POLYHEDRON 61

borhood of p~(|bKuM|). Thus u,*us*u,*u, takes a neighborhood of 1
in H,(K,p '(M)) to 1. According to (3.11) of [1], this composition
deformation covers a deformation of a neighborhood of 1% in H,(K, M)
to 1.
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