M. M. SYSŁO (Wrocław)

THE CALCULATION OF α -SETS OF REPRESENTATIVES

1. Introduction. A number of combinatorial problems can be regarded as the minimal representatives problem.

Given a set $Y = \{1, 2, ..., n\}$ and m subsets $Y_1, Y_2, ..., Y_m$ of Y, for an integer number a < n, find a subset Y^* of Y such that

$$|Y_i \cap Y^*| \geqslant a \text{ for } i = 1, 2, ..., m,$$

 2° there is no subset of Y with fewer elements than Y* which has this property.

The subset Y^* of Y which satisfies 1° is called an α -set of representatives and the one satisfying $1^{\circ}-2^{\circ}$ — (absolutely) minimal α -set of representatives.

The matrix formulation of this problem is as follows:

Let $A = (a_{ij})$ (i = 1, 2, ..., m; j = 1, 2, ..., n) denote the incidence matrix of subsets and elements, that is, $a_{ij} = 1$ iff $j \in Y_i$, $a_{ij} = 0$ otherwise. Find an m by $\varepsilon(a)$ submatrix A^* of A such that

- 1° every row sum of A^* is at least α ,
- 2° there is no submatrix of A with fewer columns than A^{*} which has this property.

In practical applications (see, for instance, [4]) it is interesting to obtain (all) minimal α -sets of representatives for a fixed matrix A. It can be made by the use of an algorithm of integer linear programming but the known ILP-algorithms, even for small problems, are not effective. The present short paper contains a method of calculating all minimal α -sets of representatives for a fixed matrix A which was derived from Boolean considerations [3].

2. The method. The method of calculating all minimal α -sets of representatives is analogous to the method of calculating all minimal externally stable sets [3].

Definition 1. An α -set of representatives $P \subseteq Y$ is called *minimal* if each $P' \subseteq Y$ such that $P' \subset P$ ceases to be an α -set of representatives.

Definition 2. An α -set of representatives $P \subseteq Y$ is called *absolutely minimal* if there is no α -set of representatives P' having fewer elements than P.

Let to each subset P of Y be associated the characteristic vector (x_1, \ldots, x_n) , where $x_i = 1$ iff $i \in P$.

It is obvious that $P \subseteq Y$ is an α -set of representatives iff, for each row i of A, there exist α indices $j_1, j_2, \ldots, j_{\alpha} \in Y$ which satisfy the condition

$$a_{ij_1}a_{ij_2}\ldots a_{ij_a}x_{j_1}x_{j_2}\ldots x_{j_a}=1.$$

Hence we have

THEOREM 1. A set $P \subseteq Y$ is an α -set of representatives for the matrix A iff its characteristic vector (x_1, x_2, \ldots, x_n) satisfies the Boolean equation

$$\bigcap_{i=1}^m \bigcup a_{ij_1} \dots a_{ij_a} x_{j_1} \dots x_{j_a} = 1,$$

where the disjunction is extended over $\binom{n}{a}$ combinations j_1, \ldots, j_a with $j_1, \ldots, j_a \in Y$.

Performing the necessary multiplications and all possible absorptions, we obtain equation (1) in the form

THEOREM 2. If $x_{k_1}x_{k_2}...x_{k_{l(k)}}$ is one of the elementary conjunctions in the left-hand side of equation (2), then the vector $(x_1', x_2', ..., x_n')$, defined by

(3)
$$x_{i}' = \begin{cases} 1 & \text{if } i = k_{1}, k_{2}, \dots, k_{l(k)}, \\ 0 & \text{otherwise}, \end{cases}$$

is the characteristic vector of a minimal α -set of representatives for the matrix A, and all minimal α -set of representatives can be obtained in this way.

Remark 1. An α -set of representatives for the matrix A exists iff an α is not greater than the minimal row sum of the matrix A.

Remark 2. The characteristic vector of a 1-set of representatives satisfies the Boolean equation

$$(4) \qquad \bigcap_{i=1}^m \bigcup_{j=1}^n a_{ij}x_j = 1.$$

Example.

$$A = egin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 \ 1 & 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

For this matrix A and a = 1, equation (4) is as follows:

$$(x_1 \cup x_2 \cup x_5)(x_3 \cup x_4 \cup x_6)(x_1 \cup x_2 \cup x_4)(x_2 \cup x_3 \cup x_4 \cup x_5 \cup x_6)(x_5 \cup x_6) = 1.$$

After performing the multiplications and absorptions, we get

$$x_4x_5 \cup x_1x_6 \cup x_2x_6 \cup x_1x_3x_5 \cup x_2x_3x_5 = 1$$
.

Hence, the minimal 1-sets of representatives for the matrix A are $\{4, 5\}$, $\{1, 6\}$, $\{2, 6\}$, $\{1, 3, 5\}$ and $\{2, 3, 5\}$, and the absolutely ones are $\{4, 5\}$, $\{1, 6\}$ and $\{2, 6\}$.

Remark 3. We can associate with each column a non-negative cost c_i . Let

$$c(P) = \sum_{j \in P} c_j$$
, where $P \subseteq Y$.

The covering problem [1] consists of finding $\min_{P} c(P)$, where P is a 1-set of representatives.

The minimum can be extended only over the minimal 1-set of representatives (not necessarily absolutely minimal, see example) because, for each 1-set of representatives Q, there exists a minimal 1-set of representatives $P \subseteq Q$ and $c(P) \leqslant c(Q)$.

Example (contd.). Let c = (4, 4, 3, 10, 3, 10); then $c(\{1, 3, 5\})$ = $c(\{2, 3, 5\})$ = 10 and $\{1, 3, 5\}$, $\{2, 3, 5\}$ are the minimal cost coverings.

Added in proof. The Boolean methods of solution of (minimal, absolutely minimal and minimal cost) covering problems are presented in papers [5] and [6]. The latter also contains the procedure declaration (ALGOL-60) of the method of determination of all minimal coverings presented in this paper.

References

- [1] M. A. Breuer, Simplification of the covering problem with application to Boolean expressions, J. ACM 17 (1970), p. 166-181.
- [2] D. R. Fulkerson and M. J. Ryser, Widths and heights of (0, 1)-matrices, Can.
 J. Math. 13 (1961), p. 239-255.
- [3] P. L. Hammer and S. Rudeanu, Boolean methods in operations research, Springer, Berlin 1968.
- [4] M. M. Sysło, Optimal complementation of a directed graph to a reversible graph (II), to be published.
- [5] E. L. Lawler, Covering problems: duality relations and a new method of solution,
 J. SIAM Appl. Math. 14 (1966), p. 1115-1132.
- [6] M. M. Syslo, Ph. D. Dissertation (Section 6) (Pol.), University of Wrocław.

DEPT. OF NUMERICAL METHODS UNIVERSITY OF WROCŁAW

Received on 15. 5. 1972

M. M. SYSLO (Wroclaw)

WYZNACZANIE α-ZBIORÓW REPREZENTANTÓW

STRESZCZENIE

Wiele problemów kombinatorycznych można sprowadzić do zagadnienia (absolutnie) minimalnego a-zbioru reprezentantów.

Dany jest zbiór $Y=\{1,2,\ldots,n\}$ i m podzbiorów Y_1,Y_2,\ldots,Y_m zbioru Y; dla liczby naturalnej a< n należy znaleźć podzbiór Y^* zbioru Y, taki że

 $1^{o} |Y_{i} \cap Y^{*}| \geqslant a \text{ dla } i = 1, 2, ..., m,$

 2° Y^* jest minimalnym podzbiorem Y spełniającym 1° .

W tej krótkiej pracy podano równanie boolowskie, którego rozwiązaniami są wektory charakterystyczne wszystkich (absolutnie minimalnych lub tylko minimalnych) α -zbiorów reprezentantów.
