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On continuous solutions of systems
of functional equations
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The purpose of the present paper is to prove some theorems concern-
ing the existence and uniqueness of continuous solutions of the system
of N functional equations of order p

(1) @ (w) = H(z, [f(0)], PLF*(®)], ..., PLF7(@)]),

in which the function é(m) = (py (%), ..., py(w)) is unknown, the function
f() and the function H (z,§) = (hy(®,§), ..., by (@, §)), Where § = (1, ...
.-y Ypn), are given, and f'(») for » =2,...,p denotes the yth iterate
of the function f(»), i.e., f(z)=f(f"'(»)) for »=2, ..., p with
(@) = fla).

In the sequel we shall keep to the following notational convention:
letters with hats denote vectors, sinall letters denote n-dimensional vec-
tors (where # = pN) and capital letters denotie less than #-dimensional
vectors; in other cases we use letters without hats, in particular, small
letters denote real numbers (4, which may also be complex, is an excep-
tion), capital German letters (Fraktur) denote matrices, and other
capital letters denote sets (with the exception of N, which is a natural
parametey).

Section 1 contains a theorem on the equivalence of systems of equa-
tions which allows us to replace the investigation of system (1) by the
investigation of a certain system of n = pN functional equations of
the first order

(2) o(@) = L@, 6L f(@)]),

in which g(») = (p,(%), ..., p,(»)) is the unknown funetion and the funec-
tions f(w) and 7;'(“}1 y) = ("’1(“’1 Y)y ooy by (2 :‘i/))’ where ¥ = (Y1, ..., Yn)y
are given.

In section 2 we formulate some assumptions concerning the function
f(z) and give some lemmas determining the properties of this function.
In section 3 we formulate some assumptions concerning the function
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fz(x, %) and prove some lemmas and theorems concerning the existence
of continuous solutions of system (2), whereas section 4 contains theorems,
preceded by some lemmas, concerning the existence and uniqueness of
continuous solutions of this system. In section 5 we formulate assumptions
regarding the function bii (w, ) and theorems concerning the properties
of system (1), resulting from those concerning the properties of system
(2). Finally, section 6 containsa short comparison of the results obtained
with. those known previously.

1. The investigation of the system of equations (1) may be reducerd
to the investigation of a certain system of equations of the first ordor.
This is the consequence of the following

TueoreEM 1. The system of equations (1) is equivalent to the sysiem
of equations (2), where n = pN, the function f(x) and the functions b, (r, ¥
for w =1, ..., N are the same functions in both systems, (1) and (2), and

(8) Puysu(@ §) = Yo-nnes Jorv=1,...,p—1 and p=1,...,N.

Here, the equivalence is understood in the following sense: if a system
of functions ¢,(x), ..., py(®) satisfies the system of equations (1), then the
system of funections g\(x), ..., p, (), where the functions py (@), ..., ¢, (1)
are defined by

(4)  guvin@®) = 0f(@)] for»=1,...,p—1 and p=1,...,N,

satisfies the system of equations (2); and if & system of functions ¢, (v),
-y 0 (@) satisfies the system of equations (2), then the system of functions
P1(2); ..y on(2) satisfies the system of equations (1) and relation (1) holds.

Proof. 1° Let a system of functions ¢,(2), ..., pn(x) satisfy the
system of equations (1) and let the functions g¢.(x) be defined for
x =N+4+1,...,n by formula (4). Since by definition

(5(.7}) = (971('7")) ceny Q’N(m))s
‘we have

(5) OLf(@)] = (g Lf@)], ..., px [f(@)])

and, by (4), we have for » =2, ..., p,

(6) OLf (@] = B|f }(f())|
= (@ (f@)], -r o[£ {F@))])
= (‘/’(»--,1)‘\/+1 ff(d")], oy PN N [f(”)]) .

Similarly, we have by definition

tﬁ(m) = (‘Pl(a;)a erey (P.,,,($)),



Continuous solutions of funclional equations 55

whence
(7) eLf(®)] = (p[f(@)], ..., ¢, [f@)]).
We gel by (B), (6) and (7)
(8) FLI@)] = (Bf(@)], DL (2)], ..., DI/ (2)]).

(We shall make use of relation (8) also in the second part of the proof;
therefore, let us note that it has been derived under the sole assumption
that relation (4) holds.) From. relation (8) and from the assumed fulfil-
ment of system (1) we obtain for u=1,..., N

(9) h,, (.’b‘, q“!’f.f(w)J) = h,,(m, (b[f(m)], &)[fz(w).h veey c‘1\5[.701,(50)]) = ‘Pu(m)’
and by (3) and (4) we have for p =1,..., N

(10) hy (@ 21f(@)]) = 0. [f(#)] = pysul®)
and for » =2,...,p—1 and . =1,..., N
(11) th-l-u (.’/'U, ‘;’[f(m)]) = (P(l'—l)N+u[f(m)] = Py [f,‘_l (f(m))]

= (p”[fv(.’b‘)] = ‘P1‘N+ﬂ(m)-
Thus in virtue of (9), (10) and (11) the system of funections ¢, (o), ...
vony @, (@) satisfien the system of equations (2).
2° Let a system of functions ¢,(®),..., @, (») satisfy the system
of equations (2). Then, according to (3), we have for » =1,...,p—1
and y =1,..., N

(12) P (@) = By (®, OLF@)]) = Pyl f(@)].

From relation (12) we shall derive relation (4); the proof goes by
indunction with. respect to ».

For» =1and u =1,..., N both relations, (4) and (12), are identi-
cal. Let us assume that relation (4) holds for » =m and p =1, ..., N,
where 1< m<p—2, ie,

PN - e () = Pu (™ (2)].
Hence, in view of (12), we get for x =1,..., N

‘p('m-l-l)tv‘lﬁl(w) = OuNtn If(w) = (pltlfm (f('v))l = Py [me (w)]v

which means that relation (1) is fulfilled for v =m+landu =1,..., N.
By the induction principle we infer hence that relation (4) is valid for
all »=1,...,p—1 and p=1,...,N.

Relation (4) implies — as has been shown in the first part of the
proof — relation (8). Hence and from the fulfilment of system (2) we
get for w =1,..., N

hulw, @[f(@)], BL@)], ..., DU (@)]) = by, pLf(@)]) = pule)-
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Consequently, the system of funetions ¢, (®), ..., ¢y (®) satisfies the

system of equations (1).
This completes the proof of Theorem 1.

2, In the sequel we shall assume that the function f(x) fulfils the
following

HyporHESIS 1. The function f(») is defined and continuous in an
interval I and we have » < f() < & for wel,m < &, and & < f(v) < » for
wel, » > &; moreover, if the point & does not belong to the interval I, then
it 18 one of the end-points of this interval, and if £ belongs 10 I and & = oo,
then the value of the funotion f(z) at the point £ is to be understood as iis
limit at this poind.

The properties of the function f(») which will be used in the sequel
are listed in the four lemmag below. Lemma 1 is an immediate conge-
quence of Hypothesis 1 and thus it will be given without proof and it
will not be quoted when we make use, in what follows, of the properties
cohtained therein.

LemMA 1. Let the function f(x) fulfil Hypothesis 1. Then: 1° flx)el
Jor wel; 2° If Eel, then f(&) = &; 8° If the function f(x) is strectly mono-
tonic in the interval I, them it 18 strictly increasing in 1. Moreover, let flx)
be striotlly inoreasing in the interval I. Then: 4° There emists an inverse
function f~1 () to f(x) in I; 5° The function f~*(z) is defined, continuous
and strictly increasing in the interval f(I); 6° f~(x) < @& for wef(I), @ < &
and (@) > @ for mef(I), » > ¢.

LEmMMA 2. Let the function f(z) fulfil Hypothesis 1, let &¢I and let
the function f(x) be strictly increasing in the interval I i moreover, lel a,
be an arbitrarily fived point of the interval I. If the point & is the vight end-
point of the interval I, then the relation

(13) B = 7 ()

defines for k= 0 an infinite or finite, strictly decreasing sequence x, with
elements belonging to the interval I,

(14) F({Bppas Bpps)) = Bpgr, @) for k> 0,

f((mn wo)) = <w01 f(wo))a
if the sequence m;, is infinite, then

oo

(15) I= L0J<a"k+11 wk) U <m01 E)’

and if the sequence v, is finite and Tpoy Where ko> 0, is its last emisting
element, then there emists an interval A such that
ko—1

(16) I=dvu U @iy @) U <oy §) - for by >0,
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I=40u{m,,§& fork, =0,

with f(4) = (mkoa wk.o-l) for ky >0, f(4) <mn: f(wo)) for ky =0 (in
particular, A may be an emply set); if the point & is the left end-point of the
intorval I, then relation (13) defines for k2= 0 an infinite or finite, stricily
imoreasing sequence x), with elements belonging to the interval I,

f'((mk-i-l’ a"'lc+z>) = (0, Ty, for k20,

f((“’n: ”1)) = (f(-’”o), -’”n>i

if the sequemoe y, s infinite, then
o
I = (o) v Luj(mkf Pep1) s

and if the sequence w, is finite and x, , where ky = 0, is its last cvisting ele-
ment, then there cxisls am interval A such that
ko—1

I = (& @y v Lo)(m,,,,m,c_,_l) ud  for k>0,
I =(¢&,x>ud forlky=0,

with f(4) = (@, 1) Try> for ky >0, f(4) = (f(), m,,>for ky =0 (in partic-
wlar, A may be an emply set).

Proof. Let ¢ be the right end-point of the interval I and let teh
sequence #;, be defined for k> 0 by relation (13). Since f~'(z) <« for
wef(I), the sequence x, for k= 0 is strictly decreasing. It follows from
relation (13) that ®, = f(#,.,) and @, = f(%,.,); thus relation (14)
results from the monotonicity of the function f(x). If f(I) = I, then the
sequence ®, is infinite and @, <I for k > 0. Since the sequence z,, is decreas-
ing, it converges to & certain limit ¢ (¢ may equal — o). If we had o<l
then passing to the limit in the relation ;, = f(#,,,) we would obtain
¢ = f(¢), and in virtue of the monotonicity of the sequence z, we would
have ¢ < & But it follows from Iypothesis 1 that for s¢l and o < & we
have f(x) > x, which proves that ¢¢I. Consequently, since @, eI for &k = 0,
relation (16) holds. It f(T) # I, then f(I) = I, the sequence @, is finite
and @,el for 0 <<k < k,, where k3> 0 is such that f~'(w) is not de-
fined or does not belong to the interval I. Then relation (16) holds.

If the point & is the left end-point of the interval I, the proof of the
lemma is analogous.

LuwMA 3. Lel the function f(z) fulfil Hypothesis 1, let &¢I and lot
the function f(ix) be strictly increasing in the interval I; moreover, let o,
be an arbitrarily fimed point of the interval I. If the point & is the right end-
point of the imterval I, then the relation

(17) D1 = S@g)
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defines for k= 0 an infinite, strictly imcreasing sequence xz, with elements
belonging to the interval I,

(18) ! (<mk+n wk+2)) = (Xy, Tpp,) Jfor k=0,
and
(19) {oy, &) = Loj(mk, 1)

if the point & is the left end-point of the interval I, then relation (17) defines
for k>0 an infinile, stricily decreasing sequence x;, with elements belonging
to the interval I,

FH(@grs Dps)) = @eyry 2> for k20,
and
o]

(&, @) = L{(mhﬁl’ Ly -

Proof. Let the point £ be the right end-point of the interval I and
let the sequence ;, be defined for k¥ > 0 by relation (17). Since f(z) >
for zel, the sequence x;, for k> 0 is strictly increasing. Relation (17)
implies that f~'(w,.,) = @, and f'(®;,,) = @;,,- Thus relation (18) results
from the monotonicity of the function f'(z). Since f(I) is contained
in I, the sequence z; is infinite and w,eI for k > 0. Since the sequence ),
is increasing, it converges to a certain limit ¢ (¢ may also equal oo). i
we had ¢el, then passing to the limit in relation (17) we would obtain
¢ = f(c), which is imposible, since, by Hypothesis 1, f(z) >z for wel
and o < £. Since all x, belong to the interval I, ¢ must be the end-point
of the interval I, i.e. ¢ = £ Thus we obtain relation (19), since x,eI for
L>=0.

If the point & is the left end-point of the interval I, the proof is ana-
logous.

LEMMA 4. Let the function f(x) fulfil Hypothesis 1 and let the point &
be an end-point of the interval I; moreover, let @, be an arbitrarily fived
point of the interval I. If the point & 1s the right end-point of the interval I
and Eel, then the relation

(20) Dpyy = Inf{w: wel, m(v) > x,},
where
(21) m(x) = Inf f(1),

(e, 6>

defines for k>0 an infinile or finite, strictly decreasing sequonce wx, with
eloments belonging to the interval I,

(22) f(<ml.:+17 mlc)) < <wlu, E) fOT ke —:; 0;
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if the sequence x, is infimite, then

(23) I = lim {w,, &,

k—00

and if the sequence x,, 18 finite and Dy, ) Where Ity > 0, 18 its last existing elemont,
then o, eI or w, ¢ 1 and

(24) I={Cayy, & or I =(m,&E;
if the point & is the left end-point of the interval I and £eI, then the relation

(26) Tpp, = sup{w: wel, m(®) <z},
where
(26) m (@) = sup f(1),

6

defines for k= 0 an infinile or finite, striclly increasing sequence x, with
elements belonging to the interval I,

f((% mk+1>) <& ay  for k= 0;

if the sequence m, is infinile, then

I =1lim ¢, x>,
k—»00
and if the sequence x, is finite and x, o Where ko =0, 18 its last ewisting ele-
ment, then @y, el or x, ¢I and

I=Z&m> o I =& m);

Jinally, if £41, then all the above statements remain true when all the inter-
vals occurring in them are replaced by intervals which are analogous but
open on the side of the point E.

Proof. Let the point £ be the right end-point of the interval I, let
Eel, let the function m(z) be defined by relation (21) and let the sequence
2, for &k > 0 be defined by relation (20). In virtue of the continuity of
the function f(x) in the interval I the function m(x) is continuous and
increasing in I; moreover, m(z) < f(x) for wel. The monotonicity and
continuity of the function m(x) imply that m(z) >, for » >a,., and
M (D) = @, for &k > 0; moreover, m(x) > » for we¢l. Consequently, the
sequence my, is strictly decreasing. Since for x = @), we have f(2) = m(x)
= m(®yy,) = @y, rvelation (22) holds. It for every & >0 there exists an
wel such that m(w) < ,, then the sequence iz, is infinite and relation
(23) holds; in the other case the sequence z, is finite and relation (24)
holds.

It the point & ix the left end-point of the interval I, the proof of
Lemma 4 is analogous,
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3. Regarding the function fi(w, 7), we shall assume that it fulfils
the following

HyroTuesis 2. The function h(w, §) is defined and continuous in
o domain (*) Q of the (n-1)-dimensional space of the variables &, y,, ..., ¥,
such that for every wel the set

L= {y: (@, 3) e}
18 a domain of the n-dimensional space of the variables 1y, ..., y,, and the
range of the function h(z, i) for §el’:
Ay = h (1), where i”m(’&) = h(x, ¥),

i @ domain of the n-dimensional space of the variables y,, ..., ¥, .
We shall also assume the following
Oyrornmsis 3. For every wel

Af(.l:) < ‘I-':E'

We shall prove the following

LzMMA 5. Let the function f(x) fulfil Hypothesis 1, let &¢I, let tho
Junction f(z) be strictly increasing in the interval I and let Hypotheses 2
and 3 be fulfilled; furthermore, lot I, = {wy, f(@y)) and Iy = (@y, &) if the
point & is the vight end-point of the interval 1, whereas I, = ( F(xg), mo> and
Jo = (&, 7p) if the point & is the left end-point of the imterval I , @y being
an arbitrarily fived point of the interval I. Then, for an arbitrary function
0o (@) defined and conlinnwous in the interval I, and fulfilling the conditions

(27) wlf@)]el,  for every f(x)el, N f(I)
and
(28) Hm &z, ¢ [f(2)]) = §o(20),

Ty, H(z) ey

there exists emacily one function p(x) defined in the interval (I —dJy) U I,
Sulfilling in the interval I—J, the condition

(29) p(x)ed,,
satisfying in the interval I—J, the system of equations (2) and suoch that
(30) P(2) = po(0)  for wel,;

moreover, the function g(x) is continuous in the interval (I—dJ,) U T,.
Proof. Let the point & be the right end-point of the interval I so

that 1, = {u, f(,) and Jy = {u,, £). (If the point & is the left end-point

of the interval I, the proof is analogous.) Let the sequence x, be defined

() Domnain means here an open and counected sot,
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for & > 0 by relation (13). According to Lemma 2 the sequence o, is strictly
decreasing, @, e, and relation (14) holds. Let us assume that the sequence
wy, is infinite, whence, by Lemma 2, relation (15) follows and, in virtue
of the momnotonicity of the sequence wx,, we have

(31) I—-d, = L6J<“’k-|-1’ ) .

(If the sequence x;, is finite and relation (16) holds, the proof of the lemma
is analogous, with the only difference that we must take into account
the inequality %<k, and the last inductive step may refer to the
interval A instead of (w4, @,.1).)

Let ¢,(») be an arbitrary function defined and continuous in the
interval I, and fulfilling relations (27) and (28). (The existence of such
& funetion is guaranteed by Hypotheses 2 and 3; moreover, there exist
infinitely many such funections.) We are going to show that the formula
930(-'”) for w€<movf(mo)):

7"(“” (fJ[f(.’D)]) for welwp iy @), £ =10,1,2,...,
defines a continuous function @(#) in the interval (I—J,) U I, and that
the function @(2) fulfils in the interval I — J, relation (29).

It follows from the definition of the function p,(») that formula (32)
defines the function @(#) in the interval <wo, f(xy)) and that the function
@(») is continunous in this interval, Further, the proof runs by induction.
Proving for m > 0 that formula (32) defines a continuous function ¢(w)
in the interval <w,, ,, @,), we shall show also that the function @{z) ful-
tils in the interval <{w,,,,,) condition (29) and that it is continuous
at the point z,,.

For z¢{®,, %,) we have by (14) f(®) e (@, f(m,)), Whence by (32) and (27)

plf(@)] = @ [f(@)]el’,.

Consequently, the expression #(w, @[ f(x)]) is meaningful and for-
mula (32) defines in the interval (z,, #,) the function ¢(2) aud this func-
tion @(w) fulfils in the interval (m,, @,) condition (29). The continuity
of the function ¢(w) in the interval {x,, =) results from the continuity
of the functions f(w) and h(w, ) and from the continuity — already
proved — of the function ¢@(x) in the interval <mu, J(®)); moreover, in
virtue of the continuity of the function ¢(w) in the interval <mu, f(mo)),
we have

(32)  ¢o) =

lim ¢(e) = @(z,),

el |-
whereas by (28) and (32) we have
lim ¢(2) = lim h(w, ¢] f(@)]) = lim By o[ F(@)]) = Pol0) = p(w0);
1‘—>.'E0 - ;l;-«);co -- x——>.1:0 -

consequently, the function ¢(x) is continuons also at the point .
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Now let us suppose that for an m > 0 formula (32) defines in the
interval <®,,,, %,) & continuous function ¢(x), the function @(x) tulfils
in the interval {=,,.,,,) relation (29) and it is continuous algo at the
point x,.

For 2e{@p,q; Ty,y) We have by (14) f(2)e(®,,y,, ,), Whence, in
virtue of the induction hypothesis and Hypothesis 3,

@[f(-’”)]”[/(m) < Iy;

consequently, the expression h(z, p[f(#)]} is meaningful and formula
(32) defines the function ¢ () in the interval <@, ,, #,,.,) and this function
p(») fulfils condition (29) in the interval (@, .., ®,.,). The continuity
of the function ¢(z) in the interval <z, ,,, #,,.,) results from the conti-
nuity of the functions f(x) and k(z, §) and fron the assumed continuity
of the function ¢(x) in the interval (w,,,;, #,); moreover, in virtue of
the assunied continuity of the function ¢(«) at the point ,,, the function
@(@) is continuous also at the point #,,,,.

Hence — on account of the induction principle and in view of rela-
tion (31) — we infer that the function ¢(x) is defined and continuous
in the whole interval (I—J,) U I, and that the function ¢(z) fulfils rela-
tion (29) in the interval I —J,. The fact that the function @(@) satisfies
the system of equations (2) in the interval I—.J, and fulfils condition
(30) is a direct consequention of formula (32). It is also obvious from this
formula (because of the way of constructing the function ¢(z)) that the
function ¢(x) obtained is the only function which is defined in the inter-
val (I—J,) v I,, fulfils relation (29) in the interval [—J,, satisfies the
system of equations (2) in the interval I—J,, and fulfils condition (30).

This completes the proof of Lemma 5.

Further, we assume about the function k(x, 4) that it fulfils also
the following

HyYPOTHESIS 4. For every fived wel the function h(z, §) is a homeo-
morphism of the domain I, onto the domain A, i.e., there exists a function

g, §) = (g.(2, §)y ..., gul@, §)) such that

(33) gl hiz, ) =79  for evary (z,9)eR,

and the function g(x,y) is defined and continuous in a domain Q' of the
(n+1)-dimentional space of the variables ®, 4y, ..., Y, such that for every
vel

{QA/ (w, :';')59,} = g,
and I, is the range of the function §(x, §) for yed,, i.e.,
Iy = 0,(4),  where §.(§) = §(a, §).

We assume also the following
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Hyrorunsis . For every zel

Iy € Ay,
Now we prove

TieMMA 6. Let the function f(a) fulfil Hypothesis 1, let &¢I, lot the
function f(x) be strictly increasing in the interval I and let Hypotheses 2, 4
and 5 be fulfilled; further, we put Iy = {uy, f(mo)) and Iy = <, &) if the
pomt & is the right end-point of the interval I, and I, = ( f(z), mo> and

= (&, my) if the point & is the loft end-point of the interval I, z, being an
a,rb'itmmy Jiwed point of the interval I. Then, for an arbitrary fwnation Po (20)
defined and oconlinuous in the interval I, and fulfilling the relations

(34) Po(®)ed,  for every wmel,

and (28), there exists exactly one function g(x) defined in the interval J,,
fulfilling in the interval J,— I, the relation

(35) 9;("”) eP]"l(:::)v

satisfying the sysiem of equations (2) in the interval Jy and fulfilling condi-
tion (30); moreover, the function p(m) is continuous in the interval J,.

Proof. Let the point ¢ be the rlght end-point of the interval I so
that I, = {,, f(#,)) and J, = (&, &). (If the point & is the left end-point
of the interval I, the proof is a,nalogous) Let the sequence ®, be defined
for &k > 0 by relation (17). According to Lemma 3 the gequence z, is infi-
nite, strictly increasing, z,eI, and relations (18) and (19) hold.

Let @,(x) be an arbitrary function defined and continuous in the
interval I, and fulfilling relations (34) and (28). (The existence of such
& function ix guaranteed by Hypotheses 2, 4 and 5; moreover, there exist
infinitely many such functions.) In view of (33) relation (28) is equi-
valent to

(36) lim ¢ f(2)] = (a’o; %(wo))

z—>xg, 1(z)6 I,
We shall show that the formula
7 (2) for melmy, *,),
I @), GLF M) for medoy, ), B =1,2, ...,

defines a continnous function ¢(x) in the interval J, and the function
@ (2) fulfils rolation (35) in the interval J,—T,.

Tt follows from the definition of the function ¢y (x) that formula (37)
defines the function ¢ (x) in the interval {w,, #,) and that the function
p(z) is continuous in this interval. Further the proof runs by induction.
Proving for m = 1 that formula (37) defines a continuous funetion @ ()
in the interval (w,,, ®,,,,), we shall show also that the function ¢(v) ful-

(37) (o) —
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fils relation (35) in the interval (z,,, ,,,) and that it is continuous also
al the point a,,.

For welx,, ®,) we have, by (18), f~!(x)e{n,, #,), whence on account
of relations (37) and (34)

el f(#)] = g [f ()] €A1

Consequently, the expféssion J(f @), o[f'@)]) is meaningful
and thus relation (37) defines the function ¢(#) in the interval (w,, z,)
and this function p(z) fulfils condition (36) in the interval (x,, #,). The
continuity of the function ¢(w) in the interval (m,, ®,) results from the
continuity of the functions f(z) and g§(», ) and from the continuity,
already proved, of the function @(x) in the interval {z,, «,); moreover,
in virtue of the continuity of the function ¢(») in the interval (m,, x,),
we have

lim &J((ﬂ) = ‘%(wl)a

T—+z) +

whereas by (36) and (37) we have
lim ¢(2) = lim ¢y(x) = Lim ¢,[f(@)] = §(a, Polay))

= é(f_l(%), ‘i’[f—l(wl)]) = p(2y);

consequently, the function @(z) is continuous also at the point w,.
Now let us suppose that for an m > 1 formula (37) defines a conti-
nuous function ¢(x) in the interval (w,,, x,, +1)y the function ¢(z) fulfils
relation (35) in the interval {x,, #,.,) and it is continuous also at the
point z,,.
FO_I‘ m€<mm+1$mm+2) we h‘ihVG, by (18)’ f l(m)€<mm!wm+1)r WhellGG,
in virtue of the induction hypothesis and Hypothesis 5,

PLf )] el y—2y © Apiy;

consequently, the expression §(f'(w), p[f*(2)]) is meaningful and for-
mula (37) defines the function ¢(w) in the interval {11y By o) and the
function @(z) fulfils relation (35) in this interval. The continuity of the
function ¢ () results from the continuity of the functions f(w) and § (z, #)
and from the confinuity assumed of the funetion ¢(#) in the interval
{Zy,y Tyy1); MOTEOVeER, in virtue of the continuity assumed of the function
@ () at the point ,,, the function @(®) is continuous also at the point D1

Hence — on account of the induction principle and in view of rela-
tion (19) — we infer that the function ¢(x) is defined and continuous
in the whole interval J, and that the function p(x) fulfils relation (35)
in the interval J,— I,. The fact that the function ¢ («) satisfies the system
of equations (2) in the interval J, and fulfils condition (30) is a direct
consequence of formulae (37) and (33). It is also obvious from those for-
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mulae (because of the way of constructing the function @(w)) that the
function @(») obtained is the only function which is defined in the inter-
val J,, fulfily relation (35) in the interval J,— I, satisfies the system of
equations (2) in the interval J, and fulfils condition (30).

This completes the proof of Lemma 6.

The following theorem is a consequence of Lemmas 5 and 6.

THROREM 2. Let the funotion f(w) fulfil Hypothesis 1, let &¢I, lot
the function f(@) be strictly inoreasing in the interval I and let Hypotheses
2, 3, 4 and b be fulfilled; further, we put I, = {ay, f(2,)) and J, = {@,, &)
if the point & 48 the right end-point of the interval I, and I, = (f(m,), o)
and Jy = (&, wg) if the point & is the left end-point of the interval I, w, being
and arbitrarily fived point of the interval I. Then, for an arbitrary funciion
pol®) defined and continuous in the interval I, and fulfilling relations (34)
an (28), there ewists ewactly one fumotion p(x) defined in the interval I,
fulfilling relation (29) in the interval I, satisfying the system of equations (2)
in the interval I and fulfilling condition (30); moreover, the function ¢ (x)
i8 continuous in the interval I.

Proof. It is enough to notice that the simultaneous fulfilment of

Hypotheses 3 and 5 yields
Af(a)) = I' @

for every wel; that Iy N f(I) c Iy, [(I—dy) VI,Judy =1, (I—-J,) U,
= I, (I—dg) U (Jo—=I) v I, =1, [(I—dy) UI]nd, =I); and that rela-
tion (29) results from (36) and relation (27) results from (34).

Theorem 2 says that a function defined in a not very large interval
can be uniquely extended (under suitable assumptions) onto the whole
interval considered to a solution of system (2). Now we shall show that
a solution of the system of equations (2) defined in a somewhat larger
interval can be uniquely extended — under weaker assumptions — onto
the whole interval considered. This is expressed by the following

TuecorEM 3. Let the function f(x) fulfil Hypothesis 1 (§el or £41I)
and let Hypotheses 2 and 3 be fulfilled; further, let I, = I n (&—4, &+ 45,
where 8§ is a positive number. Then, for an arbitrary function @, (0) defined
and oontinuous in the interval I,, fulfilling relation (29) in the interval I,
and satisfying the system of equations (2) in the interval Iy, there ewists enactly
one funotion @(m) defined in the interval I, fulfilling relation (29) in the
interval I, satisfying the system of equations (2) in the interval I and fulfil-
ling condition (30); moreover, the funclion @ () is continuous in the interval I.

Proof. Let the point & be the right end-point of the interval I, let
tel, and let 8 >0 be such that &é—del; we write 2y = £—0 8o that
I, = {w,, &> and let the sequence @, be defined for &k >0 by relations
(20) and (21). It the point & is the left end-point of the interval I, the
proof iy analogous with the only difference that the sequence j is de-
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fined by relations (25) and (26); if the point ¢ is an inner point of the inter-
val I, the construction given below of the solution of system (2) must
be carried out independently in every part of the interval I obtained
by the division of the latter by the point &; finally, if the point & does
not belong to I, the proof is also analogous.

According to Lemma 4 the sequence x, is strictly decreasing, x, el
and relation (22) holds. Let us assume that the sequence , is infinite
and thus, by Lemma 4, relation (23) holds. If the sequence #, is finite,
the proof is analogous with the only exception that the inequality & < %,
must be taken into account.

Let ¢,(#) be an arbitrary function defined and continuous in the
interval I,, fulfilling relation (29) in the interval I, and satisfying the
system of equations (2) in the interval I,. Let us note that in view of
Hypothesis 8 the function @,(») fulfils also relation (27). We shall show
that the formula

R Fo(®) for wedlm,, &,

(38) ‘P(w) - fz(m, @U(M)J) for we<mk+1, ml.:)a k= 0; 1; 2: ey

defines a continuous function ¢ (z) in the interval I and that the function
@ (@) fulfils relation (29) in the interval I.

It follows from the definition of the function ¢,(x) that formula (38)
defines the function ¢(#) in the interval (z,, &) and that the function
@(x) is continuous in, this interval and fulfils relation (29) there. Further
the proof runs by induction.

For ez, 2,) we have, by (22), f(x)e{2,, &), whence by (38) and (27)

PLf(@)] = go[ f(@)] el

Consequently, the expression & (z, ¢ [f(#)]) is meaningful and formula
(38) defines a function ¢(#) in the interval {@,, x,) and the function ¢ ()
fulfily relation (29) in the interval (w,, ,). The continunity of the function
@(®) in the interval {z, x,) results from the continuity of the functions
f(@) and h(z, 7) and from the continuity, already proved, of the function
@(x) in the interval (m,, £); moreover, in virtue of the continuity of the
function ¢(») in the interval (u,, £), we have
Lim p(x) = (),
=35+

whereas, by (38) and in view of the fact that ¢(z) satisfies the system
of equations (2) at the point x,, we have

lim ‘;’(ﬂ") = lim i"(-'va ‘;’[f(w)]) = ;"(-""07 ‘;’rf(-”'n)]) = ‘;’(mu);

ToTH— Iy —

consequently, the function ¢(xz) is continuous also at the point #,. Thus



Oontinuous solutions of funotional equations 67

the function @(w) is defined and continuous in the interval {®,, & and
fulfils relation (29) in the interval {w,, &).

Now let ug suppose that for an m > 1 formula (38) defines a contin-
nous function @(») in the interval (,, & and that the function @ ()
fulfils relation (29) in the interval (w,,, &).

For ®el®,, .1, ;) We have, by (22), f(®)e{w,,, &), whence in virtue
of the induction hypothesis and Hypothesis 3

&[f(m)] eAI(:n) a Iy

consequently, the expression h(v, p[f(2)]) is meaningful and formula
(38) detines the function ¢(w) in the interval <a,,,,, #,) and the function

@(w) fulfils relation (29) in this interval. The continuity of the function
¢(®) in the interval {(®,,,.,®,) results from the continuity of the func-
tions f(w) and h(x, 9) and from the assumed continuity of the fundbion
#(2) in the interval (wm, £y mowover, in virtue of the agsumed conti-
nuity of the function ¢(®) in the interval (a,, &), the function ¢ (o) is
continnous also at the point »,,. Consequently, the function ¢ (o) is defined
and continuous in the interval (w,.,, ) and fulfils relation (29) in this
interval.

Hence — on account of the induction principle and in view of rela-
tion (23) — we infer that the function @(®) is defined and continuous
in the whole interval I and that the function ¢(w) fulfils relation, (29)
in the interval I. The fact that the function ¢ (2) satisfies the system of
equations (2) in I is a direct consequence of formula (38) and of the fact
that @y(o) satisfies the system of equations (2) in I,. It is also obvious
from formula (38) (because of the way of constructing the function ¢(w))
that the function ¢(») obtained is the only function which is defined
in the interval I, fulfils relation (29) in the interval I, satisfies the system
of equations (2) in the interval I and fulfils condition (30).

This completes the proof of Theorem 3.

4. In the sequel for any vector ¥ = (¥, ...,¥,) we shall denote
by |y| its length defined as

il =Vyi+...+95,
and for any real square matrix % we shall denote by |||} its norm defined as

1.
90 = sup o

uro Yl
(cf. [5], p. L10).
In order to prove further theorems we shall need two lemmas.
LueMMA 7. For an arbitrary number ¢ >0 and an arbitrary real square
matriz W there exists a real square mairiv T such that

ITAT < A+5y
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where

Jy = max ||,
»

and 2, are the charaoteristic voots of the matriz U.

This lemma ig a modification for the case of real matrices of a the-
orem given for complex matrices by A. Ostrowski (ef. [15], p. 120). The
proof given below follows the same basic idea as that given by A. Ostrowski.

Proof. Let A be an arbitrary square real matrix, Then there exists
(of. [14], p. 86) a real matrix T such that

€A
A =IAT! = A, ’

-where 2, are real sugare matrices and have one of the forms

)¢ B
€ B
[ﬂ; 3 B ' or 4

where

o I L P |

Let e be an arbitrary positive real number. Applying the above
argument to the matrix /e and multiplying the resulting matrix by e,
we obtain

B,

w—gaz=| B, |,

where B, are real square matrices and have one of the forms

t B
et [F B
[t]1 9 %, 01‘ 9
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¢ b e 0
il IO LT Y |

We represent the matrix %" as the sum of two matrices, G and §$,
such that '

where

®, H1
6 = B, y H= D )

where G, are real square matrices and have one of the forms

[ ] p: 7
t B
(t1, ‘q y B, or o
B
i ’ i B_
and 9, are real square matrices and have one of the forms
0 ] To
e 0 ¥ D
[0], , O, or .
0 D
i 0 ] & 0

where

o-loo ==L

Let ¥ = (4, ..., ¥,), where n denotes the order of the matrix %,
be an arbitrary vector. Then. either the x-th eomponent’ of the vector (5:1_}
is equal to y,, or two congecutive components, x-th and (x-+1)-st, of
the vector By are equal to ay,+ by,., and ay,.,.— by,., and similarly,
the »-th component of the vector $¥ is equal either to 0, or to sy,
or to sy,_,. Congequently,

1G] = sup 12U < max (1], Vai %),

Y0 l?}l t,(a,d)

and

’zﬁ
5l =sup 22 <,
P 0 lyl
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Hence

I < UG+ 1] < max (1], Va 59+ o.

t,{a,D)

Since t, a4 1b (1 = V=1 1) are characteristic roots of the matrices B,,,
and the chara.cterlstlo polynomial of the matrix A" equals the product
of the characteristic polynomials of the matrices B,, they are also charac-
teristic roots of the matrix %*, and hence also of the similar matrix .
Oonsequently,

(U] < max |2,|+ e.

This completes the proof of Lemma 7.

LEMMA 8. Let the funotion f(x) fulfil Hypothesis 1 (Eel or £¢I) and
let Hypotheses 2 and 3 be fulfilled; further, let I, = I N (§— 6, £+ 07,
where & is a positive number, and lot p,(®) be an arbitrary function defined
in the interval I and fulfilling the relation

(39) g f(@)]el,  for every wel.

Then, if the sequence g, (v) defined im the interval I by the formula

(40) ‘Pk+1 “h(a’,‘)’k[f ) for k=0,1,2,...,

converges in the interval I, to a function ¢ () defined and continuous in the
interval I, and fulfilling relation (29) in the interval I,, then the sequenoce
@, (@) converges in the whole interval I and its limit ¢(x) 18 defined and
continuous in the interval I, fulfils relation (29) in I and satisfies the
system of equations (2) in 1.

Proof. In virtue of relation (39) and Hypotheses 2 and 3 the functions
¢r(®) for k > 0 are defined by relation (40) in the interval I and fulfil
relation (29) in I. Let us suppose that the sequence ¢,(#) converges in
the interval I, to a function ¢ (#) defined and continunous in the interval I,
and fulfilling condition (29) in I,. It follows from relation (40) that if
zoel and the sequence @, (%) converges for & = f(x,), then it converges
also for # = x,. Thus, since for every w,¢I and for m sufficiently large
we have f™(x,)el,, the sequence of the functions ¢,(z) converges in the
interval I to a function ¢(x) defined in the interval I. Furthermore, the
function ¢(x) fulfils relation (29) in the interval I. The function ¢ ()
restricted to the interval I, is, by our assumptions, a continnous solution
of the system of equations (2) in the interval I, and fulfils relation (29)
in I,. On account of Theorem 3 it can be uniquely extended onto the
interval I to a solution of the system of equations (2) and this solution
fulfils relation (29) in the interval I and is a continuous function in this
interval. But the function ¢(x) as a whole — defined in the interval I
— is just an extension of the continuous solution of the system of equa-
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tions (2) in the interval I, which fulfils relation (29) in I. Thus the function
¢ (@) must be continuous in the interval I.

This completes the proof of Lemma 8.

Theorem. 2 has given sufficient conditions in order that the system
of equations (2) have a continuous solution depending on an arbitrary
function in an interval that does not contain the point & That theorem
implies the existence of infinitely many such solutiong. Now we are going
to show that if the pointi & belongs to. the interval I, then in some cases
there exists at most one continuous solution of the system of equations
(2) in the interval I.

Since f(&) = &, for every solution ¢ (a) of the system of equations (2)
defined at the point & the value

(41) 1 =(f)
must fulfil the equation
(42) n=h(&, 7).

Sufficient conditions for the uniqueness of continuous solutions of
the system of equations (2) are given by the following

TunoREM 4. Let the function f(w) fulfil Hypothesis 1, let &el, and
let Hypotheses 2 and 3 be fulfilled; further, let 1 be a root of equation (42)
such that 7 ¢ A;, and let the function h(w, §) fulfil with respect to the variable
o Lipsohitz condition with a constant less tham 1, in a neighbourhood V of
the point (&, 1) contained in the domain £, i.e.

(43) |7&(w, ¥,)— 7"(“’: o)l < di— Yol
for every (m,y,)eV and (2, §,)eV,

where 0 < @ < 1. Then there emists emactly one fumction @(m) which is de-
fined and oontinuous in the intervel I, fulfils relation (29) in I, fulfils condi-
tion (41) and satisfies the system of equations (2) in the interval I, This
function is given by the formula

(44) P (@) =;¢1_l.l£ @),

where the sequence of the functions 7, (%) is defined for k > 0 in the interval I
by relation (40) and p,(a) 48 an arbitrary funmction defined and conlinuows
in the interval I and fulfilling condition (39) and

(45) Po(€) = 7.

Proof. Let the point & be the right end-point of the interval I. I
the point £ is the left end-point of the interval I, the proof is analogous,
and if & is an inner point of the interval I, then, in view of relation (41),
the existence and uniqueness of the solution of system (2) in the left paxt
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of the interval I and its existence and uniqueness in the right part of the
interval I (£ being the point of division) yield its existence and uniqueness

in the whole interval I.
Let us fix numbers ¢ >0 and d > 0 in such a manner that £—cel

and

(46) {(,9): E—e<a< & g—n<dt =V,
and
(47) h(@, 0)—h(& ) < (1—D)d  for melé—c, £).

Condition (47) can be realized in virtue of the continuity of the func-
tion h(z,7) at the point &.

Let @ be the space of functions ¢ that are defined and continuous
in the interval {£— o, &>, fulfil condition (29) in the interval {&—c¢, &),
and fulfil relation (41) and

(48) lpl@)—nl<d for we(f—q &).
Further, let' @ be endowed with the metric
(49) o (@1, ?2) =<§11Pe>|f?)1(w)—¢z(w)l-
Since for we(f—o, £) we have f(x)e(&—c¢, &), relation (48) implies
(50) lplf@)]—nl<d for we(f—q, &).
Hence it follows according to relations (46) and (43) that
|bfoy 3 [ (2)])— (=, 1) < SI@Lf(@)]— 7] for we(é—o, &) and Ged.
In the space @ we define the transform
(52) p(@) = h(z, p[f(2)]).

By relations (50) and (46) we have (w,rp[f ()]) 2 for welé—ec, £);
consequently, the functions v are defined in the interval ({-—(', &> and
fulfil relation (29) in {(£—e¢, £). The continuity of the functions v in this
interval results from the continuity of the functions f(z) and h(w, #)
and of the function ¢. Moreover, we have by (52), (42), (51), (47) and (50)

lp(@)— 7| = |h{w, p[f(@)] h(& )
<MM¢me—ﬁ%n) hs, )
< Op[f(@)]~ 4 (1—9)d < dd-+ (1—8)d = d,
and by (52), (41) and (42)

£) = h(£ oLf(€))) = h(& @(&) = h(& 7)) = 7.
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This means that transform (52) maps the space @ into itself. Further-
more, we have by (50), (46) and (43) for v,(2) = h(z, :[f(2)]), ala)
= 7&(50, ‘Pa[f(@]); PreD, pueP:

I';’l(m)"' “pz(w” = m(w: ‘;’1[f(w)])— 7‘(-’”: Py [f(w)])l
< Moy [f(@)]— af(@)]]  for we(€—o, &),

whenee, in virtue of definition (49),

0(':”1’ ';’2) < 199(‘;’1; (;’2,).

This means that transform (62) is a contraction.

According to Banach’s theorem there exists a unique fixed point
of transform (h2) in the space &, given as the limit of successive approx-
imations. Tn other words, there exists a unique function @(z) which is
defined and continuous in the interval (&é—e¢, &), fulfils relation (29)
in the interval (£—e¢, &), fulfils relations (41) and (48) and satisfies the
system of equations (2) in the interval ({—c¢, £&>; this function @(z) is
given by formula (44). Taking 4 = ¢ and applying Lemma 8, we obtain
the existence of the required golution of the system of equations (2),
given by formula (44). Its uniqueness results from the uniqueness of
the continuous solutions of system (2) in the interval (£—o, £) and from
the fact that every function ¢(x) which is defined and continuous in the
interval I and fulfils condition (41), restricted to the interval ({—o, &),
belongs to the space @ provided that ¢ is sufficiently small.

This completes the proof of Theorem 4.

Now we shall prove another theorem giving sufficient conditions
for the uniqueness of continuous solutions of the system of equations
(2), namely

TuEOREM 5. Lot the function f(z) fulfil Hypothesis 1, let £el, and
let Hypotheses 2 and 3 be fulfilled; further, let 7 be a root of equation (42)
suoh that ned,, and supposeé that the function h(x, 4) has continwous partial

derivatives %’}"— (%, §) of the first order, with respect to the variables yu,
Yo

fora=1,...,nand f =1,...,n, in a neighbourhood V of the poini (€, 1)
contained in the domain £2. Finally, let all the characteristic rools A, x =1, ...

O, . . A
veey My of the Jacobi malriz U = [(8; (& ,n)] of the fumction h(2, 1) at
f

the point (£, 1) be in modulus less than 1. Then there exisis evactly one fumnc-
tion @ () which is defined and continuous in the interval I, fulfils relation
(29) in the interval I, fulfils condition (41), and satisfies the sysiem of equa-
tions (2) in the interval I. This function is given by relation (44), where the
sequonce of the fundtions ¢y (w) is defined for T > 0 in the interval I by rela-
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tion (40), and @y(®) is an arbitrary function defined and continuous in the
interval I and fulfilling conditions (39) and (45).

Proof. Let us take an arbitrary, constant (independent of the varia-
ble #) and non-singular real square matrix ¥ with » rows and » columns,
and let us write:

:’7* = Zg;

B*(z, %) = Th(x, ) for wmel,
A* A
7 = In,

Q" = {(=, J*): (w, ?;)‘Q}s
Iy ={§*: yel,} for zel,
Ay = {§*: Yed,} for wel.

On account of the assumptions of the present theorem, the function
7* (2, ¥*) and the gets 2%, I's and A} fulfil conditions analogous to those
in Hypotheses 2 and 3 for the function h(x, ) and the gets 2, I', and
Ag; 1" is a root of the equation corresponding to equation (42) such that
7*eAs; and there exists a convex neighbourhood V' of the point (&, 7*)

contained in the domain £* in which the function £*(s, ¥*) has conti-
*

oh o , .

nuous partial derivatives o (x, ¥*) of the first order, with respect
I

to the variables yj,for e =1,...,n and f =1,...,n. Moreover, the

gystem of equations

(53) 9" (0) = k" (o, 3" [f(@)]),
where
(54) " (@) = Tp (@),

is equivalent to the system of equations (2), i.e., if a function ¢(x) satisfies
the system of equations (2), then the function ¢*(»), defined by (H4)
as Tp(x), satisfies the system of equations (53), and if a function ¢*(z)
satisfies the system of equations (53), then the function ¢(z), defined
by (54) as T¢* (x), satisfies the system of equations (2). Furthermore,
it @*(z) =lim ¢y (z), then p(x) = lim ¢, (@), where ¢5.(2) = Te,(x), and

) k-0

relations (29), (41), (40), (39) and (45) are equivalent to analogous relations
for gquantities with the asterisk. Therefore, in order to prove the theoren,
it i3 enough — in view of Theorem 4 — to show that it is possible to choose
the transform T and a neighbourhood V* of the point (£, #*), contained
in the domain 0¥, in such a manner that the function A*(z, #*) will fulfil
in this neighbourhood a Lipschitz condition with a constant less than 1
with respect to the variable 7*.
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To this end let, us note that the Jacobi matrix of the function 4* (=, §*)

at the point (&, 7%)
ont
= | 2 )]

= IAT,

i.e., it is similar to the Jacobi matrix of the function & (@, §) at the point
(& 7), and consequently has the same characteristic roots 4, x =1, ..., n,
a§ the matrix A. Let 4, = max|i,|. According to Lemma 7 the transform I

fulfils the relation

may be chosen 8o that |U*|| < A+ ¢/, where &' is an arbitrarily fixed po-
gsitive number. By the hypotheses of the theorem, A, is less than 1; there-
fore, for a sufficiently small positive number e, we have 1— A, —2&>0
and we can choose the transform ¥ in such a manner that

(55) 90 < A+ 1— A,—26 = 1— 2.

. ol .
In view of the continuity of the partial derivatives -5;—:- (z, §™)

in the neighbourhood V', we have for arbitrary points (z,97) and (z, 73)
belonging to V'
(56) h(a, §7)— 1" (@, §3) = MG — 92),

where MM is a matrix whose elements are equal to the partial derivatives
»

of the first order 33: (@, §¥*) calculated at some points belonging to the
Ys

neighbourhood V' Since the norm of & matrix is a continuous funetion
of its elements (the continuity of the norm results e.g. from the inequa-
lity [|90| < nmax |m,s|, where n denotes the order of the matrix M = [fm,,ﬁ],
of. [2], p. 45), there exists a nelghbomhood V* <« V' of the point (& %)
such tha.t for arbitrary points (2, §}) and (z, 9, ) belonging to the neighbour-
hood V* we have

D < ||| +e.
Hence it follows by (55) that
M < 1 —e,

whence, in view of (56) and by the definition of the norm of a malrix,
we obtain

IR* (@, §7)— W* (2, 521 < 115 — d2] < (1— &) |57 — 2
for (@, 97)e V* and (w, ia)e V¥,
ie., the function A*(x, §*) fulfils in the neighbourhood V* of the point
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(£, 7*), contained in the domain ¥, the Lipschitz condition (43) with
respect to the variable 3*, with the constant ¢ = 1—e <1,
This completes the proof of Theorem B5.

5. Now we are going to formulate theorems concerning the prop-
erties of the system of equations (1) resulting from Theorem 1 and from
the theorems concerning the properties of the system of equations (2)
proved in the previous sections. For this purpose we introduce some

hypotheses regarding the function H(z, §).

Hyroraesis 6. The funclion b4 (@, 9) is defined and continuous in
a domain £ of the (pN +1)-dimensional space of the variables m, ¥y, ..., Y,n
such that for every mel the set

Iy = {ii: (z,9) 2}
i¢ & domain of the pN- d@menmonal space of the variables y,, ..., Y,n; the
set of values of the function H (@, §) for yel':
Ay = Hy(Iy), -where H,(j) = H(w, §),

8 a domain of the N-dimensional spaoe of the variables y,, ..., yy; moreover,
the domain A, of the pN-dimensional space of the variables y,, ..., Y,y 8
defined by the formula

Ay = (X, To): Tyedl, JTuelL, (Yo, ¥o)elh, ¥, = H (o, (T,, To),

and the domain I', of the N-dimensional space of the variables Yo -1)N-+13 2 YpN
is defined by the formula

T" = {¥s: 3172; Yy, Yo)elg}
HYPOTHIJSIS 7. For every fized vel and ever Y fzzved Y o Such that

there exists a Y:,.e]1 and (Y,, Y s) el y, the funotwn H (@, ¥ y) s & homeomor-
phism of the domain I, onto the domain A, i.e., there exists a funciion

G(-’D, 37) = (g(p—l)N-l-l (mr ’-!7) ) re gﬂN(wj .'7))
such that

(57) G(m,(H(w Ia,Ys), )):—_l}, for every(w,(l}g,l’:n))‘eﬂ,

and the function G(m, ) is defined and continuous in a domain Q' of the
(pN -+ 1)-dimensional space of the variables @, ¥, ..., Y,y Such that for
every wel

{i: (@, §)eQ} =4
and the function é(w, ¥) has T, as its range for §e A,, i.e.

Iy =Gy(4,), where G,(9) = G(a, §);
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moreover, the following relations hold:

ry, = l(YM Ya): Yae'[’;, ai’ﬂ/l;:y (1;‘1’ I;a)fAm 1}3 = é(“’y (:YAH fz))}
and
A.:c = {¥: afz; (flr 1;9)‘/1:0}'

As & consequence of Theorem 2, we get the following

TiuworuM 6. Let the function f(w) fulfil Hypothesis 1, let £¢1, let the
funotion f(w) be siriotly inoreasing in the interval I and let Hypotheses 6, T, 3
and & be fulfilled; further, we put Iy = (my, f2(2,) and J, = <&y, &) if
the point & i the right end-point of the interval I, and I, = (f*(m,), x,> and
Jo = (&, m) if the point & is the left end-point of the interval I, m, being
o arbitrarily fimed point of the interval I. Then, for an arbitrary funolion
Dy (w) defined and continuous in the interval I, and fulfilling the relatione

~

(68) @D, (w)eA, for every wel,

and

(89)  lm H(z, B4[f(2)], HA@)], ..., Dl (@)]) = Solm),
“""‘”O»fp(w)‘Io

there emists ewaolly one function (f)(m) defined in the imterval I, fulfilling
relation

(60) & (@) e A,

in the imterval I, satisfying the system of equations (1) in the interval I,
and fulfilling the condition

(61) B(a) = dy(w) for wely;

moreover, the fundtion é‘).(w) 18 continuous in the interval I.

Proof. With the notation from Theorem 1 we consitler the system
of equations (2) under the hypotheses of the present theorem. After having
written n = pN, Hypothesis 2 results from Hypothesis 6 and relation (3).
Writing
62) g yyon® ¥) =Yyyu forv=1,...,p—1and pg=1,..., ¥,
we get by (3)

(63) g(v—l)N+,u(w7 7”(977 '17)) = uyN+tu (ma Q?) = y(v—l)N-l‘-u
forv =1,...,p—1 and u =1,..., N,

whereas in virtue of Hypothesis 7 and of relations (3) and (67) we have

(64) g(?-‘l-l)N+M(w! ﬁ(w’ '!7)) = y(p-—l)N-{-y fOl' H = 1; a0y N’
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and relations (63) and (64) imply relation (33) and Hypothesis 4. Conse-
quently, the hypotheses of Theorem 2 are fulfilled.

Let &50 (#) be an arbitrary function defined and continuous in the
interval I, and fulfilling conditions (58) and (59). Let us define the fune-
tion @,(x) in the interval I, by the relation

(65) Fol2) = (@s(@), BLF(@)], ..., By 7 (@)]).

Since @ o(x) is defined and continuous in the interval I, the function
@0 () is defined and continuous in the interval I,. Relations (65) and (58)
and Hypotheses 3 and b imply relation (34). Relations (69), (66) and
(3) and the continuity of the function &, (») in the interval I, imply rela-
tion (28). By Theorem 2 there exists exactly one funection ¢(x) defined
in the interval I, fulfilling condition (29) in the interval I, satisfying the
system of equations (2) in the interval I, and fulfilling condition (30).
Thig function is continuouns in the inte'rva,l I. On account of the second

part of Theorem 1 the function ®(x) = (pi(%),..., py(®)) satisties the
system of equations (1) in the interval I Rela.tlon (60) follows from (29),
and condition (61)results from (30) and (65). The continuity of the function

@ (@) results directly from that of the function ¢(x).

The uniqueness of the solution of the system of equations (1) follows
from the uniqueness of the solution of the system of equations (2) and
from the mutual correspondence between the solutions of the systems
of equations (1) and (2).

This completes the proof of Theorem 6.

As a consequence of Theorem 3, we obtain the following

THEOREM 7. Let the funoction f(x) fulfil Hypothesis 1 (Eel or £41)
and let Hypotheses 6 and 3 be fulfilled; further, let I, = I N (5 d, £+ 8),

where 6 is a positive number. Then, for an arbitr ary function di., (v) defimed
and continuous in the interval I,, fulfilling relation (60) in the interval I,
and satisfying the system of equations (1) in the interval I,, there ewists

exactly one function @(z) defined in the interval I, fulfilling relation (60)
wn the interval I, satisfying the system of equations (1) in the interval I and
Sfulfilling the condilion

-

(66) ®(0) = Dy(@) for wel,;

moreover, the function P(x) is continuous in the interval I.

Proof. With the notation from Theorem 1, we consider the
system of equations (2) under the hypotheses of the present theorem.
After having written n = pN, we infer Hypothesis 2 from Hypothesis
6 and relation (3). Consequently, the hypotheses of Theorem 3 are
fulfilled.
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Let @y(w) be an arbitrary function defined and continuous in the
interval I, fulfilling relation (60) in the interval I,, and satisfying the
gystem of equations (1) in the interval I,. Let the function ¢,(x) be defined
in the interval I, by relation (65). Since the funetion éo(m) i defined
and continuous in the interval I,, the function g,(x) is also defined and
continuous in the interval I,. According to Hypothesis 3 and relations
(65) and (60), the function g,(z) tultils relation (29) in the interval I,.
On account of the fact that the function ﬁio (@) satisfies the system of
equations (1) in the interval I, and in view of relations (3) and (4), the
function @,(x) satisfies the system of equations (2) in the interval I,.
By Theorem 3 there exists exactly one function ¢ (x) defined in the inter-
val J, fulfilling relation. (29) in the interval I, satisfying the system of
equations (2) in the interval I and fulfilling condition (30). This funection
is continnons in the interval 7. On account of the second part of Theorem 1.
the function fj)(m) = (py (), ..., qu(m)) satisfies the system of equations
(1) in the interval I. Relation (60) follows from (29), and condition (66)
results from (30) and (656). The continuity of the function é(m) results
directly from that of the function ¢ (z).

The uniqueness of the solution of the system of equations (1) follows
from the uniqueness of the solution of the system of equations (2) and
from the mutual correspondence between the solutions of the systems
of equations (1) and (2).

Thig completes the proof of Theorem 7.

It iy formally possible to formulate a theorem corresponding to
Theorem 4, but it is pointless, for then we obtain a theorem whose assump-
tions cannot be fulfilled. A funection f(z, #) such that (3) holds cannot
fulfil a Lipschitz condition with respeet to the variable § with a constant
less than one.

But we have the following theorem, resulting from Theorenr 5.

THEOREM 8. Let the fumction f(z) fulfil Hypothesis 1, let &el, and
let Hypotheses 6 and 3 be fulfilled; moreover, let 5 be a root of the equation

(67) g =H(¢,E,...,8)

such that Ee/lé, and let the funclion bid (z, ¥) have the continuous partial
al . , : .

derivatives Tﬁi (z, ¥) of the first order with respect to the variables y, for
dy

fl
u=1,...,Nand # =1,...,pN, in a neighbourhood V < Q of the point

(£, 2, ..., ). Further, let all the characteristic roots A, for » = 1,..., pN,

of the matrix
"o_ %[I
‘1[ - [G D]!
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be less thanm ome im absolute value, where W' 1is the Jacobi matriz

[‘;Z.u.(f, g, ..-,é)] of the funotion H(w,§) at the point (&, E, .., 8),E
B
denotes the unit matriz and O denotes the zero matriw. Then there emists

exactly one function é(w), defined and oontinuous in the interval I, fulfilling
relation (60) in the interval I, fulfilling the condition

(68) D(§) = 5,

and satisfying the system of equations (1) in the interval I. This function
is given the formula

(69) & () = lim D, (x),

k-ro0

where the sequence of the funotions (5,,(:0) 18 defined in the interval I for
k>0 by the relation

(70) Bpp (@) = H(2, B [f(@)], Dp[H(®)]; ..., DL (@)])
for k=0,1,2,...,

&, (w) being an arbitrary function which is defined and continuous im the
interval I and fulfils the conditions

(11) &50[f(m)]eP; for every @el
and
(72) B (£) = &.

Proof. With the notation from Theorem 1 we consider the system
of equations (2) under the hypotheses of the present theorem. After having
written n = pN, we infer Hypothesis 2 from Hypothesis 6 and relation (3).
By (3) and (67) 4 = (&, ..., £) fulfils equation (42). It follows from Hypo-
thesis 6 that if SeA;, then 7 ¢A,. Since the matrix %" is equal to the

matrix U, all the characteristic roots of the latter have a modulus less
than one. Consequently, the hypotheses of Theorem 5 are fulfilled.

Let @,(x) be an arbitrary function defined and continuous in the
interval I and fulfilling relations (71) and (72). Let the function ¢,(»)
be defined in the interval I by relation (65). Since the function ci)o (w)
is defined and continuous in the interval I, the function ¢,(®) is also
defined and continuous in the interval I. In virtue of Hypothesis 3 and
by relations (71) and (72) the function ¢,(») fulfils conditions (39) and
(46). Thus Theorem B yields the existence of exactly one function ¢(w)
which is defined and continuous in the interval I, fulfils relation (29)
in the interval I, fulfils condition (41) and satisfies the system of equa-
tions (2) in the interval I, This function is given by formula (44), where
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the sequence of the functions ¢,(w) iz defined in the interval I for & >0
by relation (40). On account of the second part of Theorem 1, the function
@(m) = (py (@), ..., py(®)) satisfies the system of equations (1) in the
interval I. The continuity of the function é(w) results directly from. that
of the function @(w). Relations (60), (68) and (69) with (70) follow from
(29), (41), (44) and (40).

The uniqueness of the solution of the system of equations (1) follows
from the uniqueness of the solution of the system of equations (2) and
from the mutual correspondence between the solutions of the systems
of equations (1) and (2). '

This completes the proof of Theorem 8.

Remark., In the case of a single functional equation of order p
(for N =1)

p(@) = h(m, p[f(@)], [ (®)], ..., p[fP(2)]),

the characterigtic equation of the matrix U’ reduces to

AP — Zp: a,’7" =0,

vl

oh
Where a, =W(£1’71“-”7): and 5 = @(§).

6. The system of equations (1) is a particular case of the system of ¥
functional equations of order »

(73) b () = H(w, B[ f,(a)], DL (@], ..., PLI@)]),

in which f,(®) for » =1, ..., p are given functions. The system of equa-
tions (73) is dealt with in [13], where also a theorem on the uniqueness
of continuous solutions (Theorem 3 from section 3) is given; however,
it is given under different conditions, independent of the hypotheses
of Theorem 8 above. In particular, in [13] the author postulates the
existence of constants ¢,, such that

PN
Iy (@, §1)— by (@, Fa) € D 0ulyin—aad  for ¥ =1,.., N,

2]

and
N

p-~1
Z max 2 CpoNtn < 1.

?-1 [lﬂl. ""N"—O

These conditions are not fulfilled e.g. for a mngle functional equa-
tion of the second order

(74) o(@) = {olf(@]— oL/ ()]

8 — Annales Polonlel Mathematici XXV
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for which the uniqueness of continuons solutions results from Theorem 8,
since the characteristic roots, equal here to ; and to 3, have moduli less
than, one.

A particular case of the systent of equations (73) is the single equa-
tion of order p

(75) p(2) = h(m; ‘P[fl(m)]: W[fg(w)], ey ‘P[fp(w)]);

dealt with. in [9], where a theorem on the existence of continuous soln-
tions is given, and ir [3], where a theorem on the uniqueness of contin-
nous solutions (Theorem 1 from section 2) is to be found. The theorem
on the existence of continuous solutions of equation (75) is an analogue
of Theorem 6 concerning the system of equations (1), but the theorem
on the uniqueness of continuous solutions of equation (75) is given in, [3]
under conditions different from those occurring in Theorem 8 for the
system of equations (1). In particular, in [3] the author postulates the
existence of congtants ¢, such that

Ds

(2, Y)— Rz, Yl < ey, —vl

¥

1
—

and

P
Zc,, <1.
=]

Again equation (71) yields an example where the above condition
is not fulfilled, but the uniqueness of continuous solutions results from
Theorem 8.

The equation

() =h(w7tp[f(“")])9’[fz($)]; !‘P[fp(m)])

is & particular case of equation (75) as well ag of the system of equations (1).
This equation is dealt with in [7]. The only theorem given there, conce-
roing the exigtence of continuous solutions, results from Theorem 6 for
the system of equations (1).

The results obtained in the present paper for the systems of equa-
tions (1) and (2) contain the results obtained so far for the single equa-
tion of the firgt order

¢ (@) = he, p[f(x)]).

This equation has been dealt with in [8] and [11], but in the pre-
sent paper the assumptions regarding the function f(z) are weaker,

The condition. occu;"_ring in Theorem 8 that all the roots of the Jacobi
matrix have moduli less than 1 is essential. In the case where at least
one characteristic root has a modulus greater than 1, the system of
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equations (1) may have infinitely continuous solutions in an interval I
containing the point £ I.g., the system of equations

tp,,(m) = h,‘(w)tp,,[f(w)], w=1,2,..,mn,

for which the characteristic roots are the values 4, = h,(£), has infinitely
many continnous solutions in an interval I containing the point £ pro-
vided that |h, (&) #1 for x =1,...,n, and for at least one » = »;, we
have |k, (£)] >1 (cf. [10]). The case where the modulus of some charac-
teristic roots equals one is the indeterminate case and only for a single
linear equation of the first order (N =1,p = 1)

@ (@) = k(@) p[f(@)]+ he(@)
gome results have been obtained (cf. [4]).

Systems of functional equations of form (2) are also dealt with in [6],
but from another point of view, without assuming continuity. Such
equationy are considered also in [1]. A more complete bibliography of
this subject may be found in [12].
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