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Generalized Hopf bifurcations
and applications to planar quadratic systems

by C. Rousseau and D. ScHromiuk (Montréal. P. Q., Canada)

Abstract. We give here first a prool of a generalized Hopf bifurcation theorem, proof which
is both simple and practical for applications. The method uses the Poincaré normal form of a
vector ficld around a singular point. We then apply this method to the study of the maximal
number and position of limit cycles for a guadratic differential svstem. We show that by
performing a succession of two Hopf bifurcations we can obtain up to four limit cycles necessarily
having the configuration (1, 3).

1. Introduction. The Hopf bifurcation theorem is a result of local nature
which deals with the birth of limit cycles from a singular point, in a one-
parameter perturbation of a differential system

(1.1 X=f(x,y), ¥y=glx, ),

when the two eigenvalues cross the imaginary axis [11]. The generic case is
the birth (or death) of a unique limit cycle. If, however, the perturbation of
(1.1) depends on more than one parameter, then, generically. the simulta-
neous birth of several limit cycles from a singular point can occur. If (1.1)
depends on k parameters, then in a structurally stable way, at most k limit
cycles can arise from the singular point ([4], [5], [10], [19]). in what is
called a generalized Hopf bifurcation. We give here a short prool of the
generalized Hopf bifurcation result: If the origin is a singular point of (1.1),
such that the linearized system at the origin has a pair of pure imaginary
eigenvalues, and if the system (1.1) is degenerate around the origin to order
k (to be defined later), then for any n-parameters perturbation of (1.1) there
are at most k limit cycles around the origin. Also, for any i < k, there exists
perturbations having exactly i limit cycles. The proof we give is close to that
of [4]. This proof has several existential statements. We are essentially
interested in showing how one can use the proof to deal with examples, in
particular how one determines in practice regions where a given number of
cycles occur. The proof uses the fact that the vector field can be brought to
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the Poincaré normal form around the singular point [2]. This reduction is
completely algorithmic. We show that this reduction contains essentially all
the practical information we need to work with particular examples. We
discuss by an example the relation between the system in Poincaré normal
form and the truncated system to a finite order.

In the second part of this paper we apply this method for producing
limit cycles of planar quadratic differential systems. The determination of
limit cycles for quadratic differential systems is part of Hilbert’s 16-th
problem which can be stated as [ollows: Find the maximal number and
positions of limit cycles for a differential system (1.1), with f and g polynomials
in x and y. The question is still open, even for f and g quadratic. Poincaré
showed that, if the system has a center (weak focus), then limit cycles can be
made to appear by varving slighty the coefficients of f and ¢g. Frommer [9],
Bautin (3], Chin and Pu [7], Tung [20], and Shi Songling [16], [17], used
this method for producing limit cycles. Bautin showed that, by the variation
of the coefficients of a quadratic differential system, a singular point cannot
give rise to more than three limit cycles [3]. Tung showed [20] that each
limit cycle contains exactly one singular point and that at most two singular
points can have limit cycles surrounding them. Petrovskii and Landis
“proved” that a quadratic system has at most three limit cycles [12], [13],
but, in 1967, S. Novikov found a mistake in the proof of the main lemma
and the authors acknowledged it [14]. A counter example with four limit
cycles was given by Shi Songling [16], and another by Chen and Wang {6].

The following system is the counter example of Shi Songling [16]:

(1.2) X =Ax—y—1024+(54+8)xy+12 ¥ =x+x2+(8:—25-95) xy

for A= —10"2% 5= —107'3 ¢ = —107 32 The system (1.2) has two singular
points (0, 0) and (0, 1), three limit cycles around the origin, and one around
(0, 1). Shi Songling proved his result {16] by constructing several Poincaré-
Bendixson domains. A first look at this example prompts the questions:

(a) Why such a choice for 4, d, ¢? Why such a choice for the coefficients
of xy in the expression of the vector field (1.3)?

(b) Can one construct an example without the need of using such small
numbers? This would make it easier to draw the phase portraits with a
computer, and perhaps the limit cycles could even be glimpsed on the
computer drawing.

In this paper we explain the existence of four limit cycles by a succes-
sion of two Hopf bifurcations, a first one, non-degenerate, which gives rise to
the cycle around (0, 1), followed by a second one, degenerate to third order
(which we call generalized Hopf bifurcation of order 3), which gives birth
simultaneously to the three cycles around (0, 0). The use of the Hopf
bifurcations provides a conceptual understanding of this example. [t explains
why 4, 4, ¢ are small numbers, why they are all negative, why |4 need be
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much smaller than [ed], why the coefficients of xy in (1.2) are taken as they
are.

Next we use the same method to provide the means for constructing in
general, examples of quadratic systems with several limit cycles. We show
that we cannot obtain more than four limit cycles in this way. Also we show
that the only possible configuration for the four limit cycles thus obtained is:
three cycles around one singular point and one around the other singular
point.

The results of this paper are mainly of a local nature: We consider the
birth of limit cycles around two singular points via simultaneous or success-
ive Hopf bifurcations. In the case of the successive Hopf bifurcations for the
Shi Songling example, the first one guarantees the existence of the limit cycle
around (0, 1) in a small neighbourhood of this point for values of the
parameter f positive and small. This cycle, however, stays on and grows
larger when f increases from 0 to 5. Arguments of a global nature assure us
of this.

The Hopf bifurcation is of course not the only method by which limit
cycles can be produced: They can also appear from homoclinic or heterocli-
nic loops joining saddle points (finite or infinite), or saddle-node points. The
analysis for these methods is far more complex than for the Hopf bifurcation.
The results are incomplete even for one homoclinic loop, and the difficulties
appear to be substantial in case one tries to do successive homoclinic loop
bifurcations. Finally, limit cycles can also arise via multiple limit cycles: for
example when one semistable limit cycle (attractive on one side, repulsive on
the other) bifurcates into two limit cycles, one stable one unstable. As both
computer calculations and understanding improve, one may be able to
handle a succession of bifurcations of the various types mentioned above.

2. Degenerate Hopf bifurcations of order k. The degenerate Hopf bifurca-
tion theorem of order k deals with the birth of a limit cycle from a singular
point. It is a local phenomenon. The theorem does not give any information
about limit cycles that may exist far from the singular point.

We consider here a C*-system defined in a neighbourhood of the origin
and depending on parameters u = (4, ..., 4,)€ R"

(2.1) x=f(x,y), y=g,.x,y).

We suppose that the origin is a singular point, and that for u = 0, the linear
part of (2.1) around the origin has pure imaginary eigenvalues +iw. We now
consider the system for 4 = 0. By a suitable linear change of coordinates and
passing to complex coordinates z = x+iy, the system (2.1) becomes

(2.2 :=iwz+F(z,2), z= —iwz+F(z,?2)),
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F can be developed to arbitrary order as a power series
(2.3) Fiz,)= ) a;27+0(™"),

2<i+jsr
We make a polynomial change ol variables, locally around the origin

2<i+j<r

and we determine the b;; in order to get rid of all the terms in z'Z in (2.3),
except the terms in z'*!Z'. In the new variable w, equation (2.2) becomes
(2.5) w=iow+c, w W+, w wi4 L +0(wHd),

(2.5) is called the Poincaré normal form of (2.2) (cf. [2]). We say that (2.1} has
a Hopf hifurcation of order k at the origin if

(2.6) Re(c;)=...=Rete, (=0 and  Re{¢) #0,

The whole system (2.1) can also be brought to Poincaré normal form
2.7 W= Cowrim,wtcy ,wiw+ e, w0 (W)

via a change of variables depending smoothly on the parameter j, with
Gy =¢ and ¢q, =0 for g =0. In polar coordinates (2.7) becomes

(2.8) F=Re(co,)r+Re(c; )r’+ ... +Relg ) r* ' +0(r¥**3),
0 =w+0(r})=H(r, 0).

We divide the vector field (281 by the lunction H (r. ) which 1s invertible in
a neighbourhood of (0. 0y, as 1 [19] T'hen we obtain a unique equation

(2.9) drjd0 = d,r+d; ,r’+ +d T 0.

To illustrate how (2.9) settles the problem of the number of limit cycles of
(2.1) around the origin, we assume hrst. for the sake of simplicity, that the
rest O(r*** %) in (2.9) does not depend on (. and contains only odd powers of
r (this last hypothesis can be assumed at least to arbitrary high order). In
this case. since the birth of limit ¢yveles around the ongin is equivalent to the
birth of positive zeros of the equation F =0, by an application of the
Malgrange ‘Weierstrass preparation theorem [15] 7 = 0 would be equivalent
to a polynomial equation

(2.10) rn, 0+ .. +2,,0=0 with o =r2

The number of positive roots would give the number of limit cycles arising
from the origin. The parameter space could then be partitioned around the
origin, into regions with a given number of limit cycles around the origin.
This number is at most k.



Generalized Hopf bifurcations 5

In the case where the rest O(r***?) depends on ¢ in (2.9), this argument
no longer works. This is the case covered by the generalized Hopf bifurcation
theorem. Although the argument i this case 15 longer. essentially the ideas
are the same, 0 is eliminated and we are reduced to a I-dimensional problem
by introducing the Poincaré map P(x. j) on the x-axis [11], and then the
displacement map V(x, @) = P(x, ;)— x. Since limit cycles around the origin
intersect the x-axis twice, once for x >, once for x <0, we are interested in
positive roots of V(x, ) = 0. The result is obtained by applying the Mal-
grange -Weierstrass preparation theorem to V around (0, 0).

THEOREM. Let
(2.10 Xx=f(x,p. y=yg(x,y)
be a C*-system with a singular point ar {0, 0), and such that the system can be

brought around the origin to the Poincaré normal form (2.5) with conditions
(2.6). Then:

(1) For any C*-perturbation
(2.12) X=f(x, v, F=yg,x ¥,
where =y, .... t,)€R", there exists a C*-mapping D(uy, ..., 1,

=(aty, ..., Aox+ ) SUch that the limit cycles of the perturbation around the origin
intersect the x-axis at the real roots of the polynomial equation

(2.13) Q(x, ) =gy g X +ay x* ' 42, =0,

These roots come in pairs, one positive, one negative. Thus there are at most k
limit cycles. The stability (instability) of these cycles is determined by the sign
of Q(x, ) in a neighbourhood of such a positive root. In particular, the cycle is
stable (unstable) if Q crosses the x-uxis passing from positive to negative
(negative to positive) values.

(1) For any i <Kk, there is a perturbation with exactly i limit cycles.

Proof. (i) We can suppose that our system is in Poincaré normal form
(28) with Re(c o) =0 for i <k, w,=1, 6 =1. We define P(x,p) to
be the return map along the x-axis, as in [11] and [4] and V(x. ) =
P(x, u)—x to be the displacement map. We calculate the ¢ V/éx' (0, 0). For
this we note that x =r on the positive x-axis. We write

(214) R(rs 0, M) = ul(()a ”)r+u2(()1 [l_'r2+ cen +u2k+|(9, “)r2k+ 1 + ...
for the solution of (2.9) such that R(r, 0, u) =r. We have at u=0
(2.15) dr/d0 = ¢, 13t T+ O (PR,

If ¥ (ry, 0) is the solution of (2.15), with ¥ (ro. 0) = r,, then the return map at
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=0 1is P(ry, 0) = Y (ry. 2m) = R(ry. 2n. 0). We compute &Vi/ax'(0, 0) for
| <i<2k+1.

We have (cV/éx)(0, 0) = (6P/¢x)(0, 0)—1 = (d/er),-o ¥ (r, 2m)— 1.

For i > 1, we have

(2.16) (0V'/0x") (0, 0) = (0P'/0x') (0, 0) = (&'/dr')l,— o ¥ (r, 2m).

To calculate (0'/0r'),-o¥ (r, 2m) for 1 <i < 2k+1, we note that, since
Y (r. 0) is a solution of (2.15), we have )

.y 0 for i <2k+1,
@I (B (@/Ye=0 (. ) = {(2k+1)!Re(c,¢) for i = 2k+1.

So (&'/ar'),-o¥(r, ) is constant for i <2k+1 and is equal to
(2k+1)!0Re(c,) for i=2k+1. So for i<2k+1, (8'/0),-oy(r,0) =
(6'/0), - oW (r, 0), and, since Y (r, 0) =r, (¢'V/&x')(0,0) is O for i <2k+1
and is equal to 2n(2k+ 1)! Re(c,) for i = 2k+1. So (¢*** 1 V/&x***1)(0,0) # 0
and the previous derivatives vanish. We are exactly in the hypothesis of the

Malgrange-Weierstrass preparation theorem [15] for V (r, p) (or V(x, p)) and
so we have

(2.18) V(x, p)=Q(x, ph(x, p)

with Q a polynomial of degree 2k+ 1 and h(x, p) invertible in a neighbour-
hood of (0, 0). We can suppose h(x, u) > 0. We remark that Q is divisible by
x, and that other roots of Q come in pairs, one positive, one negative, each
pair corresponding to a limit cycle. In particular, there are at most k limit
cycles. Their stability (instability) is decided by the sign of Q in a neighbour-
hood of the root.

(i) This part is inspired by [4] and [17]). We suppose the system in
normal form

(2.19) Z=iz+¢ 2" *+0(2|**?) =F(z, 3).
We take a perturbation of the form

(2.20) =F(z, )+Boz+P12%2+ ... +B_12*Z*"", B, €R.
In polar coordinates (2.20) gives

(221)  F=Bor+Bir+ .. B r* T+ Re(c)r* T +0O(* ).

We can suppose Re(c,) > 0. In order to obtain i cycles for the system
(2.21) we take B, ..., fi—, in the following way. In a neighbourhood U of
the origin, there exists M > 0 such that |O(r?**3)| < Mr?**3. We choose
0 <r, <1 such that the ball of radius r, is included in U and

(2.22) Mri¢*3 <Re(c)ri*™!,
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Bi-1 1s chosen negative, with |f,_| < Re(c,), small enough so that
(2.23) B rE* " +Re(c)rF +0(rf 3 > 0.

Then r,_, <r, is chosen small enough so that

(2.24) B i r¥ M+ Re(c) r +0(r3 3 <0,

fi_ > is chosen positive with B,_, < |f,_,| small enough so that
(2.25) Bu- 2 r2 34 B rE* "+ Re(c)ri* v Ot > 0,
(2.26) Bu- & 34 B T +Re(cr P +0 (P23 <.
Then there exists 0 <r,_, <r,_,, with

(2.27) Bu— s &3+ B 23 + Re(c) 5 + 0 (rd 5 > 0;

Bi-3- Fioas -ovs Bi—i. ri-; are chosen similarly with Re(c), Bi-(, ..., Bu—; Of
alternate sign, 0 <|f, -] <... <|fi_yl <Re(e), O<r_;, <...<r_,<r,
and we have finally

':>0 on I‘=r,¢, rk_2,...,
(2.28)
':<0 on I‘=rk_1, rk_a,...

This gives i Poincaré-Bendixson domains, each containing a limit cycle
(@ > 0 implies that the origin is the only singular point).

Remark 1. The Hopf bifurcation theorem only ensures us of the
presence of limit cycles for small values of the parameters. The limit cycles
may still exist for larger values of the parameters, but this has to be checked
by other methods.

Remark 2. Our theorem is a consequence of Takens’ result [19], and
our proof is an alternative proof. The proof of Takens is merely existential.
We find our proof simpler and more practical when one has to deal with
particular examples, and wants to know the parameter region where the limit
cycles are present for a given family of vector fields. The algorithmic aspect
of the proof will make itself felt in the calculations on Macsyma in Sections 3
and 4 and in particular in formula (4.12). This algorithmic aspect is also
developed in the rest of this section.

ProposiTION. Under the hypothesis of the theorem, for small u, the power
series of V(r, p) is very close to

2n(Re(co,)r+Re(c, ) r>+ ... +Re(c ) r¥**1),

up to higher order rerms.

Proof. We calculate explicitly the u;(u, 2m) in (2.14). For the rest of the
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calculation we write only ¢; for ¢;, and u; for u; ,. We have
(2.29) ¢/00u,(0) = Re(co) u, (6)
BReleq) 2mRe(eq)

and u, (0)=1=u,(0) =e¢ =u;(2n)=¢

Similarly
(2.30) /00 u,(0) = 2Re(cy)u, (6)
and  u,(0)=0=u,(0) =0 =u,(2n),
(231)  9/00us(6) = (Re(co)us +Re(cy)ui)
=uy () = (”"“" — " “¥) Re(c,)/2Re (c,)

= u; (21) = ("™Y — > Y Re(c,)/2Re (cy),
(2.32) U4 (9) = 0 = U4(21{),

46Re(cq) 26Rc(cq)

(2.33)  us () = (e 3e +2¢"™“%) (Re(e))?/2(Re(co))* +

50Rc(cq) BRe(c)
+(e O 0

) Re(c,)/4Re(co),
etc. For small ;¢ we get (if we take the linear approximations)

(234)  u, =1+4+2nRe(cy), uy4+1(2n) =2nRe(cy), uy;;(27) =0

for 0 <i<k.

We get the result by remarking that V(x, p) = P(x, g)—x.
We now want to discuss in which sense the information on the positive
zeros of Q(x, u) given in (2.18) is “almost contained” in the equation

(2.35) Re(colr+Re(cy)r* + ... +Re(c)r¥**1 =0

in the case where Q(x, u) has exactly k positive zeros, which is the case
which interests us here:

(1) The displacement function is very close to the left-hand side of (2.35)
(see proposition).

(2) In the second part of the theorem we choose Re(cy), fi— 1+ --- 81, Bos
of alternate sign. We can remark here that a polynomial of degree k with k
positive roots will have coefficients of alternate sign.

(3) For a polynomial as in (2.35) to have k positive roots when the ¢;
depend on pu, when Re(c,) is different from O and Re(cp), ..., Re(c,- ;) are
null for u =0, for u sufficiently small, we must have

(2.36) IRe(co)l <|Re(cy)) <... < |Re(cy)l.
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This comes from the fact that the Re(c;) are, up to sign, the symmetric
functions in the roots of (2.35) which are arbitrarily close to 0 for x small
enough.

(4) We now consider the reduction of (2.8) to (2.9). This can be achieved
in two steps. The first one is a division by w, which is just a change of scale
in time. It is easy to check that the division by H(r. 8)/®, in (2.8) gives the
d;, to be very close to the Re(c, ). as long as (2.36) is verified.

One can also notice that the proof of (ii) in the thcorem works directly
with the first equation of (2.8), without the reduction to (2.9).

(5) One remarks also that the presence of the O(r***) term does not
change anything in the proof of (ii) 1n the theorem. Since we can start with a
r, small enough so that it is negligible in [ront of the Re(c,)r?**!, and that
it becomes even more so in front of the other terms when we take the r; <r,,
the second part of the proof works exactly as if the term O(r**3) did not
exist and we were only dealing with a polynomial.

(6) We consider (2.18) and we compare the first terms of the power scries
of V with the polynomial Q. We have

(237) V() =y, X+, P+ g, T O (XY
with ¢; , = u;(2r, p) for i >1 and a,, = u, (2r, p)—1 (cf. (2.14)). Also
(238) Q('\.v /1) = al-ﬁl .\"_*"12“‘ x2+ +12k+ 1. ,\”"'I‘+ 1 B

The functiop h(x, p) and all its derivatives are bounded for x and p in a
neighbourhood of 0. We identify the two series, term by term. We get

(2.39) dy, =2, , 10, p,
(2.40) 0=12,,h0, W)+o; , (O, p,
(241) dy, = 23,00, )+, , (0, )+2, , h"(0, /2

etc. (Where all derivatives of h are taken with respect to x.) We can suppose
that h(0, ) = 1. Assuming (2.36) for u sufficiently small, we have

(2.42) Uy, €ay, €... KAy,
(cf. Proposition). So for u small, we have
(2.43) Uit 1w = X204 1 s
We finally illustrate these remarks on an example.

Exampri. We consider the two systems
(2.44) F=rl+gri+e,r,

I
—
-

6
(245) F=—=r"+r’+e,r’+e,yr, 6
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The first system is already in truncated normal form and has
(246) 2 limit cycles for e —4ey >0, g, <0, g > 0,

(247) 1 limit cycle for £, <0, for ef—4e, =0, ¢; <0, &, >0 and for
to =0, £; <0 no himit cycles elsewhere.

In the equation 7 = O for the second system there are three roots whose
sum is 1, so at least one root is far from zero. The product of the roots is ¢,
which is small, so at least one root 1s small, in absolute value, and the sum of
products of roots two at a time is also small, so two of the roots are small in
absolute value. System (2.45) has therefore one real root close to 1 and two
small roots, in absolute value. for small ¢y, ,. We are interested only in the
limit cycles which are close to the origin. Since one limit cycle is far from the
origin, the system has:

(248) 2 Iimit cycles close to the origin for
A=¢e?—4co+4e1—186,60—27e3 >0, ¢, >0, ¢ <O0;
(249) 1 limit cycle for &5 <0 for ¢, =0, ¢, <0 and for 4 =0, ¢ <0,
¢ > 0, no limit cycles close to the origin elsewhere.

The curve 4 =0 is represented in Fig. 1 together with the parabola
e —4e, = 0 and the two curves can be seen to be very close in the neigh-
bourhood of the origin. The regions where (2.44) and (2.45) have two (resp. one,
zero) limit cycles close to the origin are nearly the same but not exactly the
same. Since system (2.44) can be viewed as a truncation of system (2.45), this

0.005 0.01

-0}

Fig. 1. Comparison of bifurcation diagrams of the systems (2.44) and (2.45).
The curve 4 = 0 is plain line and the parabola &2 —4¢, = 0 is dotted line
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illustrates that the bifurcation diagram is only approximately given by the
bifurcation diagram of the truncated system. We see that the approximation
becomes quite good when the parameters are small and we are interested in
a small region around the singular point.

3. Analysis of the example of Shi Songling. We analyse in the hght of
Section 2 the system (1.2). For any 4, ¢, 6, the system has two singular points
(0, 0) and (0, 1). (0, 0) and (0, 1) are foci. System (1.2) has a limit cycle around
the point (0, 1).

ProrosiTioN. The limit cycle of system (1.2) around the point (0, 1) comes
from a Hopf bifurcation at f =0 of the system

(3.1 X = —y—10x2+Bxy+y?, y=x+x2—25xy.

Proof. (3.1) has a Hopf bifurcation at (0, 1) for § = 0. The technique of
Section 2 gives us that the limit cycle is attractive and exists for § > 0 small
For [0, 5], system (3.1) has no other singular point than (0, 0) and (0, 1),
and a unique singular point at infinity, which is a saddle. The saddle point at
infinity has its stable manifold along the equator and its unstable manifold
pointing inwards. So the limit cycle cannot disappear for a saddle-connection
at infinity. It has no interaction with the origin, since x < 0 on the line 1 + x—
—25y = 0. The only thing that could happen could be a pitchfork bifurca-
tion (or a similar bifurcation), in which three cycles would appear from the
original limit cycle (the more general case would be an odd number of limit
cycles). At =5 there i1s an odd number of cycles around (0, 1), since we
have a Poincaré-Bendixson domain limited inside by the repulsive point
(0, 1), and outside by the equator at infinity and the line 1+ x—25y = 0. At
least one of these cycles comes from the Hopf bifurcation.

Now, for 4 =& =9 = 0. The point (0, 0) is a weak focus and we have a
degenerate Hopf bifurcation of order 3. In fact, if we compute the Poincaré
normal form, we get

(3.2) Re(c;) = Re(cy) =0, Re(cs) = 35625/8.

Therefore there exists a perturbation which has three limit cycles. Here
it is remarkable that this perturbation can be achieved within the quadratic
systems only. '

We first consider the following system

(3.3) X = Ax—y—=10x*>+(5+98) xy+?,
y = ;c+).y+x2+(85—25—95)xy.

For this system we get an equation (with u = (¢, 5)eR?)

(34) F=Ar+Re(c,,)r*+Re(cy,)r’ +Re(cs ) r’ +0 ().
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We have
(3.5) Re(c, ) = —¢,
(3.6) Re(c“.) = [5400° +41256% — 137666% + 115262 5 — 675066 + 71256 —
—320¢? — 268052 — 7040¢]/36,
(3.7 Re(cs o) = 35625/8 = Re(c; ) = 35625/8.

We observe that. for small s, the coefficients of the principal part of (3.4)
alternate in sign, starting with Re(c;,) positive. We also have that

(3.8) | =107%% < Re(c, )

= —¢ =10752 < [Re(c, )| = 7125/36 x 107 '3,

These facts, together with the proof of part (i) of the theorem give us an
understanding of why we do have three limit cycles in this case.

Remark 1. When real-diagonalized the example of Shi Songling in (1.2)
is a perturbation of system (3.3) in which 2 = —11072°°. The perturbation is
of order about 10~ 2°° and does not affect (3.5), (3.6), (3.7). This perturbation
is prefered to the one of (3.3), since it keeps (0, 1) as a singular point.

Remark 2. If we neglect the O(r°) term in (3.4), the number of limit
cycles around the origin is equal to the number of positive roots of

(39) Ar+ Re(cl.u) I‘3 + Re(('z.u)"s + Re(('l;u)'J =0

which is three. Indeed we have a positive discriminant and Routh-Hurwitz
criterion for roots with positive real parts is verified.

Remark 3. The calculation of Re(c,), Re(c¢;), Re(cs) in (3.2), (3.5) and
(3.6) were done on Macsyma. We give a general formula for Re(c¢,) in the
next section.

4. Construction of quadratic systems with limit cycles via Hopf bifurca-
tions. We want to exploit here the method described in Section 2 in order to
get quadratic systems with as many limit cycles as it is possible, via this
method. So we start with an arbitrary quadratic system with two singular
points. We can suppose that the origin is a singular point. We start with the
origin as a weak focus (see definition below) in order to get a Hopf bifur-
cation. Modulo a linear change of coordinates, the linear part around the
origin is x = —wy, y = wx, w > 0. A rotation and change of scale brings the
other singular points to (0, 1), and a change of scale in time brings w to 1.
We start therefore with the system

4.1) x=—y+axt+bxy+y?, y=x+cxt+dxy.

The goal is to try to degenerate simultaneously or successively the two
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singular points, in order to have degenerate Hopf bifurcations of order > 2.
In doing so we must not obtain an integrable system, one for which every
trajectory is closed. Fortunately there exists a charactenization of the quad-
ratic integrable systems which gives in our case ([8])

(4.1) is integrable iff one of the following conditions is satisfied:

() c=a+1=0;
(I1) ¢(d+2a) = b{a+1) and
(4.2) c(d+2a) +b(d—a)(d+2a)* = b (d+2a)—b* = 0:

(1) d=3u—=5= —b+5c=a+2(c*+1)=0.

We call a weak focus a singular point of a system, with two purely
imaginary eigenvalues of the linearized system. The condition for it to have a
degenerate Hopf bifurcation of order at least 2 is that Re(¢,) = 0 in (2.5). For
a system

(4.3) X=—y+f(x,y), y=x+g(x,))
with f and g quadratic we get

(4.4) Re(cy) = [fay U Hyy) = IxyGux + 9yp) —fax Yxx T3y Gy 1/ 16.
For system (4.1) this gives
(4.5) Re(c¢y) = [h(a+1)=c(d+2a)]/8.

The calculation (on Macsyma) of Re(c¢,) for system (4.1) gives
(4.6) Rel(cy) = (= 5cd® +9acd? + 5¢d? — abd? — bd* — 20c® d — 19bc* d +
+b%cd + 18a? cd + 8acd + 10cd — a® bd + 18abd + 19bd —40ac? —
— 18ahc? — 10hc? = 9ab? ¢ — 5h? ¢ — 40a* ¢ — 4a* ¢ + 20ac +
+5ab3 +5h3 4 20a> b + 40a? b + 40ab + 20h)/288.

Remark. We can make a heuristic remark on Bautin's theorem, which
states that at most three limit cycles can arise from a singular point by
variation of the coefficients of a quadratic system. In (4.1) we have four
independent parameters that can vary, in order to annihilate the Re(c,) of
(2.5). Since the manifold of integrable systems is of codimension 2 (cf. (4.2)). it
is natural that we can annihilate two of the Re(c¢;) before arriving at an
integrable system.

We now show the relationship between the coefficients of the normal
form as obtained by the method of Section 2 and the focal quantities
obtained in Bautin [3]. These can be found for the normalized system (4.1) in

[18]
4.7 V), =b(a+1)—cld+2a),
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@8) V,=(b—5c)[bc(2a+d+1)—(d+2a)(a+ 1)(d+ 1],

49  Vy= —cQe2 42+ @ [hcQu+d+ 1) —(d+2a)(a+1)(d+ 1)].
We have that

(4.10) Re(c,) = V/8.

Also Re(c,) given in (4.6) is an irreducible polynomial over the rationals
but it can be factorized under the condition Re(c,) = 0. Since for ¢ =0 and
Re(c,) = 0 the system is integrable by (4.2), we use the condition Re(c;) =0
in the form

4.11) d= —2a+b(a+1)/c.
We get for Re(c,)
(4.12)  Re(cy) = —[b(5¢c~b)(c?+abc?+bc*+2a*c+3a’c—c—a*h—
—3a?b—3ab—b)]/(48¢?)
=(h=5c)[hc(Qu+d+1)—(d+2a)(a+ 1)(d+1)]/48 = V,/48.
A similar calculation can be made for Re(c;) and Vj.

ProposiTION. (4.1) cannot have two weak foci, one of which is degener-
ate, unless it is integrable.

Proof. (0, 0) is degenerate to order at least 2 il Re(¢,) = 0. Through
(4.5) we get the equation

4.13) Re(c,) =[h(a+1)—c(d+24)] = 0.

We now localize (4.1) at (0, 1), with Y = y—1. (4.1) becomes
(4.14) X =bx+Y+ax?+bx¥Y+ Y% y =x(1+d)+cx®+dxy,
(4.15) (0,1) is a weak focus iff =0 and 1+d <0.

With b =0, (4.13) becomes ¢(d+2a) =0.b=0and ¢ =0, or b =0 and
d+2a = 0 implies that (4.1) is integrable by (II) of (4.2).

Since it is not possible to obtain limit cycles by degenerating simulta-
neously the two weak foci we try to do as in the example of Shi Songling:
degeneralte the point (0, 1) as a weak center, then add parameters in order to
create limit cycles around (0, 1). Once (0, 1) is only a focus and the lmit
cycles around it are structurally stable, we try to create limit cycles around
(0, 0) by a Hopf bifurcation of higher order.

THEOREM. By successive Hopf bifurcations around (0, 1) and (0, 0) it is
possible to create up to four limit cycles for system (4.1). In the case of four
limit cycles, three of them must necessarily be around one singular point and
the last one around the other singular point.



Generalized Hopf bifurcations 15

Proof We consider (4.1) which has a degenerate Hopf bifurcation at
(0, 0) if (4.13) is satisfied. We suppose that b # 0 and that, when b =0 (4.1)
has gone through a Hopf bifurcation at the point (0, 1). For b = 0, system
(4.1), localized at (0, 1), gives

(4.16) x=Y+ax?+Y? y =x(1+d)+cx?+dxY.
We change x for X = —x./—d—1. (4.10) becomes
417 X=-Y/-d-1-aX?¥/—-d—1-Y*/~d—1,

Y=X—d=1+cX¥Y—d=1)—dXY/ —d-1.
We annihilate Re(c;) by (4.5) for system (4.17)
(4.18) Re(c)) = c(d+2a)/8(d+1)* = 0.

Since b # 0, (4.13) and (4.18) together imply a+ 1 = 0. In the case a+1
= ¢ = 0 we get an integrable system. The case d+2a =a+1 =0 gives d =2
which contradicts (4.15). For b # 0 we have a limit cycle around (0, 1) if
sgn{hRe(c})) <0, and b is small enough. If (4.1) also satisifies Re(cy)
= Re(c,) =0, Re(cq) # 0 around (0, 0), then a perturbation of the form

X =Ax—y+ax*+(b+8) xy+y?,
4.19)

y=x+Aiy+cx?+(d+8¢/c(a+1)d/c)xy
with |4 €|e] <€19] will have three limit cycles around the origin. (Since
Re(c,;) = —¢ and for |g] <|d|, Re(c,) depends essentially on 4.)

Then the system

X =Ax—y+ax?+(b+8) xy+y?,
(4.20)

y = x+cx?+(d+8¢/c+(a+1)d/c)xy
will have the required properties. We remark that in this procedure (0, 1)
and (0, 0) are singular points throughout the two perturbations involved in
the two bifurcations.
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