A CHARACTERIZATION OF \(\alpha \)-CONVOLUTIONS

BY

J. KUCHARCZAK (WROCLAW)

For the terminology and notation used here, see [2]. In particular, \(\mathfrak{B} \) denotes the class of all probability measures defined on Borel subsets of the positive half-line. By \(E_a (a \geq 0) \) we denote the probability measure concentrated at the point \(a \). For any \(a \) \((a > 0)\), the transformation \(T_a \) of \(\mathfrak{B} \) onto itself is defined by means of the formula \((T_a P)(\mathcal{A}) = P(a^{-1}\mathcal{A}) \), where \(P \in \mathfrak{B} \), \(\mathcal{A} \) is a Borel set, and \(a^{-1}\mathcal{A} = \{ a^{-1}x : x \in \mathcal{A} \} \). The transformation \(T_a \) is defined by assuming \(T_a P = E_0 \) for all \(P \in \mathfrak{B} \).

A commutative and associative \(\mathfrak{B} \)-valued binary operation \(\circ \) defined on \(\mathfrak{B} \) is called a generalized convolution if it satisfies the following conditions:

(i) \(E_0 \circ P = P \) for all \(P \in \mathfrak{B} \);

(ii) \((aP + bQ) \circ R = a(P \circ R) + b(Q \circ R) \), whenever \(P, Q, R \in \mathfrak{B} \) and \(a \geq 0, b \geq 0, a + b = 1 \);

(iii) \((T_a P) \circ (T_a Q) = T_a (P \circ Q) \) for any \(P, Q \in \mathfrak{B} \) and \(a \geq 0 \);

(iv) if \(P_n \to P \), then \(P_n \circ Q \to P \circ Q \) for all \(Q \in \mathfrak{B} \), where the convergence is the weak convergence of probability measures;

(v) there exists a sequence \(c_1, c_2, \ldots \) of positive numbers such that the sequence \(T_{c_n} E_1^n \) weakly converges to a measure \(Q \) different from \(E_0 \) (the power \(E_1^n \) is taken here in the sense of the operation \(\circ \)).

The class \(\mathfrak{B} \) with a generalized convolution \(\circ \) is called a generalized convolution algebra and denoted by \((\mathfrak{B}, \circ) \). Algebras admitting a non-trivial homomorphism into the real field are called regular.

An algebra \((\mathfrak{B}, \circ) \) is called quasi-regular if it satisfies the following condition:

(vi) there exists a sequence \(c_1, c_2, \ldots \) of positive numbers such that

\[
\lim_{n \to \infty} c_n = 0 \quad \text{and} \quad \lim_{n \to \infty} T_{c_n} E_1^n = Q \quad \text{and} \quad Q \neq E_0.
\]

It is known that every regular algebra \((\mathfrak{B}, \circ) \) is quasi-regular (see [2], Theorem 4). The following problem appears still to be open:
PROBLEM. Is every quasi-regular convolution algebra regular? (P 826)

The α-convolutions, being a modification of the ordinary convolution, are simple examples of regular generalized convolutions. For every $\alpha > 0$, an α-convolution is defined by the formula

$$
\int_0^\infty f(x)(P \circ R)(dx) = \int_0^\infty \int_0^\infty f((x^a + y^a)^{1/\alpha})P(dx)R(dy)
$$

for all bounded continuous functions f on the positive half-line.

The aim of the present paper is to give a characterization of the α-convolutions. We say that a probability measure P is infinitely divisible in the algebra (\mathfrak{B}, \circ) if for every integer n there exists a probability measure P_n such that $P_n^n = P$. Further, we say that a probability measure P is decomposable if it can be written in the form $P = R_1 \circ R_2$, where $R_1 \neq E_0$ and $R_2 \neq E_0$. It is clear that each infinitely divisible measure is decomposable. Therefore, our result can be regarded as a partial solution of the following problem raised by K. Urbanik:

PROBLEM. Suppose that (\mathfrak{B}, \circ) is a quasi-regular convolution algebra and the measure E_1 is decomposable. Is then (\mathfrak{B}, \circ) an α-convolution algebra? (P 827)

THEOREM. Let (\mathfrak{B}, \circ) be a quasi-regular convolution algebra in which the measure E_1 is infinitely divisible. Then (\mathfrak{B}, \circ) is an α-convolution algebra.

Before proving the Theorem we shall prove some lemmas.

LEMMA 1. If an algebra (\mathfrak{B}, \circ) is quasi-regular and there exists a sequence a_1, a_2, \ldots such that $T_{a_n} E_1^n \to P$, where $P \in \mathfrak{B}$ and $P \neq E_0$, then

$$
\lim_{n \to \infty} a_n = 0.
$$

Proof. If the algebra (\mathfrak{B}, \circ) is quasi-regular, then there exists a sequence c_1, c_2, \ldots of positive numbers for which

$$
\lim_{n \to \infty} c_n = 0 \quad \text{and} \quad \lim_{n \to \infty} T_{c_n} E_1^n = Q, \quad \text{where } Q \in \mathfrak{B} \text{ and } Q \neq E_0.
$$

Now, let us suppose that there exists a subsequence a_{k_1}, a_{k_2}, \ldots of the sequence a_1, a_2, \ldots such that

$$
\lim_{n \to \infty} a_{k_n}^{-1} = a < \infty.
$$

We have

$$
T_{a_{k_n}^{-1}} T_{a_{k_n}} T_{c_{k_n}} E_1^{c_{k_n}} = T_{c_{k_n}} E_1^{c_{k_n}} \to Q.
$$

On the other hand,

$$
T_{a_{k_n}^{-1}} T_{a_{k_n}} T_{c_{k_n}} E_1^{c_{k_n}} = T_{a_{k_n}^{-1}} T_{c_{k_n}} T_{a_{k_n}} E_1^{c_{k_n}} \to T_0 P = E_0.
$$
Hence, \(Q = E_0 \), which contradicts the hypothesis.

Lemma 2. If for some integer \(k \) there exists a probability measure \(P \) such that \(P^{ck} = E_1 \), then there exists a point \(a \) for which \(E_a^{ck} = E_1 \).

Proof. It is easy to verify that for some point \(a \)

\[
P\left(\left\{ x: a - \frac{1}{n} \leq x \leq a + \frac{1}{n}\right\}\right) > 0 \quad \text{for any integer } n > 0.
\]

Let us introduce the notation

\[
\mathcal{A}_n = \left\{ x: a - \frac{1}{n} \leq x \leq a + \frac{1}{n}\right\}
\]

and

\[
P_n(\mathcal{A}) = \frac{P(\mathcal{A}_n \cap \mathcal{A})}{P(\mathcal{A}_n)} \quad \text{for all Borel sets } \mathcal{A}.
\]

Then we have \(P = a_nP_n + \beta_nR_n \), where \(R_n \) is a probability measure concentrated on the set \([0, \infty) - \mathcal{A}_n\) and \(a_n > 0 \). Taking into account the formula

\[
E_1 = a_n^kP_n^{ck} + \sum_{r=1}^{n} \binom{n}{r} a_n^r \beta_n^{n-r} P_n^{cr} \circ Q^{(n-r)}
\]

and the inequality \(a_n^k > 0 \), we infer that the measure \(P_n^{ck} \) is concentrated at the point 1. Consequently, \(P_n^{ck} = E_1 \). Further, it is easy to verify that

\[
\lim_{n \to \infty} P_n^{ck} = E_1^{ck}.
\]

Thus \(E_a^{ck} = E_1 \), which completes the proof.

Proof of the Theorem. From lemmas 1 and 2 it follows that for the measure \(E_1 \) there exists a sequence \(a_1, a_2, \ldots \) such that

1. \(E_1 = T_{a_n} E_1^n \)
2. \(\lim_{n \to \infty} a_n = 0 \).

First of all, we prove that

\[
\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1.
\]

Of course, it suffices to prove that for every convergent subsequence \(a_{n_k}/a_{n_k+1} \) of sequence \(a_n/a_{n+1} \)

\[
\lim_{k \to \infty} \frac{a_{n_k}}{a_{n_k+1}} = 1.
\]
We prove that

\[
\lim_{k \to \infty} \frac{a_{n_k}}{a_{n_k + 1}} < \infty.
\]

Contrary to this let us suppose that

\[
\lim_{k \to \infty} \frac{a_{n_k + 1}}{a_{n_k}} = 0.
\]

Of course, we have the formula

\[
T_{a_{n_k + 1}} E_{1}^{(n_k + 1)} = E_{1}.
\]

On the other hand, putting \(d_k = a_{n_k + 1}/a_{n_k} \),

\[
T_{a_{n_k + 1}} E_{1}^{(n_k + 1)} = T_{d_k a_{n_k}} E_{1}^{(n_k + 1)} = T_{d_k a_{n_k}} E_{1}^{(n_k + 1)} \circ T_{d_k a_{n_k}} E_{1} \to E_{0}.
\]

Hence \(E_0 = E_1 \) which gives a contradiction. Formula (4) is thus proved.

Let \(r_k = a_{n_k}/a_{n_k + 1} \) and \(r_k \to r \). Then we have the relation

\[
T_{a_{n_k}} E_{1}^{(n_k + 1)} = T_{a_{n_k}} E_{1}^{(n_k + 1)} \circ T_{a_{n_k}} E_{1} \to E_{1} \circ E_{0} = E_{1}.
\]

On the other hand,

\[
T_{a_{n_k}} E_{1}^{(n_k + 1)} = T_{r_k a_{n_k + 1}} E_{1}^{(n_k + 1)} = T_{r_k} E_{1} \to T_{r} E_{1}.
\]

Hence \(E_1 = E_r \), and \(r = 1 \). Formula (3) is thus proved.

From (2) and (3) it follows that for any pair \(x, y \) of positive numbers there exist subsequences \(a_{n_1}, a_{n_1}, \ldots \) and \(a_{m_1}, a_{m_2}, \ldots \) of the sequence \(a_1, a_2, \ldots \) such that

\[
\lim_{k \to \infty} \frac{a_{n_k}}{a_{m_k}} = \frac{y}{x}.
\]

Moreover, we can assume without loss of generality that the limit

\[
s = \lim_{k \to \infty} \frac{a_{n_k}}{a_{m_k + n_k}},
\]

perhaps infinite, does exist. First of all, we prove that the limit \(s \) is finite. Let us suppose to the contrary that

\[
\lim_{k \to \infty} v_k = 0, \quad \text{where} \quad v_k = \frac{a_{n_k + m_k}}{a_{n_k}}.
\]

Setting \(w_k = a_{n_k}/a_{m_k} \), we have

\[
T_{a_{n_k + m_k}} E_{1}^{(n_k + m_k)} = E_{1}.
\]
On the other hand,
\[T_{{x^k}a_{{n^k}+{m^k}}} E_{1}^{c_{n^k}+{m^k}} = T_{{v^k}a_{{n^k}}} E_{1}^{c_{n^k}} \circ T_{{v^k}a_{{m^k}}} E_{1}^{c_{m^k}} = T_{{v^k}a_{{n^k}}} E_{1} \circ T_{{v^k}a_{{m^k}}} E_{1} \rightarrow E_{0} \circ E_{0} = E_{0}. \]

Hence \(E_{0} = E_{1} \), which is impossible. The finiteness of the limit \(s \) is thus proved.

Using the notations \(s_{{n^k}+{m^k}} = a_{{n^k}}/a_{{m^k}} \) and \(w_{{m^k}} = a_{{n^k}}/a_{{m^k}} \), we obtain the following equations:
\[T_{{x^k}a_{{n^k}+{m^k}}} E_{1}^{c_{n^k}+{m^k}} = T_{{x^k}a_{{n^k}}} E_{1}^{c_{n^k}} \circ T_{{x^k}a_{{m^k}}} E_{1}^{c_{m^k}} = T_{{x^k}a_{{n^k}}} E_{1} \circ T_{{x^k}a_{{m^k}}} E_{1} \rightarrow T_{{x^k}a_{{n^k}}} E_{1} \circ T_{{x^k}a_{{m^k}}} E_{1} = E_{x} \circ E_{y}, \]
\[T_{{x^k}a_{{n^k}+{m^k}}} E_{1}^{c_{n^k}+{m^k}} = T_{{x^k}a_{{n^k}+{m^k}}} E_{1}^{c_{n^k}+{m^k}} \rightarrow T_{{x^k}a_{{n^k}+{m^k}}} E_{1} = E_{x}. \]

Hence we have
\[E_{x} \circ E_{y} = E_{x}. \] (5)

We define an auxiliary function \(g(x, y) \) by means of the formulas
\[g(x, 0) = x, g(0, y) = y \quad \text{and} \quad g(x, y) = sx \quad \text{for} \quad x > 0, y > 0. \] The function \(g \) satisfies the equation
\[E_{x} \circ E_{y} = E_{g(x,y)}. \] (6)

It is easy to see that \(g \) is the only function satisfying (6).

As a direct consequence of equation (6) and of the uniqueness of its solution, we obtain
\[g(x, y) = g(y, x), \] (7)
\[g(g(x, y), z) = g(x, g(y, z)), \] (8)
\[g(xz, yz) = zg(x, y) \] (9)
for all non-negative numbers \(x, y \) and \(z \).

Now, we prove that the function \(g \) is continuous in the quadrant \(x, y \geq 0 \). Let \(x_{n} \rightarrow x \) and \(y_{n} \rightarrow y \). Moreover, suppose that the sequence \(g(x_{n}, y_{n}) \rightarrow z \), where \(0 \leq z \leq \infty \). The equation \(z = \infty \) is impossible. Indeed, setting \(p_{n} = x_{n}/g(x_{n}, y_{n}) \) and \(q_{n} = y_{n}/g(x_{n}, y_{n}) \) by (6), we have
\[E_{p_{n}} \circ E_{q_{n}} = E_{1}. \] If \(p_{n} \rightarrow 0 \) and \(q_{n} \rightarrow 0 \), then \(E_{p_{n}} \circ E_{q_{n}} \rightarrow E_{0} \) and \(E_{1} = E_{0} \). It is impossible. Hence
\[z < \infty \quad \text{and} \quad E_{x} \circ E_{y} = \lim_{n \to \infty} (E_{x_{n}} \circ E_{y_{n}}) = \lim_{n \to \infty} E_{z_{n}} = E_{z}. \]

From this equation it follows that \(g(x, y) = z \). Thus the function \(g \) is continuous.

From (6) we obtain
\[E_{1}^{z} = E_{g(1,1)}. \] (10)
If \(g(1, 1) < 1 \), then, by induction from (10), we get \(E_{1}^{n} = E_{0}^{n(1,1)} \rightarrow E_{0} \). Hence \(T_{a_{n}}E_{1}^{n} \rightarrow E_{0} \). On the other hand, \(T_{a_{n}}E_{1}^{n} = E_{1} \). Since the equation \(E_{0} = E_{1} \) cannot hold true, we have the inequality \(g(1, 1) \geq 1 \). If \(g(1, 1) = 1 \), then from (10) we get \(E_{1}^{2} = E_{1} \) and, consequently, \(E_{1}^{n} = E_{1} \). Hence, it follows that

\[
\lim_{n \to \infty} T_{a_{n}}E_{1}^{n} = \lim_{n \to \infty} T_{a_{n}}E_{1} = E_{1}.
\]

Of course, it is impossible. Therefore,

\[(11) \quad g(1, 1) > 1.\]

By (9), to prove the inequality

\[(12) \quad g(x, y) > x \quad (x \geq 0, y > 0)\]

it suffices to prove it for \(y = 1 \). Let us suppose that there exists a number \(x_{1} \) such that \(g(x_{1}, 1) < x_{1} \). Since \(g(0, 1) = 1 \) and the function \(g \) is continuous, we infer that there exists a number \(x_{0} \) lying between 0 and \(x_{1} \), for which the equation \(g(x_{0}, 1) = x_{0} \) holds. From this equation, (8) and (9) we obtain, by induction, \(g(x_{0}, g^{n}(1, 1)) = x_{0} \). Setting \(z_{n} = x_{0}/g^{n}(1, 1) \) we get, by (9), \(g(z_{n}, 1) = z_{n} \). From inequality (11) it follows that

\[
\lim_{n \to \infty} z_{n} = 0.
\]

Thus, by the continuity of \(g \), the last equation implies \(g(0, 1) = 0 \) which contradicts the definition of \(g(0, 1) = 1 \). This completes the proof of (12).

Now, we prove that for all \(x \geq 0 \)

\[(13) \quad g(x, y_{1}) > g(x, y_{2}), \quad \text{whenever } y_{1} > y_{2}.\]

If \(y_{2} = 0 \), then (13) is a consequence of (12) and the definition of \(g \).

Suppose that \(y_{2} > 0 \). Since \(g(0, y_{2}) = y_{2} \) and, by (12), \(g(y_{1}, y_{2}) > y_{1} \), we infer, by virtue of continuity of \(g \), that there exists a number \(y \) satisfying the inequality \(0 < y < y_{1} \) for which the equation \(g(y, y_{2}) = y_{1} \) holds. Hence, taking into account (7), (8) and (12), we obtain

\[
g(x, y_{1}) = g(x, g(y, y_{2})) = g(g(x, y), y_{2})
= g(g(y, x), y_{2}) = g(y, g(x, y_{2})) = g(g(x, y_{2}), y) > g(x, y_{2})
\]

which completes the proof of (13).

Bohnenblust proved (see [1], p. 630-632) that the continuous functions \(g \) satisfying conditions (7)-(9), (13) and condition \(g(0, x) = x \) are of the form

\[
g(x, y) = (x^{a} + y^{a})^{1/a}, \quad \text{where } 0 < a < \infty.
\]
From this and from (6) it follows that for every \(x \geq 0, y \geq 0 \) the equation

\[
E_x \circ E_y = E_{(x^\alpha + y^\alpha)^{1/\alpha}},
\]

where \(\alpha \) is a positive constant, holds. Now, it is easy to verify that for convex linear combinations \(P \) and \(R \) of the measures \(E_a \) (\(a \geq 0 \)) the formula

\[
\int_0^\infty f(x)(P \circ R)(dx) = \int_0^\infty \int_0^\infty f((x^\alpha + y^\alpha)^{1/\alpha})P(dx) R(dy),
\]

where \(f \) is a bounded, continuous function on \([0, \infty)\), holds. Since the convex linear combinations of the measures \(E_a \) form a dense subset of \(\mathcal{B} \) in the sense of weak convergence, formula (14) holds for all measures \(P \) and \(R \) from \(\mathcal{B} \). In other words, the algebra in question is an \(\alpha \)-convolution algebra.

REFERENCES

INSTITUTE OF MATHEMATICS OF THE WROCLAW UNIVERSITY

Reçu par la Rédaction le 7. 12. 1971