COUNTEREXAMPLE ON SEMIRADIAL BANACH ALGEBRAS

 $\mathbf{B}\mathbf{Y}$

M. M. TALABANI (SWANSEA)

Introduction. A Banach algebra $(A, \|\cdot\|)$ is called *semiradial* if every non-trivial closed right ideal of A contains a non-zero element a with $0 \neq |a| = \varrho_1(a)$, where $|\cdot|$ is a second norm on A defined by

$$|a| = \sup_{b \neq 0} \frac{\|ab\|}{\|b\|}$$
 for all $a \in A$,

and $\varrho_1(a)$ is the spectral radius of the element a with respect to the norm $\|\cdot\|$. This concept is defined in [4] and the aim is to characterize the H^* -algebras in the sense that every semisimple H^* -algebra is semiradial and, conversely, every semiradial Hilbert algebra is isometrically isomorphic to an H^* -algebra. It is also proved in [4] that the norm $|\cdot|$ is a scalar multiple of the original norm $|\cdot|$ on minimal left ideals within closed two-sided ideals.

In this paper we give an example of a semiradial Banach algebra in which the scalar is not unique but depends on the choice of the minimal ideal. For the definitions and the notation used in this paper see [1] and [2].

Example. Let X = C([0, 1]) be the space of all continuous real-valued functions on [0, 1] with the sup-norm, and let $Y_0 = l_1([0, 1])$ be the space of functions f on [0, 1] such that $\sum_{t} |f(t)| < \infty$ with the norm

$$||f|| = \sum_{t} |f(t)|, \quad f \in l_1([0, 1]).$$

Let $Y = Y_0 \oplus C$ with the norm

$$||(f, a)|| = ||f|| + |a|$$
 for all $(f, a) \in Y$,

where $f \in Y_0$ and $a \in C$.

Then it is shown in [2] that $\langle X, Y \rangle$ is a strictly norming dual pair under the duality

$$\langle x, (f, a) \rangle = \sum_{t} f(t)x(t) + \frac{a}{2} \int_{0}^{1} x(t) dt.$$

Now consider the nuclear algebra $N\langle X, Y \rangle$ on $\langle X, Y \rangle$ defined by

$$N\langle X, Y\rangle = \{T \in B\langle X, Y\rangle : \nu(T) < \infty\},$$

where $\nu(T)$ is the nuclear norm of T defined as

$$v(T) = \inf \left\{ \sum_{n} \|x_n\| \|y_n\| \right\}$$

and inf is taken over all sequences $\{x_n\} \in X$ and $\{y_n\} \in Y$ such that

$$Tx = \sum_{n=1}^{\infty} \langle x, y_n \rangle x_n$$
 for $x \in X$.

Then it is known that $(N\langle X, Y\rangle, \nu(\cdot))$ is a Banach algebra, and also an operator algebra. Hence by [2], Theorem 2.5, $N\langle X, Y\rangle$ is a radial Banach algebra and, by [4], it is a semiradial Banach algebra with the second norm $|\cdot|$ defined by

$$|S| = \sup_{T \neq 0} \frac{\nu(ST)}{\nu(T)}, \quad S \in N\langle X, Y \rangle.$$

In order to find two different minimal left ideals in N(X, Y) with different multiples, we prove a series of lemmas.

LEMMA 1. For every $x \in X$ and $y \in Y$, $|x \otimes y|$ is equal to the operator norm $||y \otimes x||_{\text{op}}$ of the operator $y \otimes x$ of rank one.

Proof. For $x \in X$ and $u \in Y$ we have, with $v \in X$ and $u \in Y$,

(1)
$$||y \otimes x||_{\text{op}} = \sup_{v \neq 0} \frac{||(y \otimes x)(v)||}{||v||} = \sup_{v \neq 0} \frac{||\langle v, y \rangle x||}{||v||}$$

$$= \sup_{\substack{v \neq 0 \\ u \neq 0}} \frac{|\langle v, y \rangle| \, ||x|| \, ||u||}{||v|| \, ||u||} = \sup_{\substack{v \neq 0 \\ u \neq 0}} \frac{||\langle v, y \rangle u|| \, ||x||}{||v|| \, ||u||} = \sup_{\substack{v \neq 0 \\ u \neq 0}} \frac{||(u \otimes v)^*(y)|| \, ||x||}{||v|| \, ||u||}$$

$$=\sup_{\boldsymbol{u}\otimes\boldsymbol{v}\neq\boldsymbol{0}}\frac{\nu\big((\boldsymbol{u}\otimes\boldsymbol{v})^*(\boldsymbol{y})\otimes\boldsymbol{x}\big)}{\nu(\boldsymbol{u}\otimes\boldsymbol{v})}=\sup_{\boldsymbol{u}\otimes\boldsymbol{v}\neq\boldsymbol{0}}\frac{\nu\big((\boldsymbol{y}\otimes\boldsymbol{x})(\boldsymbol{u}\otimes\boldsymbol{v})\big)}{\nu(\boldsymbol{u}\otimes\boldsymbol{v})}\leqslant\sup_{\boldsymbol{T}\neq\boldsymbol{0}}\frac{\nu\big((\boldsymbol{y}\otimes\boldsymbol{x})\boldsymbol{T}\big)}{\nu(\boldsymbol{T})}=|\boldsymbol{y}\otimes\boldsymbol{x}|\,.$$

Now for every $T \in N\langle X, Y \rangle$ we obtain

$$v(T) = \inf \sum_{n} \|y_n\| \|x_n\| = \inf \sum_{n} v(y_n \otimes x_n)$$

with

$$Tx = \sum_{n=1}^{\infty} \langle x, y_n \rangle x_n, \quad \text{i.e.} \quad T = \sum_n y_n \otimes x_n.$$

Hence for a given $\varepsilon > 0$ there are sequences $\{x_m\}$ in X and $\{y_m\}$ in Y such that

$$\sum_{m} \nu(y_m \otimes x_m) \leqslant \nu(T) + \varepsilon$$
 and $T = \sum_{m} y_m \otimes x_m$.

For every $S \in N\langle X, Y \rangle$, we have

$$\begin{split} |S| &= \sup_{T \neq 0} \frac{\nu(ST)}{\nu(T)} = \sup_{T \neq 0} \frac{\nu\left(S\sum_{m} y_{m} \otimes x_{m}\right)}{\nu(T)} \\ &= \sup_{T \neq 0} \frac{\nu\left(\sum_{m} y_{m} \otimes Sx_{m}\right)}{\nu(T)} \leqslant \sup_{T \neq 0} \frac{\sum_{m} \nu\left(y_{m} \otimes Sx_{m}\right)}{\nu(T)} \\ &= \sup_{T \neq 0} \frac{\sum_{m} \|y_{m}\| \|Sx_{m}\|}{\nu(T)} \leqslant \sup_{T \neq 0} \frac{\|S\|_{\text{op}} \sum_{m} \|y_{m}\| \|x_{m}\|}{\nu(T)} \\ &\leqslant \|S\|_{\text{op}} \sup_{T \neq 0} \frac{\nu(T) + \varepsilon}{\nu(T)}. \end{split}$$

Since ε is arbitrary, we obtain

(2)
$$|S| \leqslant ||S||_{\text{op}}$$
 for all $S \in N\langle X, Y \rangle$.

From (1) and (2) we get $|y \otimes x| = ||y \otimes x||_{op}$.

As an immediate consequence of Lemma 1 we get

$$|y \otimes x| = \sup_{u \otimes v} \frac{|\langle v, y \rangle| \, ||x||}{||v||}, \quad v \in X, u \in Y.$$

Now, let L be a minimal left ideal in $N\langle X, Y \rangle$. Then by [4] we have $|S| = Q_L \nu(S)$, $S \in L$, where Q_L is a constant with $0 \leqslant Q_L \leqslant 1$.

LEMMA 2. For every $y \otimes x \in L$ with $x \in X$ and $y \in Y$,

$$Q_L = \sup_{u \otimes v} rac{|\langle v, y
angle|}{\|v\| \|y\|}, \quad u \in Y, v \in X.$$

Proof. We have

$$egin{aligned} Q_L &= rac{|y \otimes x|}{
u(y \otimes x)} = \sup_{u \otimes v} rac{|\langle v, y
angle | \|x\|}{
u(y \otimes x) \|v\|} \ &= \sup_{u \otimes v} rac{|\langle v, y
angle | \|x\|}{\|y\| \|x\| \|v\|} = \sup_{u \otimes v} rac{|\langle v, y
angle |}{\|y\| \|v\|}. \end{aligned}$$

It is clear that the set $L = \{y \otimes x\}_{x \in X}$ is a minimal left ideal in $N \langle X, Y \rangle$ for every $y \in Y$. Let $y_1 = (0, 1) \in Y$. Then $||y_1|| = 1$, and so $L_1 = \{y_1 \otimes x\}_{x \in X}$ is a minimal left ideal in $N \langle X, Y \rangle$. Also, for any fixed element v_0 in X there exists an element y_2 in Y with $||y_2|| = 1$ and $|\langle v_0, y_2 \rangle| = ||v_0||$ (since $\langle X, Y \rangle$ is a strictly norming dual pair). Let $L_2 = \{y_2 \otimes x\}_{x \in X}$ be another minimal left ideal in $N \langle X, Y \rangle$. Thus $y_1 \otimes x \in L_1$ and $y_2 \otimes x \in L_2$ for every $x \in X$.

LEMMA 3. We have $Q_{L_1}=\frac{1}{2}$ and $Q_{L_2}=1$. Proof. We obtain

$$\begin{split} Q_{L_1} &= \frac{|y_1 \otimes x|}{\nu(y_1 \otimes x)} = \sup_{u \otimes v} \frac{|\langle v, y_1 \rangle|}{\|y_1\| \|v\|} \\ &= \sup_{u \otimes v} \left| \frac{1}{2} \int_0^1 v(t) dt \right| \|v\|^{-1} = \frac{1}{2} \sup_{u \otimes v} \left| \int_0^1 v(t) dt \right| \|v\|^{-1} = \frac{1}{2}. \end{split}$$

We have also

$$Q_{L_2} = \frac{|y_2 \otimes x|}{\nu(y_2 \otimes x)} = \sup_{u \otimes v} \frac{|\langle v, y_2 \rangle|}{\|y_2\| \|x\|} \geqslant \frac{|\langle v_0, y_2 \rangle|}{\|v_0\|},$$

and for the particular element v_0 in X we get $Q_{L_2} \geqslant 1$.

Thus, we have constructed two minimal left ideals L_1 and L_2 (within the same closed two-sided ideal) in $N\langle X, Y\rangle$ in such a way that their multiples Q_{L_1} and Q_{L_2} are not equal and the example is complete.

Conclusion. From the above example we conclude that the definition of the second norm $|\cdot|$ for a semiradial Banach algebra does not give a nice characterization of H^* -algebras and in order to avoid this case we need to define the norm $|\cdot|$ on the Banach algebra $(A, \|\cdot\|)$ as

$$|a| = \max\left\{|a|_l = \sup_{b \neq 0} \frac{\|ab\|}{\|b\|}, |a|_r = \sup_{b \neq 0} \frac{\|ba\|}{\|b\|}
ight\} \quad \text{ for every } a \in A$$

in which all the results remain without change. Note that in this case the above example cannot be used as a counterexample as we show in the following.

Applying the same method as in the proof of Lemma 1, we get

$$|y \otimes x|_r = \|(y \otimes x)^*\|_{\text{op}}, \quad x \in X, y \in Y.$$

In fact,

$$||(y \otimes x)^*||_{op} \leq \nu(y \otimes x) = ||y|| \, ||x|| = ||y|| \, |\langle x, u_0 \rangle|$$

for some $u_0 \in Y$ with $||u_0|| = 1$ and $|\langle x, u_0 \rangle| = ||x||$. By the strictly norming property of $\langle X, Y \rangle$, for $u \in Y$ we obtain

$$\|y\| |\langle x, u_0 \rangle| = \frac{\|\langle x, u_0 \rangle y\|}{\|u_0\|} \leqslant \sup_{u \neq 0} \frac{\|\langle x, u \rangle y\|}{\|u\|} = \sup_{u \neq 0} \frac{\|(y \otimes x)^* u\|}{\|u\|} = \|(y \otimes x)^*\|_{\text{op.}}$$

Thus $|y \otimes x|_r = ||(y \otimes x)^*||_{\text{op}} = \nu(y \otimes x)$. But $||y \otimes x||_{\text{op}} \leqslant ||(y \otimes x)^*||_{\text{op}}$, since the pair $\langle X, Y \rangle$ is strictly norming (see [1]). Hence $|y \otimes x|_l \leqslant |y \otimes x|_r$, and so

$$|y \otimes x| = |y \otimes x|_r = \nu(y \otimes x).$$

Note that the minimal left ideals constructed above with different multiples have the same multiple in this case, and so far we have no counterexample.

REFERENCES

- [1] F. F. Bonsall and J. Duncan, Dual representations of Banach algebras, Acta Mathematica 117 (1967), p. 79-102.
- [2] N. J. Kalton and G. V. Wood, Radial Banach algebras, The Quarterly Journal of Mathematics, Oxford (3), 26 (1975), p. 465-483.
- [3] C. E. Rickart, General theory of Banach algebras, Princeton 1960.
- [4] M. M. Talabani, Metric theory of Banach algebras, Ph. D. Thesis (in preparation) Swansea.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY COLLEGE OF SWANSEA SWANSEA

Reçu par la Rédaction le 22. 3. 1978