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INTRODUCTION

The interest in indefinite metrics derives largely from the theory of
relativity. On the other hand (quoting Eddington [5, p. 22]): ‘“‘Assuming
that a material particle cannot travel faster than light the intervals
along its track must be timelike. We ourselves are limited by material
bodies and can only have direct experience of timelike intervals.”

This suggests a study of purely timelike metrics, independently of the
question whether they are restrictions of indefinite metrics to timelike
intervals. The present paper lays the foundations for such a theory.

The principal property of a timelike space R is this: R is partially
ordered (x < y) and a function ¢(z,y) is defined for x <y satisfying
o(w,z) =0, o(x,y) >0 for z <y and the “time inequality” o(x,y)+
+o(y, 2) < ola, 2) for w < y < 2. In contrast to the metric case this must
be supplemented by other requirements. The function ¢ does not define
a topology, which is introduced separately, there must be enough pairs
x,y with r <y, etc.

In addition, there are interesting spaces where a timelike distance
can be defined only locally (they occur also in general relativity.) The
basic axioms for timelike and locally timelike spaces and their conse-
quences are given in Section 1.

Our aim is a geometric theory analogous to that of metric G-spaces
(see [2]), which proved an adequate basis for many different types of
geometric developments. The additional axioms leading to timelike and
locally timelike G-spaces are found in Section 2. Although variations
of these axioms are possible they will appear quite natural when their
meaning in special cases is examined.

However, some remarks on compleleness are necessary. There are
two types of completeness, one concerns small and the other large distances.
The former states that o(w,,w,) >0 if », <y, v, >z, ¥y, >y, and not
x < 4. The latter type proves very elusive. In the metric case the Hopf-



6 Timelike spaces

Rinow Theorem in the general version of Cohn-Vossen (see [4]) states
that under certain conditions finite compactness, completeness and
geodesic completeness are equivalent. This theorem has no analogue
in the timelike case and geodesic completeness (i.e. the indefinite
prolongability of a geodesic curve) emerges as the most relevant
concept.

Section 2 contains, besides the axioms, the existence of segments
and geodesics. Section 3 deals with basic topological properties. Gnfortu-
nately we could only in relatively few instances refer to the theory of
metric (-spaces because just replacing < by > in the triangle inequality
rarely produces a sufficient argunent.

The absence of concrete examples beyond Lorentz spaces is a con-
siderable handicap in the study of timelike spaces. The remainder of
the paper is therefore devoted to special cases. In Section 4 we discuss
products of timelike and metric spaces which include the Lorentz spaces.
We then turn to the most important special class of timelike spaces,
namely timelike Minkowski spaces, which furnish the local geometries
in any differentiable locally timelike G-space.

More specifically, the general theory is discussed in Section 5 and
mobility properties in Section 7. There are some unexpected phenomena.
For example, the group of stability of a point may (in all dimensions)
contain a subgroup which is transitive and abelian on the spheres about
the point. There is an interesting open problem, namely the determi-
nation of all Minkowskian geometries with pairwise transitive groups
of motions. This leads to very simple sounding, but unsolved, problems
on projectivities of convex hypersurfaces in affine space, which are of
general interest. Section 6 contains all that is known in this respect.
The difficulties derive from our lack of information regarding locally
compact transformation groups.

We conclude with timelike and locally timelike Ifilbert geometries.
The above mentioned completeness for small distances is particularly
interesting in this case, because it eliminates the timelike form in favor
of the locally timelike form, which contains the so-called exterior hyper-
bolic geometry as a special case.

The present paper is intended as a basis for further investigations.
Some subjects in metric G-spaces clearly do not have timelike counter-
parts, for example the theory of perpendicularity, [2, Chapter II]. But
others like mobility, remain and become much more challenging. Of
course, there are also entirely novel problems.

Finally we point out that the study of indefinite metrics started
in [4] although independent of, and quite different from, the present
theory, is closely related to it in purpose.



1. Timelike and locally timelike spaces T

1. TIMELIKE AND LOCALLY TIMELIKE SPACES

Preorderings, which will turn out to be partial orderings, of the
space R, or a neighborhood U (p) of a point p in R, are essential for time-
like spaces and will be denoted by # <y or ¥ <, ¥, reserving z < ¥ and
x <,y for the case x # y. We mention that by definition r <z or z < @
for all xe R or ze U(p). The sets of pairs of points #, y in RX R or U(p) X
X U(p) for which x <y, z<y, x<, ¥, x<,¥y will be denoted respec-
tively by (<), (<), (<), (<p). Similarly, (>) ete. consists of the pairs «, ¥
for which y < «, i.e. in the notation used by some authors (>)=! = (<).

The axioms for a timelike space are

T,. R is a (non-empty) Hausdorff space.

T,. A preordering x < y is defined in R. The set (<) is open in R X R
and each neighborhood W(q) of a given point ¢ contains points
x, y with << q and g <4.
T,. A continuous real valued function o(x,y) is defined on (<) and
satisfies
o(zy2) =0, olz,y) >0 for =x<y,

and the “lime inequality”

ez, y)t+ely,2) <e(z,2) for z<y<a

The axioms for a locally timelike space arise from these by localiz-
ing T; and T, and adding a consistency condition.

R is locally timelike if 1t satisfies T, and

T,. Each point has a neighborhood U (p) in which a preordering x <,y
ts defined. The set (<<p) ts open in U(p) X U(p) (or BRXR) and
each neighborhood W(q) of a given point qe U(p) contains points
x, Yy with x<<pq and ¢<<p 9.

T,. 4 continuous real valued function gp(x,y) ts defined on (<p)
and satisfies

e(2,Y) =0, o> y) >0 f x<py
and
op (@ Y)+ 0 (Y, 3) Cop(@,2) I <py<pz.

Ty If (<p) n (<q) #O then (<p) ~ (>g) =0 and 0p(2, Y) = @q(Ty Y)
Jor (z, y)e(<p) ~ (<g). If (<p) ~ () # D then (<p) ~ (<y) = O
and op(2, y) = 0q(y, %) for (x,y)e(<p) ~ (>q).

A timelike space may be considered as the special case of a locally
timelike space where U(p) = U(q) = R and (<,) = (<,) for any two
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points p, ¢. This remark frequently obviates separate definitions or
proofs for the timelike case which are obtained by simply omitting the
subscript p. Where this is clear we will not discuss the timelike space
explicitly. The following are two simple but useful examples

(1) r<py (and x < y) are partial orderings.

For x <, y and y <p @ give = <, @ and op(, ¥) + ¢p (¥, 7) < 0p (@, 2) =0,
hence gop(x, y) =0 and = = y.

We say that y lies between x and z and write (x v 2), (or (x y 2))if
#<p Y <pzand 0p(T, ¥)+ 0p(Y, 2) = op(, 2).

(2) (v xy)p and (v y z), if and only if (wx2), and (v y 2)p.

Let (v xy), and (u ¥y 2)p; then

op(Uy 2) = op(U, Y)+ 0p(Y, 2) = 0p(u, B)+ 0p(Z, ¥) + 05 (Y, ?)
< 0p(U, )+ 0p(x, 2) < 0p(u, 2),

hence (ux3), and (z ¥y 2),. The converse is proved in the same way.

If in a locally timelike space we replace, for an arbitrary set of
points p, the set (<) by (=,) and define a new distance by op(z, y)
= o,(y, ), all axioms will be satisfied.

The space is consistently ordered if (<) ~ (>4) =0 for any p, ¢
The space possesses a consistent ordering if by replacing, for a suitable.
set of points p, the set (<) by (>=,) and o, by p,, the space can be made
consistently ordered. If such a change is possible, we may and will assume
that the original space is consistently ordered. There are very interesting
spaces which do not possess consistent orderings (see Section 8).

In a consistently ordered space we call chain C,, from x to y a set
of points u, = .0, uy, ..., =y with w;_, <p, u; for some p;. If (', exists,
we write r:Z y. Then « < y and y =7 > imply » <L 2. We put

a(y 4, Cry) = D 0p (Wi gy ).
Because of T, this is independent of the choice of the p; for which
Wiy Sip, Ui-
(3) In a consistently ordered locally timelike space, if xy = sup(a(m, Y, Gz,,))
is finite for all x, y with x <y, then ry defines a timccl?;ce space.

The proof is obvious. (3) singles out those locally timelike spaces
which can be identified with timelike spaces.

A local T-curve in a locally timelike space is a continuous map »(?)
of an interval [«, f] in # into a neighborhood U (p) satisfying T, such
that either (a) x(t,) <, «(t,) for all ¢, < t, in [q, 8] or (b) x=(f,) <, x(¢)
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for all t; < t, in [«, §]. We refer to the two possibilities as cases (a) and (b)
respectively. To treat them simultaneously we put
QP(x(tl)7 a’(tz)) in case (a),

x(t)@(ty) = on(T(ts), (1)) in case (b).

For a partition 4: a == t, < 1, < ... < tx = f of [q, 3] set
k

Lz, 4) = Y @(ti_)r(t)

Tl
and define the length L(x) of «(t) by
L(x) =infL(x, 4).
A

Because of the time inequality
(4) I(®) < L(x, 4) < z(a)@(B).

For any A4 put |[4] = max(t;;,—¢). Then we bhave as for metric
spaces: !
(5) If A, is a sequence of partitions of [a, 8] with ||A,| — O then L(z, A,) —

L(x).

Choose A,: 1, = a< u, << ... < u, = f# such that

Lz, A,) < L{x)+¢. _

In J, choose t; (¢t =1,..., n—1) as the last element smaller than

u; and put #y = a,t, = 3. Then for large »

h=a<ti<...<t,=p#, also limt; = «u;.

If A, denotes this partition of [a, ], then
L(x, A,):5 Lx, 4,) and  lime(t;_ )z} = o(u_)a(u;).
Therefore |
limsup L(x, 4,) < hmmL(r, 43) = L(x, ) < L(x)+¢

and (3) follows from liminf L(x, 47) > L(x).

If a<<t'<t”"<pB we denote by L. (r) the length of x(1)|[t’,t’]
(i.e. the restriction of x(¢) to [t',1"]).

We conclude from (d) that length is additive:

(6) For any pwrtition 1: a = ly,<t, << ... <1 =p
k
L{s) = Z’Lfg_l(.r).
i=1

(7) If t, >, then LY(r) — L().
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IFor either t, =1, or t,<t, and Lﬁg(m) < z(t)x(t,) >0 or t, >t,
and Lf;(a;) < z(ty)x(l,) — 0. Now the additivity (6) of length yields the
assertion.

A continuous map z(f) of [«, f] into a locally timelike space is a T-curve
if a partition a = t, < ¥, < ... < t; = B exists for which each x(t)|[t;_,, t;]
is a local T-curve. We define the length of xz(¢{) by

I
L(w) = ) Lit (x)
i=1

and conclude from T, and (6) that this definition is independent of the
partition chosen.

The assertions (5), (6), (7) remain true for 7-curves, but L(rx, 4,)
in (5) will, in general, be defined for large » only.

In timelike spaces there is, of course, no difference between local
T-curves and T-curves, moreover always L(z) < g(z(a), z(B)).

In consistently ordered spaces it suffices to consider the case (a)
only. But there are interesting spaces which cannot be consistently ordered
with T-curves traversing the same U(p) twice satisfying (a) the first
time and (b) the second.

Almost the same proof as for lower semi-continuity of length in the
metric case yields upper semi-continuity in the present case (G, p. 20)(').

(8) If x,(t) (te[a,B]), v =10,1,2,...) are T-curves in a locally timelike
space and x,(t) tends uniformly to x,(t) then
limsup L(a,) < L(x).
In the timelike case x,(t) — x(t) for each t suffices.

The length of a 7T-curve with a < g may vanish: If R = # with
the usual order and o(t,, f,) < |t;, —1,|°, ¢ > 1 then R becomes a timelike
space in which all local T-curves have length 0. Such curves correspond
to non-rectifiable curves in the metric case. Therefore we define:

A T-curve z(t) is rectifiable if L(x) > 0 for ¢, < t,. On a rectifiable
curve (1), te[a, 8], we can introduce arclength as parameter:

s(t) = Li(z), s(a)=0.

The function s(f) is continuous by (7) and strictly increasing by recti-
fiability. No the inverse t(s) is defined. Then

y(s) = a(t(s)), 0<s<Lx)
is the representation in terms of arclength:

La(y) = s,—s, for s, <s,.

(Y) Paper [2] is quoted as G.
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Because of additivity it suffices to prove Lj(y) = s and this follows from
the uniform continuity of t¢(s). Also, L(x) = L(y).
A local T-curve, x(t) c U(p) for te[a, B] is a segment if

L(r) = x(a) z(f) = gp(e(a), ®(B)) or = op(x(B), a(a)).
We have (in case (a)) for a<t, < t, < f from (4) and (6)

op((a), «(B)) = Lil(m)-f-Lff(m)-J-sz(m)
< op(®(@), B(L))+ eol2(t)), 2(t) + en(@(te), 2(6)
< oplz(a), ®(B)).
Therefore
Li:l! = Qp(x(tl)y .’I/’(lz)) for e <t <t,<f.
This shows

(9) A segment is rectifiable and its restriction to any sub interval is a seqy-
ment.

(10) A rectifiable local T-curve x(t) is a segment if and only if its arclength
representation y(s) satisfies

Qp(?/(sl)’ ?1(32)) =8,—8; for 8, <s,
or
9'13(?/(32)) .1/(31)) = 8,—8, for s ,<s,.

In the first case, if the condition is satisfied, then for any A4

L(4,y) = op(y(0), y(L(@))) = onlz(a), 2(B)).

The converse is contained in the preceding argument.

x(t) defined on a connected set z of the {-axis (which contains more
than one point) is a partial geodesic, if for each tyer an e(t,) > 0 exists
such that xz(t)|[t,—e(t,), to+ ()] ~ T is a segment. Partial geodesics
can be partially ordered: {r,z(t)} < {z/,z'(1)}if v < v’ and =(t) = 2'(¢)
for ter. Then each well ordered set {z;, 2:(f)}, tel of partial geodesics
has an upper bound, namely, the obvious partial geodesic defined on
(J7:- By Zorn’s Lemma cach partial geodesic lies on a maximal partial
geodesic. Maximal partial geodesics are called geodesics. Thus we have

(11) A partial geodesic, in particular a (proper) seyment, can be ertended
to a geodesic.
On a partial geodesic {r,x(f)} we can introduce “arc length” as
parameter: select {,;er and any real «, put s(,) = « and
$(t)—a = Lﬁo(:z;) for t>t,, a—s(t)=Lox) for t< ty.

Then 1(s) is defined, monotone and continuous and with %(s) = a:(t(s)),
y(a) = »(ty)
L3(y) = s,—s, for s, <s,.
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We will always assume that for a partial geodesic {r, z(t)} the pa-
rameter is arc length, i.e. Lﬁf(a:) =t,—t for t, <, and t;ez.

This implies for segments that arc length is parameter with a possible
<hift of the origin

ty—1y == Ql’(m(tl)r ”(tz)) or =917(v'1’(t2)7 ‘B(tl))
if
axl,<l,Xf =atx(u)x(p).

According to our agreement for consistently ordered spaces we have:
(12) If x(l) is a geodesic in a timelike space then x(t') < x(t'’) for 1’ < 1.

A geodesic {r, r(t)} in a timelike space is a line if #(¢)|[t’, t""] is a seg-
ment for any t' <t in 7.

The axioms T,_, do not contain the existence of segments, which
must be derived from additional axioms. The first step of the existence
proof works, however, in any locally timelike space.

A linear set A(q,r) = {r,x(t)} is a map ? - 2(t) of a subset 7 of an
interval [0, #] in some U(p) with the following properties

Oer and »(0) == ¢, Per and z(B) =,

either x (1) <p r(f,) for all ¢, < t, in 7, or x(t,)p, < @(t,) for all ¢, < ¢, in T,
and, with the previous notation,

J'(tl).l‘(tg) - f-_)'— tl fOl' O {: tl \< tz \\/ ﬂ;

which implies g = ¢r.

Since v = {0} iwmplies ¢ = » we assume ¢ # 7.

The A(q,r) can be partially ordered like partial geodesics and Zorn’s
Lenmma yields the existence of a maximal linear set containing a given
i{q, 7). Notice that {q,} is a linear set. Thus we have

(13) A given linear set A(q,r), in particular, {q,r} with ¢ <<7r tn U(p),
lies tn a maximal linear set u(q,r).

So far we only used the existence of the partial ordering (<;) and
not the additional properties postulated in T, or T,. They serve the
purpose of making the theory non-trivial. To see this we consider two
examples where I is the (x,, ir,)-plane. First we define ct < y by =, < v,
and », = y,; we put g(z,y) = y,—x,. Then all axioms are satisfied
except that (<) is not open in R x R.

Next define »r< y by r,+1<w, and |z,—y,| < |#,—¥,] and de-
fine

01(y ) = ¥y — &y — Yo — a5

then not each W(g) contains points », v with x < ¢ < y.
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However, defining z<<y by » <y, and |r,—¥, < |r,—¥,| and
using o,(x, y), the axioms T,, T,, T, are satisfied. We deduce from T,
or T, (with U(p) = R in the latter case)

(14) Given W(p) < U (p) then W'(p) c W(p) and points u,vin W(p) exist
such that v <, x <, v for every xe W' (p).

For u, v with u <<, p <, v exist and the openess of (<,) guarantees
that v <, 2 <<, v for x in a suitable W’ (p).

The most important implication is that any two points x, v in W'(p)
have a common predecessor %, and a common successor 2.

We observe that in the (z,, z,)-plane with the metric o, and the
second definition of z < y the set [z, x(f)] with = = [0, 2] and

z(t) = (4, 0) for 0 <t <1, z(t) = (t+1,1) for L<<i<2

is a maximal linear set x[(0, 0), (3,1)] for which 2(¢) is not continuous.
although z(f) >t is an isometry, i.e. o(z(ty), z(t,)) = [t,—1,| for t, < t,.

2. SEGMENTS AND GEODESICS IN TIMELIKE G-SPACES

We now list our additional axioms. Those for a timelike G-space
are, besides T,, T,, T;,
G,. The space, R, is locally compact, connected and has a countable
base.
G.If v, <Y, 7, >, ¥ — Y, and not x <y then o(z,,vy,) — 0.

-

G;. If , > q, 2, > q and (x, ¥, 2,) then y, —q.

G,. If g <<r then points with (q x v) exist and the closure of all x with
this property is compact.

G,. Each point has a neighborhood V (p) such that for x, y in V(p)
with x <y points « and z with (v z y) and (x y z) exist.

Ge. If (wymy), (u,xy) and o(u,,x) = o(uy, ) then u, = u,.
If (wy2), (@y2) and o(y,2) = oy, 2) then 2, = z,.

The axioms for a locally timelike GG-space R are T, ,, G, and

G,. If 2, <v,, x >2eU(p), 9y, >yelU(p) and not =<,y then
en(®., ¥,) > 0.

Gy. If 2, > qeU(p), 2, > qeU(p) and (2,9, 2,), then y, — q.

G,. There is a neighborhood U’'(p) < U (p) such that for q, v in L' (p)
and ¢ <pr points x with (q x v), erist.

G;. There is a neighborhood V (p) = U (p) such that for x, y in V(p)and
x<pya point u in a given neighborhood of x with (uxy), and
a point z in a given nerghborhood of y with (r y z), exvist.
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Go. If (a2 )y, (uyxy)y and op(uy, x) = 0,(ts, ) then u, = u,.

If (zy 20)p, (TY22)y and 0p(y, 1) = 0p(Y, 55) then 3, = z,.

The two sets of axioms are strict analogues except for G,, G; and
G;, G;. In the latter case we could omit the condition “in a given neigh-
borhood of x (or y)” because the considerations of this section will show
that after shrinking U’(p) and U(p) the axiom G; will be satisfied with
the existence of neighborhoods of # and y when postulated without this
existence. We chose the given formulation for emphasis.

As to G, and G;, a local form of the second part of G, or G, follows
from G, or G, and this suffices for locally timelike G-spaces.

(1) Given W (p) with compact W (p) = U(p), there is a W,(p) =« W(p)
such that ¢, r in W,(p) and (q x 7), mply ve W(p).

(U(p) = R in the timelike case. We will not mention this modifica-
tion every time.)

If (1) were false we could find a sequence of point triples g,, 7,, 7,
i W(p) with (¢q, z, ,),, q. Py NP and z, ¢ W(p). This contradicts G,
or (1 The compactness of w (p) is not nsed, but this is the most useful
case a,nd exhibits the analogy to G;. The axioms G,, G, are important
completeness requirements whiech have no counterparts in the metric
case.

In the following considerations, in as far as they are local, we will
always assume that ¢r = 0,(¢q, ) and not qr = o0,(r, q).

Gs and Gg play a greater role in timelike spaces than the corre-
sponding axioms for metric G-spaces. To understand this fully we prove
(2) If T,., and G,_, hold and the W (p) of (1) lies in the U’ (p) of G4 then for

a maximal linear set u(g,r) = {r, x(t)} with q, r in W,(p) the sel T is

the wnterval [0, qr].

In the timelike case T,, T,, Ty and G,, G,., imply the same for any
maximal linear set.
However, x(t) need not be continuous.

First we deduce from T,_, and G,-, that 7 is closed for ¢, r in W,(p).
It follows from (1) that z(t)e W(p). Let f,er and t, - t,. We want
to show {,er and may assume 0 < t, < ¢r. Because of (2) a subsequence
{x(tx)} of {w(t,)} tends to a point z,.

Let 0 <t' < t,<t’ < qr where t',t”’ lies in 7. Then

Q-p(-'l:(t')y .’L‘(t;,)) —>ty—1" >0, Qp(x(i‘k)7 .’L‘(t”)) > 1" —1, >0
hence by G,
p(t'y <z, and o,(x(t’), 2o} =t,—1,

o< x(t’) and  o,(my, 2(1)) =t —1,.
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St

Therefore, if u(q,r) did not contain a point corresponding to 7, the set
ulq,”) v x, would still be linear contradicting maximality. The proof
for the timelike case uses the second part of G, instead of (1).

Assume now that v # [0, ¢r]. Then «,f8 In t with (a,f) ~7 =0
would exist since 7 is closed. By G, there is an x, with (z(a) z, z(f)),
since x(a), z(f) lie in W(p) < U’'(p). We deduce from (1.2) that

(e(t) Zyz(t'’)), for O0<t'<aand <t <gr

In particular (g z,7), and x,e¢ W(p). Therefore u(q,r) v x, would
still be linear.

The distance g,(x,y) of Section 1 satisfies T,,T;, T, and G,, G,.,
(the latter is proved under more general hypotheses in Section 4) and
we noticed that u(q,r) with noncontinuous z(t) exist.

We now show

(3) If Gg or Gg hold in addition to the hypothesis of (2) then z(t) is con-
tinuwous, hence u(q,r) is a segment.

We must show z(t,) — x(l,) for {, —1, and t,er. We assume ¢, > 0,
the case t, = 0 is treated like t, = ¢r. Since each subsequence of {x(1,)}
has an accumulation point, it suffices to show that z(t,) — «, implies
7e = x(t,). As in the proof (2) we find for 0 < ¢’ < ¢, that

z(t') < =z(t,) and Qp(w(t')v -”70) = t,—1' = Q,,(.’D(t'), w(to))-

Then (g (t') x(t,)), and (g z(t') zo)p and G4 gives x(ty) = x,.

We will denote a segment from ¢ to r by o(g, ) in the timelike case
and o,(q, r) in the locally timelike case.

T,-, and G, imply

(1) There is at most one segment o,(q, v) if a point u with (u q 7), or a point r
with (qrr) exists.

For let (% gr), and assume two distinet segments x(?), 2'(¢) (0 < ¢
< op(q, 7)) from ¢ to r exist. Then x(t,) 7 x'(t,) for some t, with 0 < ¢,
< op(q,7) and g,(q, ()} = ep(g, ®'(t,)) =1t,. On the other hand (1.2)
yields (u g z(t,)), and (u g #’(t,)), contradicting G.

We combine our results to obtain the following important facts:

(5) THEOREM. In a timelike G-space a segment a(q, r) exists whenever g < 7.
It is unique when either w with (w qr) or v with (qr v) exists. In par-
ticular, a(q,r) is unique when ¢, r lie in a V(p) of Gs.

(6) THEOREM. In a locally timelike space there is at most one segment
op(q, ) when w with (u qr), or v with (qr v), exists, in particular when
q,r lie in the V(p) of G;.

Each point has a neighborhood W,(p) such that o,(q,r) exists for

g, with ¢ <<r in W, (p) and all these o,(q,r) lie in a compact set W.
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It should be mentioned that the use of Zorn’s Lemma could have
been avoided in the existence proof of segments and geodesics, but the
arguments would have been longer.

(7) TueoruM. In a timelike or locally timelike G-space the extension of
a partial geodesic (in particular of a proper segment) to « geodesic {z, x(t)}
is unique and T i8S open.

The uniqueness follows from G, G, and the openness of 7 from
G, G:.

This implies that a geodesic {7, z(?)} cannot traverse the same segment
in opposite direction (i.e. that [«, 8] and [p’, a’] in v exist with f—a
=a' —f >0and z(a+1) = x(a’"—1) for 0 <t < B— a), although allowing
reversal of the local partial ordering might seem to make this possible.
A geodesic may, of course, be closed and traverse one segment infinitely
often in the same direction.

We cannot conclude that for a geodesic t is the entire real axis, be-
cause our axioms do not contain a completeness requirement correspond-
ing to finite compactness postulated for metric G-spaces. The reason for
omitting such a postulate will be discussed in the next section.

We now prove various facts concerning the extent of segments and
convergence of geodesics.

() If 2(t) is a geodesic and x(t)|[a, B] = V(p) ~ W (p) then it is a segment
(W,i(p) = R in the timelike case).

Assume this is not true. Then there is a ' ¢(«a, §) such that z(t)|[a, ']
is a segment and x(t)|[a, t] is not for ¢t > ¢’. Yor if o,(x(a), z(t,) >t —«a
and ¢, > t, then

Qw("’(a)v -v(t-z)) = OD(w(a)a w(tl)) + Qp(-'l’(tl)’ w(tﬂ)) >t —al-t,—1,.

Since w(a), x(t')e V(p), there is a v with (z(a) 2(t') v),, in W,(p) and
hence a segment o,(x('), v). By (1.2) the segment z(t)|[a, '] continued
by ap{a(t’), v) would be a segment and lead to a geodesic providing a second
continuation of x(t)[{a,t’] to a geodesic.

(9) COROLLARY. In a timelike space each geodesic is a line if and only if
for given xz <y points u, v with (wxy) and (x y v) exist.
The sufficiency follows from (8) and the necessity is obvious.
(10) Let x, ye W' (p) and x < y where W' (p) <« W’ (p) = V(p) ~ W,(p).
Then op(z,y) < ap(u, v) with u <pr <,y <pv,op(u,v) c W'(ip) o
wo v and w,ve W' (p)—W"'(p).
We consider the geodesic x(t) for which x(t)|[0, op(r, ¥)] I8 o, (x, ¥).
If (zy =), and z¢ W,(p) then op(y, 2) is 2(t) | [on(2, ¥), 0p(2, 2)]. Therefore,
ift, = sup? wherex(f)|[a, t] =« W (p), it follows that x(t,)e W' (p) — W (p).
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Similarly for t, = inft with z(2)|[t, 0p(®, ¥)]< W (p) then x(t,) e W'’ (p)—
—W'"(p) and x(t)i[t, ] i1s a segment by (8).

(11) For a given geodesic {t,, xy(1)} and lyet, there 1s an »n >- 0 with the
following property:

if {r,,x.(1)} (v =1, 2,...) are geodesics, [a, t,—e] < () 1, (a<Tly—&,
r=0
0 < e<n), and x,(1) = x4(t) for te[a, to—e], then [a,ly--e|cTy ~ () Ts

v=1\
for a suitable N and x,(t) — x,(1) for te[a, t,+ €]

Put p = x({,) and choose n > 0 such that x,(f)|[t,—29, t,+29]
W"”(p). Liet a' = min(q, t,—2¢), ¢, == r,(a’). For large » the points gq,,
x,(t,—e) lie in W”(p). By (10) there is a segment o,(¢,,7,) containing
x,(t)|[a’, t,— €] which lies in W' (p) except for 7,e W' (p)— W' (p), more-
over op(q., 1) is x,()|[«’, ' -+ 0,(¢. 7.)]. Any accumulation point of {r}
lies in W' (p)—W" (p).

An accumulation point of y,eo, must lie on x4(t) because of the
uniqueness of prolongation. The continuity of the distance g,(z, ¥) now
shows that x,(t) is defined for te[a,{,+¢] and large » and also that
r, (1) - ry(t) in this interval.

(12) Turorey. Let {z,,x, ()} (v = 0,1,2...) be geodesics and [a, ] <
(1. (a << B)y, morecover x.(1) — xq(t) for tela, fl. Lel z* be the set
r=0

of those t which lie in all but a finite number of z,. Then t* > 1, and
2, (1) = xo(t) for ter,. The convergence is uniform on any [t,,1,] = 7,.

Put t* = 1"~ (¢, o) and assume t°¢ 7,. Then {je7, exists such that
At >t] =0 but v o [u,t,]. For each € > 0 there is an N (&) with
7, © [a, ty—e] for » > N (g). Choose ¢ such that (11) is applicable. Then
(11) would give 7. o 4, {,+¢] for large », s0 1* = [a,t,+¢] which is
impossible. With a similar argunient for ¥ = 7% ~ (—o0o, ] this shows
T* D 1,.

Convergence on 7, %lso follows from (11) and uniform convergence
in closed intervals is equivalent to the easily proved statement «,(f,) -
xo(ty) for t, > tget*.

A partial geodesic {r, 2 ()} in a timelike space is a progressing (reced-
ing) ray if T = [u, 0o) (v == (—oc, a]), x(t,) < x(l,) for t, < t, and

olr(t), x(t)) =t.—1t, for 1, <t,.

Assume {[a, o0), (1)} and {[f, o), y(f)} are two progressing rays
for which y(f) = x(«') with «' > a.
If y(t) is a subray of r(f), i.e., y(t-+p) =r(t+ «’), we can evidently
find sequences f, -» oc, . - oo such that x(t,) < y(t,) and, writing ab
R
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instead of o(a, b), z(2,) ¥ (1,) — 0. In metric @G-spaces the existence of such
sequences is also sufficient for y(¢-+8) = x(t+d’) (see G, p. 137; a’' >«
is essential). One verifies easily in the Lorentz plane (see Section 4) that
in timelike spaces this is not correct even if we require additionally that
a sequence !, — oo with y(1,) < z(t,’) and y(1,) «(t,’) — oo exists.

So it looks as though the metric theorem has no timelike analogue;

however, it does, and the analogue leads to a generalization of the result
in the metric case.

(13) THEOREM. Let {[a, o), z(t)} and {[B, o), y(t)} be progressing rays
with y(8) = x(a’), a’ > a. If there are sequences 1,,1,,1. tending
to oo such that with x(t,) = x,, y(t,) = ¥y, elc. either

x, <y, <wx, and rx —ry —y.r. -0

or ’

’ 1? t? ’ ’ rr
Yo < T < Y, and Yy —4%r—8Y > 0

then y(t+ ) = xz{t+a') for t = 0.

There is, of course, an analoguous theorem for receding rays.

For an indirect proof assume 2z = y(y+f) # x(y+a’) for some
y >0 and put 2(a) =z,2(a’) =y(f) =y. Then xz—xry—yz =96 > 0.
In the first case we have for large »

wx, = wy+yx,+a,x, < zy+yy,— oy, +a,x
=y +ys+ 2y +aa, —ay,,

hence

zx, = w2t oy +yw, — 0+ (2,3, —2,y,—y@)).
This would yield xx,” < zz+2y,+y,y, for large ».

In the second case, for large »,
xy, < 2w, — Y, 2, = Y+ Y, — Y, 2, < Y+ y2+2y, —y,x,— 9, ,
hence
xy, < vz+2y,— O+ (¥, — Y@ — 1y, )

and so xy, < rz+ 2y, for large ».
The same argument with signs reversed yields for metric G-spaces
that y(t+ p) = x(t+ ') if either x,y,+y,z, —x,2,) -0 or y,a,+x,y, —

— 4.y, —0. This contains the statement that y(t+ 8) = z(t+ «’) if z,y, -0

as the special case x, = r,’ or y, = y,” which does not make sense in the
timelike case.
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3. TOPOLOGICAL PROPERTIES. COMPLETENESS

A line element L, at a point p of a locally timelike space is a maxi-
mal set of segments o,(¢q, ) such that: each of these o,(q, 7) contains p
as relative interior point and any two have a further common point. It
follows from (2.4) that the intersection of any two segments in L, is an
element of L,. Lach o,(q,7) with ¢ <, p <, lies in exactly one L,.

A geodesic A which contains (in an obvious sense) one segment
in L, contains all. Therefore we call L, a line element of H at p. The car-
dinal number of distinct line elements of H at p is the multiplicity of H
at p. The point p is a szmple point of H if its multiplicity is 1, otherwise
it is a multiple point. H is simple if it has no multiple points. As for
G-spaces (G, pp. 14-45) one proves

(1) The multiplicity of a geodesic at a point is finite or countable. A geodesic
has an at most countable number of multiple points.

(2) The geodesic {r, xr(t)} ts stmple if and only if either x(,) # =x(t,) for
ty 1, or if x(t) =x(ty) for t, =t, implies r =R and x(l,+1)
= z(t,+t) for all t.

It follows from (2.3.6) and T,, T, that a (locally) timelike G-space
R contains with each point p segments containing this point, therefore,
dim, R > 1.

Whether a locally timelike G-space is always a topological manifold
is not known. This is not even known for metric G-spaces. In all inter-
esting special cases it will be a manifold. Nevertheless there is a certain in-
terest in the topological properties which can be inferred from the axioms.
The presently best way for metric G-spaces is not that of &, but proving
that the space is locally homogeneous in the sense of Montgomery, see
[4, Theorem (3.2)]. This proof cannot be carried over to timelike G-spaces
since it uses in an essential way, that there are unique segments connect-
Iing any two points in a suitable neighborhood of a given point. However,
the approach taken in G can be carried over with some modifications.
We will briefly indicate, mostly without complete proofs, how this is done.

In the first place it follows from the remark after (1.14), (2.5.6)
and G, that

(3) A (locally) timelike G-space is arcwise and locally arcwise connected.
Next one observes the following application of (2.6.12).

(4) LEMMA. Every point p of a (locally) timelike G-space has a neighborhood
W.(p) such thatl op(q,r) exisis and is unique for q<r in W,(p). If
G, 7(v=0,1,2,..) lie in W,(p),q, <7,,¢ —>qo, 7 —7, and z,(1)
represents op(q.,r,) with z,(0) =gq, then z,(1,) — xy(t,) for 1, —1,.
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This is used to prove

(V') If two distinet line elements L, , L2 exist at p, then dim, R > 2.
py Lip y2 p

(The proof produces a set homeomorphic to a 2-simplex with p
corresponding to a vertex.)

If ¢} eL,. Let o,(p, q) < o), and o,(p, ) < o) consist of those points
on ¢, for which p < z. Using T, and the results of the preceding section
we can find ¢ with (p ¢’ ¢), and »* with (p »" r), such that ¢’ < ' and
op(q’, 7’) as well as all segments o, (p, y) wWith yeo,(¢’, 7’) lie in the W,(p)
of (4). It then follows from (4’) that | Jo,(p, ¥) is homeomorphic to a 2-sim-
plex. v

(5) A locally timelike G-space of dimension one consists of one simple geo-
desic. A one-dimensional timelike G-space consists of one line.

Becausce of (3) no geodesic can have multiple points, and there si
at least one geodesic {r,z(?)}. We want to show that any point v lies
on z(t). Let t,er and ¢ = x({,). Using the remark after (1.14) we find
points %, = ¢q, %,, ..., % = ? such that for cach ¢ = 0,..., k—1 either
a segment o, (u;, #;.;) or segments o, (u;, #) and o, (1, v) exist. Ap-
plying (1') repeatedly, we see that all these segments must lie on x(f).

The same argument slightly refined yields:

(6) If dim, R =1 for some p, then dim, R = 1 for all p.

The second part of () is seen as follows: if R is timelike, then
x(ty) < r(t,) for t, <t, by (1.12) and a segment a(m(tl),m(tz)) exists.
z()|[t,,1,] is the only arc in R from x(¢;) to r(t,) and hence is a seg-
ment.

(7) THEOREM. A two dimensional locally timelike G-space is a manifold.

For simplicity we take a timelike (f-space in which all geodesics
are lines. The argument is the same in the general case using the unifor-
mity expressed in (2.10) for localization.

Because dim, R = 2 for all p by (6) there are two distinct line ele-
ments at each point p. There are points u,v,7, s with (u pv), (rps),
n < 7 < 8§ but not (wrs). We prolong each o(u, x), xea(r,s) to a o(u, z*)
so that the x* form an arc B. It suffices to show that any sufficiently small
neighborhood U of p is contained in (Jo(u, r*) = V*.

=

If this were not correct we could, possibly by shrinking o(r,s),
produce the following situation. u* is close to w« not in V*, (p u* ¢) and
y<efor ye |UJ o(p,z) =V.

.T(-'G(T,S)

Put 28 = minrec > 0 and let = be the map of V' in {J o(2, ¢) which
zel”
maps * on @ with (rz'¢) and r'¢ = 5. Put V' = aV.



3. Topological properties. Completeness 21

We show dim V' > 2 following the method of [G, p. 53] where refe-
rences to the facts used are found. It suffices to prove that any set F'c V'
which separates ¢’ = ng(r,s) from #' = nu has at least dimension 1.
The set a1 F' == F is closed and separates o(r, 8) from p, so does a con-
tinuum F, in F, hence F, contains a point r; of o(p,r) and a point
s; of o(p,s). Then F, = aF,c F', moreover =r,, ns, lie in F, and
are distinct. Since F, is a continuum, dimF,>1. So dimV'> 2.
Now L% o(2’, ¢) contains the product of V' and a segment, and has

-
at least dimensions 3.

For our next topie, completeness, as well as for later purposes, we
need some auxiliary facts.

In a timelike space R the set of those points whose distance from
a given point exceeds a certain number, plays in many respects the role
of open ball in metric spaces. We, therefore, introduce the notation (¢ > 0)

F(x,0) = {y: <y and xy > o},

P(z,0) = {u: u<x and uz > o}.

We put F(zx, 0) = F(x), P(x,0) = P(x). These sets consist respec-
tively of all points which follow or precede z and are called the future
and the past of x. The closures of F(x, o), P(x, o), F(z), P(x) are de-
noted by F(z,s), P(x, ¢), F(x), P(x). We prove:

(8) In a timelike G-space (for o > 0)if & < y then F(x, xy + o) > F(y, o) —y;
if u<x then P(x, uz+ o) = P(u, o) — u.
For let ze¢F(y,o0)—y. For zeF(y, o) the assertion follows from
rzz2zy+yz >zy+o.

Let 2,¢F(y, o) and z, -2 %= y. From xz, > xy+yz, > zy+ o follow
r<zand xz > xy+o.

Choose w with (x w y) so close to x that w < z and w < 2, for large ».
This is possible because (<) is open. We have

wz, = wy+yz,, hence wz>wy-o.

Ifwz > wy+ othenazz > cw+wz > axwt+wy+ o =zy+ 0. Let wz = wy+-o.
Then (z w 2) is impossible. This is clear for ¢ = 0 because of G¢. 1f ¢ > 0
choose v with (w v 2) and wy = wy. Then (z w v) and we have again a con-
tradiction to Gy.

Therefore in either case

2 >rwtw2zarow+wy+o =2xy+o.
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The following slightly stronger statement for ¢ = 0 is also needed.

(N If <y, <2,¥ =y 0,2 —25+y and <y then xz>xy. If
VLT, N, << Vyy ¥, >V AL, U, —N FT and v < then wur > ovr.

For we have zy, »ry > 0 and xz, = xy,+v,2, = 1Y, > 2Y.
Choosing w as before we have w < y,, w < 2, for large », hence

w2, = Wy, +Y,%, = wy, > wy

therefore wz = wy and the proof proceeds as before.

In locally compact metric spaces satisfying postulates analogous
to G¢s completeness, geodesic completeness (v == % for a geodesic {z, z(t)})
and finite compactness (bounded infinite sequences have accumulation
points) are equivalent. In Riemannian geometry this is essentially the
content of the Hopf-Rinow Theorem.

This theorem does not seem to have an analogue in timelike spaces.
Apparently there is no concept of completeness or finite compactness
which is shared by all spaces which we want to admit. Examples will
be found in the next two sections.

No really interesting timelike space has the property that a sequence
of points x, with p < #, and 0 < y < px, << # has an accumulation point.
ITowever Lorentz spaces are finitely compact with the following defi-
nition (see Section 3):

A timelike space is finitely compact if a sequence of points x, with
p<g<ux and pr,<fp, or xr, <g<<p and rp < p, has an accumulation
point.

A timelike space is complete if . <wx,,., (v,u=1,2,...) and
e, 2,,,)<y (or z,,<z) and o(r,,.,,2)<y) and y, —0 imply
that {z,} converges.

This could be formulated locally with x,¢U(p), x, <, T..,, etc.
However, we are interested in G-spaces where U (p) may be taken as
compact; then {r,} has at least one accumulation point and it can be
proved that it has only one.

We prove

(10) A finitely compact limelike G-space is complete.

For let ., <wa,,, and xz,_,<y, y» > 0. Then irx, = x>, >0
for »> 2 and 2,2, < y,. Therefore finite compactness yields the exist-
ence of an accumulation point for every subsequence. We must show
that only one accumulation point exists. If there were two, ¢ and ¢'.
then we would have subsequences {i,} and {j,} of {»} with ¢, < j,, &; — ¢.
wj —q'. Also let {k,}e{s,} with k, > j.. Then

I N R S A X R o
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Now G, implies ¢, < ¢, #, < q' and the inequalities yield x,q = limz, »;
= limz,z; = rq¢’ contradicting (9).

For comparison with the metric case note that we did not use all
axioms for a G-space, only the validity of G, and (9), (the proof of (9)
uses G).

The converse which is valid under certain conditions in the metric
case, makes no sense here, because completeness deals only with se-
quences satisfying », < z,,,.

A (locally) timelike G-space is geodesically complete if v = Z for every
geodesic {z, z(f)}.

This definition could be applied to any locally timelike space, but
would often lead to absurdities, for example, if no proper segments
exist.

Assume that for a geodesic {r, z(#)} in a timelike G-space the set
7 has a finite upper bound 8. If {, < {, < ... and ¢, - g thenz(t,) < x(l,.,)
but —in contrast to the metric case —x(t,) x(,,,) > t,,,—1. Therefore
we cannot conclude that {z(t,)} converges if the space is complete. The
only result in this direction is:

(11) For a timelike G-space in which all geodesics are lines completeness
implies geodesic completeness. The converse does not hold.

That the converse is false follows from (4) in Section 5. The follow-
ing sections will show that geodesic completeness is the most relevant
concept. It should be remembered that G, has the nature of a com-
pleteness postulate but without an analogue in metric spaces.

We conclude this section by defining motion. This is simple for time-
like spaces:

A motion of a timelike space R is a topological map @ of R on itself
which maps (<) on itself and preserves distances, i.e. if # < y if and only
if &r< Py and o(Prx, Py) = ol(x, ¥).

The definition is necessarily more involved for locally timelike spaces
owing to the largely arbitrary choice of the ('(p) and the possibility
that the space cannot be consistently ordered.

A motion of a locally tinwelike space R is a topological map @ of
R on itself with the following property: Each point has a neighborhood
N(p) = U(p) such that ®N(p) = U(P,) and cither Pr <, Py and
Q,,p((b.l;, Py) = op(, y) for all pairs x, y with 2 < y in N(p) or Py <, Px
and g4, (Py, Pr) = op(x, y) for all pairs z, y with z <<y in N(p).

Since this definition is cumbersome we observe:

(12) A topological map of a (locally) timelike G-space on itself is a motion,
if and only if it maps T-curves on T-curves and preserves the lengths
of all T-curves.
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4. PRODUCTS OF TIMELIKE AND METRIC SPACES

Our next aim is significant examples to elucidate the theory. In
this section §, is a timelike space (the results all carry over to the case
where §, is locally timelike), §, is a metric space and B = §, X 8,. The
distance in §; is denoted by o;, points in S, by a, b, ¢ (with sub- and super-
scripts), points in S, by z, y, 2 and points in R by p = (a, ), ¢ = (b, y),
r = (¢, 2), etc. The set (<) is defined by p = (@, x) < ¢ = (b, y) meaning
a«a<<b and ¢,(a,d) > o,(x,y). Transitivity follows for r = (¢,2) from

(1) o,(a, ¢) = a,(a, b)+a,(b, ¢) > a,(w, y)+ 0:(y, 2) = 0,(x, 2).

Moreover, T, for S, implies T, for R.
We impose different distances ¢, (a > 1) on R

0.(p, ¢} = [oi(a, b)— o3 (2 7J)]lla
For o,(p, q) = o1(a, b)— 0,(x, y) we find from (1) that o,(p, ¢)+ 0,(q, *)
> o,(q, r) with equality only if o,(a, b)+ o,(b, ¢) = 0,(a, ¢) and o,(z, ¥)+
+ 02(y, 2) = 0,(, 2).
To prove that the other p, satisfy the time equality we observe:
2y If hy >k, =20, hy >k, >0 and a >1 then
(hy— kcll)l"a + (I — kg)l/q < [(hy+ hp)* — (ky + kz)q]”u
with equality only whewn either ky = Iy, = 0 or h:k, = h,:k,.
Put & = (h{—k)"™ or B} = e+%}. By Minkowski’s Inequality
8, p. 31], ,
((&1+ &a)" + (g 4 Kp)* " < (] + kD" + (e2 4+ &3)"
with equality only if k, =k, =0 or ¢,: k, = ¢€,: k,.
This is equivalent.to the assertion, from which we conclude:
(3) If «>1then
2a(Py 4) + 0a(q, 7) < 0u (P, 7)
with equality for p << g<r only if (abc), o,(x, ¥)+ 0,(y, 2) = 0,(x, 2)
and either € = y = = or o,(a, b): a,(x, y) = 0,(b, ¢) : 0,(y, 2).

We denote the space R with the distance o, by R, and have proved
that R, is timelike for all «. We turn to the axioms G,, G,.,. Obviously

(a) G, holds in R, (a>=1) if it holds for S, and S,.
(b) G, holds in R, (a>1) if it holds in 8,.

For if p, = (a,,a,) > (a,2) =p, ¢, = (b, ) >0, ¥) = ¢ PS4
and p < q does not hold, then a < b does not hold, hence o,(a,,b,) >0
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and
Gl(av’ bv) = 02(‘1’::7 yV) giV@S Qa(i’n qv) - 0.

(¢) G; holds in R, (a = 1) if it holds in S,.

This follows from the condition for equality in (3). To discuss Gg
we define (z y z)in S, as for §,,1i.e. @, ¥, zare distinet and o,(x, )+ 0,(y, 2)
= g,(x, 2). If §, is finitely compact then the points y satisfying (z ¥ 3)
lie (for fixed x, 2) in a compact set and if for given x, z a point ¥ with
(x y z) exists then any two points of S, can be joined by a segment,
[G, p. 29]. Therefore the conditions for equality on (3) yield

(d) G; holds in R, (a = 1) if it holds in S, and S, is finitely compact and
contains with * # 2z a powmt y with (ry z).

Similarly one deduces from (3)

(e) G holds in R, (a > 1) if it holds in S, and S, and either any two points
a, b in 8, with a < b or any two points in S, can be joined by a sey-
ment.

So far no difference between the cases a==1 and a > 1 has appeared.
However

(f) If S, and 8, satisfy G¢ then R, does for a > 1 but in general not for
a=1.

For, assume (pg¢qr;) with g.(q,7,) = 0.(¢,75) (a >1). Then, if
r; = (¢;, 2;) the conditions for equality in (3) give

o,(@a, b)+a,(b, ¢;) = 0,(a, ¢;), o,(a, b) >0, o,(b, ¢;) >0,

02(T, Y) + 05(Y, 25) = 04(2, %)

and either « = y = #; or z, y, 2; are distinet and

o,(a, b) : a5(z, y) = 0,(b, ¢;) : ax(Yy, 2:).

If x =y then 2 =y =2, =2, and o,(b, ¢;) = o,(b,¢,) s0 ¢, = ¢, and
r, =r,. If ,y,2; are distinet then the above relations imply o,(d, ¢,)
= 0,(b, ¢,) and o,(¥, 2,) = 0,(¥, z,) and Gg in 3; gives ¢, =¢, and 2, = 2,
hence r, = r,.
The negative assertion for ¢« = 1 is one of several enunciated in:
(4) If 8, is a timelike G-space and S, is a metric G-space, then R, satisfies
neither G¢ nor (3.8) or (3.9). Also, R, conlains mazimal linear sets
ulq, vy = {[0, 0,(q, )], p(t)} for which p(t) is not continuous.
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There are points a, b, ¢,, ¢, in §, and z,, r, in §, such that (a b e,),
(ae,e,) and  o,(2y, x,) = 0y(ey, ¢,). Putting p = (a, 1), ¢ = (b, ),
r; = (¢;, ;) we find

o1(p, @) = o,(a, d), e1(q, 7)) = o,(b, ¢,),
01(q, r3) = a,(b, €3) — aq5(2y, X,) = 0,(b, ¢,),

01(P, 12) = ay(a, &) —a,(ry, X)) = a,(a, ¢;) = o (P, )+ 0,(¢, 7,).

So (p qri) and o,(q, 7)) = 0,(q, 75) but r, = 7,.

That (3.8) and (3.9) do not hold is seen in a similar way: There are
points a,b,c in 8, and v, %, 2, in §, with (a b ¢) and o,(b, ¢) = a,(¥, 2),
2, >z and o,(y,2,) < 0y(y,2). Then with p = (a,¥). ¢ = (b,¥y). 7,
= (¢, %), r = (¢,2) the hypotheses p<gq, q<r, r, >7 =¢ of (3.5)
are satisfied but

0,(p, 7} = o(a, b)+ 0,(b, €)—0,(y, 2) = 0,(¢, b) = 0,(p, ¢)
hence F(p, o,(p, ¢)) does not contain F(¢)—¢q. Putting ¢, = ¢ yields
a negative answer to (3.9).
To construct a discontinuous p(t) consider a segment {[0, ¢,(a, b)].

a(t)} from a to b (a<< b) in 8,. Choose values 0 < t' < t'+ ¢ < o,(a, b)
and points r,z in 8, with ¢,(r, ) = ¢. Define

p(t) = (a(®),x) in [0,t'], p@) =(a(t+e),2) in [V, 0,(a, b)—e].

One readily verifies

o(p(t), pty) =t,—t,  for 06 <t <o, b)—e,

s0 p(f) defines a maximal linear set but ix not continuous.
Combining our results we have

(5) TuroreM. If 8, is a ttmelike G-space and S, is a melric G-space, then
R, is a timelike (f-space if a > 1. The space R, satisfies all arioms
but Gg and has the other properties listed in (4).

Note. Minor modifications of our argnments show that B, is for
a > 1 a locally timelike G-space if S, i1s a locaily timelike GG-space and S,
is a metric G-space.

Now we turn to completeness:

(6) Turorezm. If 8, is a complete timelike space and S, is a complete wetric
space then R, is a complete timelike space for u > 1. but in general nut
for « =1,

Let p,<p,., and o, (pey Por,) <y and y, >0, >1. Then

& = Gl(a'V—l! a,) —-0’2(.1",._1, xr,) > 0.
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Using the Mean Value Theorem and (1) we find

9: (pvy P--+,1) = O'(l‘(av! a’v-;-/l) - U; (‘Tv’ mv+,4)

v vl-p "

2[; g (®;_y, “i)]a“ [VZF; 63(Ti_ 1, -’l’i)]a= (';: fs)aﬂc‘u_,,f

where
v u vty
ZUZ('TT:--I’ ‘TL) 'gpv,u < Z 01(“1‘-1, ai).
r+1 y+1

Therefore
v vip

. -1 - -1 _«a

251(202('31_1,-’1\)) < a Ty, > 0.
vl vl

There are two cases:

1) All oy (x;_,, ;) = 0 then go,(p,, p.,,) = 0,(a,, a,.,) and the assertion
follows from the completeness of S,.

2) Not all o,(r;_,, x;) vanish. The last inequality with » = 1 shows
that both series

o)

~
Zs,- and ;‘ag(m,-__,,wi)
1

converge. The latter and

v pe

e
Ty(Lyy Lyyf) << Z Oo( i1y ;)
vl

shows that {r,} is a fundamental sequence in §,, so that r, tends to
a point z in 8,. Moreover,

. ’
O“]’.‘((Ll'7 al‘-;.,r_) - (_J,(('py, pv.!_,,)‘l'_ O';(J’,., J..,_‘_”) \<_ yv

with y, — 0, hence a, converges to a point a in S, and (a,, 7,) — (a, z).
The space L}*' which will be defined presently is an example for
the negative part of (6) as well as of (7) and (8).

(7) If 8, and S, are finitely compact then so is R, for « >1, but not
necessarily for a = 1.

For, let p < ¢ <7, and o,(p,r,) < f («>1). Then
g, (a’v b) - 0‘2(.1‘, :'/) =7 >0 ' (’-1(”’ ('--) \3 0’2(?/7 3»)
and
ﬁu ;‘ O‘rll(aa ("V) - [O’l((l;, (’,) - 7]“ Jf‘ [‘71 (a"r (‘l') - ‘V]a— G‘i:(my 2’,),

a, (0, 2,)— oy (2, ) < ax(Y, 2) <= a(b,e,) < o (a, ¢,)— o (a,b)
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or
o, (@, 3,) < oy{a, c,)—y.
Therefore
p* = oi(a, ¢,)— (‘71 (a, ¢,)—7)",

which implies o,{a, ¢,) < f’ with a suitable p’ < co and hence a,(x, 2,) <2 f’.
The finite compactness of §; and §, now yields a subsequence {k} of {v}
for which ¢, and 2, converge to points ¢, 2; so that r, — (e, 3).

An immediate consequence of (3) is

(3) If 8, is a geodesically complete timelike G-space and S, is a melric
G-space, then R, is geodesically complete for a > 1 but not necessarily
for a =1.

We now consider the most important special case where S, is the
real axis with the usunal order and distance o,(%,, «,) = u,—u, and 8§,
is the n-dimensional (n > 1) euclidean space. We introduce coordinates
x'y ..., 7" so that the distance takes the standard form

ool y) = ez, y) = [ D @' =y

In this case we denote o, by 2, and the space by L,*'. Then for p = (u, x)
and ¢ = (v, y) the relation p < ¢ means v—u > e(x, y) and

l/a

%a(py @) = [(v—u)’—€*(x, )], u>=1.
In particular, 21,(p,q) defines the (n-+1)-dimensional Lorentz space
Ly (2).
(9) In LI (a>=1) the affine lines
rt) =[1—-2'(p, Otlp+t.(p, ¢, P<g, —c0o<t1< o0
are geodesics and they are lines, i.e.
3’2(r(t1)7 "'(tz)) =t—1l for t,<t,.

They are the only geodesics when o > 1, there are others if a = 1,1in
particular such for which the corresponding set v is bounded.

This implies that L' is geodesically complete for « > 1 but not
for a = 1.

All statements in (9) except the very last follow from (3). Cosider
2(s) =(8,0,...,0) and u(s) =s+arctans. Then r(s) = (u(s), x(s)) is
a line (but s is not arc length) because

P(8)) <7(8) < r(s3)  for &, <8, < 8y

(*) Strictly speaking Ly *1 is the restriction to the pairs (u, ») < (v, y) of the
indefinite metric (v— u)2— e2(r, y)1'? defined for all pairs which is usnally denoted
as Lorventz space.
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and
74(r(sy), 7(s,)) = arctans,—arctans, for s§,<s,.

However, the range of the length t if s = 0 corresponds to ¢t = 0, 1s
T = (n/2, =/[2).

The sequence 7(v) (v =1,2,...) also shows that L}*' is neither
complete nor finitely compact, confirming the last statement in (6) and
(7). Using the preceding results we have

(10) The spaces L."' (« >1) are finitely compact and geodesically com-
plete G-spaces in which all geodesics are lines.

The spaces Ly™" satisfy all axioms but G¢. They are neither complete,
wor finitely compact nor geodesically complete.

However, LT*' has the property that any segment can be extended
to a geodesic {z, z(t)} for which r = #. This is easily verified.

We mentioned that L)' does not have the property that every se-
quence of points ¢, with p < g, and 0 < a < 4,(p, ¢,) < 8 has an accu-
mulation point. Thix is true for all «: If ez, r..,) = "% ¢ =(0, 2,),
p, = ((»+ 1) x,.)) then (¢, p,) =1 but no subsequence of {p,} con-
verges.

Finally we mention the obvious fact

(11) If @, is « motion of the timelike space S, and @, is a motion of
the metric space S,, then (a,z) - (P a, P,x) defines a motion of
R, (u>=1).

5. TIMELIKE MINKOWSKI SPACES

We now discuss the type of timelike G-space which is basic in the
sense that under differentiability hypotheses any timelike 7-space behaves
locally like a space of this type.

We call these spaces Minkowski spaces with a twofold justification:
they are the obvious analogue to the metric Minkowski spaces and they
comprise the Lorentz space L; which in relativity is often called the
Minkowski space.

A timelike Minkowski space is defined by the following properties:
it is a timelike G-space for which the underlying space R is the n-dimen-
sional affine space A" (n > 2) with the usual topology and the transla-
tions of A" are motions.

In order to discribe these spaces we need certain functions: In terms
of affine coordinates the function f(x) = f(2',...,a") is a gauge func-
tion if
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(a) f(x) is defined on an open conver set D ( ¢ Q) which is a cone with the
origin as apex, t.e. AD = D for 1 >0,

(b) f(Ar) = Af(®) for 4> 0,
(¢) f(z) >0,
(d) f(x,) >04f &, >2 ¢ D,

(e) f((L—0)z+0y) > (1—0)f(x)+ 0f(y) for 0< 0 < 1 unless w = Ay with

A>0.

It follows from (b) and (c¢) that the origin 0 does not belong to D.
The property expressed by (e) may be called strong concavity of f(x)
in analogy to strong convexity, sec [G, p. 99]. It has two important
equivalent forms:

(e") flxz+y) > f(e)+fly) unless x = Ay with 1 > 0.

(') The set f(x) = 0 >0 1is strictly convex, i.e. f(x)>= o, f(y)= o and
x #y imply f((1—0)x— by) > o.

This equivalence is established as for convex f(z) [G, pp. 99, 100]
and can, in fact, be reduced to the convex case by observing that — f(x)
is convex. Therefore f(x) is continuous, and if we put f(0) = 0 then (d)
implies that f(x) is continuous at 0.

Denote the boundary of D by C.

(1) The set D o C possesses al 0 a supporting hyperplane which intersects
D o C only at 0.

For, denote by E the intersection of all closed half spaces bounded
by hyperplanes through 0 and containing the set {z, f(z) > 1}. Since
this set is strictly convex, there is a hyperplane through 0 intersecting ¥
only at 0. But any half space whose boundary contains 0 and which
contains f(x) > 1 also contains f(z) > ¢ by (b) for any g, s0o E > D and
E o Do C. It is easily seen that actually E = D o C.

We now establish the relation between Minkowski spaces and gauge
funetions.

(2) TUEOREM. Let R be a timelike Minkowski space with affine coordi-
nates x = (', ...,x") and distance o(z,y). Then o(z,y) = f(y—2x),
where f(x) is a gauge function and x << y is equivalent to f(y—x) > 0.

Conversely, if a gauge function f(z) in A" is given and x < y is defined
by fly—=x) >0, then o(x,y) = f(y—x) defines a timelike Minkowsk:
space.

We prove the second part first. The topological properties T,, G,
are trivial. The continuity of o(x, y) follows from that of f(x), and so
does the openness of (<<). The existence of x, ¥ with x < ¢ < y in a given
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W (q) is clear from (b), the time inequality is contained in (e’). G, follows
from (d).

Let (ryz) or fly—x)+f(z—y) = f(z—x); then (e') gives (y—ux)
= A(s—y) with 4 >0 or

1 A T n 1+ 4
y = X 2, 2= —-- 4+ —
4 1=, T 11,7 2 PR

which proves G, and G¢ and reversing the argument gives Gj, G;.

Now let R = A" be a timelike Minkowski space with ' =z+a
as motions. Then z < y implies z+a < y+a, in particular 0 < y—=
and o(z,y) = o(0, y—x). Put f(z) = o(0,2). Then o(s,¥) = fly—u)
for x << y. Let D be the set f(z) >0. If 0 <z, 0 <y then x << z+y and
0(0, v+ y) > 0(0, @) + oz, +y).

() If zeD,yeD then x+yeD and f(x+y) = f(x)+f(y).

We call ¢z a midpoint of x and y if x < 2< x and o(x, 2) = o(2, ¥)
= o(z, ¥)/2.

(8) If z is a midpoint of x and y then so is v = v+ y—=z.

For u—x=y—zy—uw=z—a give f(u—z) = f(y—=2) >0 hence
x<<wu, similarly u<y and f(u—2x) =f(y—=2) =fle—y)/2 = f(z—x)
= f(y—«). This implies

(v) If a midpoint z of x and y exists and is unique then z = (x+y)/2.

If the segment o(zr, y) is unique (x < y) then any two points v, w
with » < w on o(x, y) have a unique midpoint because of (1.2) and (2.5).
We conclude from (y) that $z+}y and }x+3y are the midpoints of
x, z and z, x respectively. Using the continuity of f(r) we find that o(z, ¥),
if unique, is the affine segment consisting of the points z; = (1— 0)x+ 0y
(0 < 0<1) and that

o(x,xe) = Op(x,y) for 0<LOL.

Now segments are locally unique, see (2.5) and hence locally affine seg-
ments. This shows that any geodesic curve z(t),a <t < b, is an affine
segment, hence the only geodesic curve from z(a) to z(b). On the other
hand, there is a o(z(a), (b)) and this is a geodesic curve. It follows that
the geodesics are affine lines and that for x < y the geodesic through x
and y has the form

(3) a(t) = A1—to (&, y))x+to~ (x, ¥)y, —oo< e< oo, t arclength,

Applying (3) with x = 0 we find f(ly) = Af(y) for 2 > 0.

This and («) prove (e) via (e’), and (d) follows from G;. Because
0<a, 0<bimply 0<a-+b, hence 0 < (a+b)/2, the set D is convex.

A consequence of this discussion is:
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(3) A timelike Minkowskt space 18 geodesically complete and all its geodesics
are lines.

In general the space will not be complete, but there is a simple cri-
terion for completeness. To formnlate it we remember that f(r—a) > 0
is the future F(a) of a.

F(a, ) denotes the set of x satisfying o(a,x) > o, in our case
f(x—a) > o. The closure F(a, o) is {®, f(r—a)> ¢}. The boundary of
F(a) is, according to the language of relativity, the light cone C(a). With
the previous notation F(0) = D, C(0) = C.

(4) A timelike Minkowski space is complete or finitely compact if and
only if mo hyperplane exists which separates a gyenerator of C(0) from
F(0,1).

We could, of course, have used any point a and any o > 0 instead
of 0 and 1. A generator G of ('(0) is a ray with origin 0 lying on C(0).
It is clear that a hyperplane separating ¢ = C(0) from F = F(0, 1)
nmust be parallel to . Because of (4.10) we must prove:

1) If the condition in (4) is satisfied then the space is finitely compact.

2) If it is not satisfied then the space is not complete.

To show 1) let 0 < y or f(y) > 0 and ¥ < 2, with f(z,) = (0, 2,) < 8.
No generator (¢’ of C(y) lies outside F(0, ) because then a suitable hyper-
plane through G’ would separate F(0, 8) froni the generator of C' parallel
to @’. Therefore the intersection of {z, f(z) < #} and F () is compact and
the sequence {z,} has an accumulation point.

For 2) let H be a hyperplane separating the generator G of ('
from F. liet G, be any other generator of € and in the plane determined
by ¢ and G,. Let G, G, be the non-negative z- and y-axes of an affine
coordinate system such that G, ~ H is the point (0, 1). Put p; = (s, ;)
(1t =0,1,2,...) with 2, =7 and y; =1—27". Then o(p,, p:) < 1/2
and more generally o(pi, prii) < 2% but the sequence {p:} does not
converge.

An explicit example of a non-complete timelike Minkowski space
is given by D = F(0) = {®x: 2' > 0,22 > 0} and f(z) = x'x*(2' +x2)~ ",
where f(x) = 1 is the branch x, > 0 of the hyperbola (' —1)(x2—1) = 1.
Such examples show that a geodesically complete timelike space with
a transitive group of motions need not be complete, whereas any locally
compact metric space with a transitive group of motions is complete.

The significance of G, as a completeness condition may be seen
from the following observation: In a timelike Minkowski space with gauge
function f(r) restrict f(x) to an open convex subcone of ¥ (0) with apex 0.
Then all axioms except G, are satisfied.
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Let A™ be the underlying space of a locally timnelike space G-space
for which the translations are motions. The crucial arguments in the
preceding proof were (f) and (v) and both are local. We conclude there-
fore that the affine lines are geodesics and that (3) holds. The space satis-
fies the hypotheses of (1.3) and nothing new is gained. :

However, consider a locally timelike space I which is a manifold of di-
mension » > 2 and possesses a transitive abelian group of motions. Then
no motion except the identity has fixed points. (Forif pa = a and b = ya
then ¢b = gya = yppa = ypa = b.) The group is therefore simply transi-
tive and the space can be identified with the group space. According
to a theorem of Pontrjagin (14, p. 170] the group is the product of =
groups isomorphic either to the real numbers or to the circle group.

The universal covering space R is the affine space 4™ and the lifted
group is the group of translations. So we have the previous case. I po-
ssesses a consistent ordering, but the hypothesis of (1.3) will not be satis-
fied unless R is simply connected. We may express this as follows:

() A locally timelike G-space which is a topological manifold and pos-
sesses a transitive abelian group of motions is locally Minkowskian.

The Mobius strip and the one-sided torus can also be provided with
locally timelike Minkowski metrics, but not with arbitrary ones, because
the reflection in some line must exist (as for example in L2). This leads
to spaces which cannot be consistently ordered.

6. PROJECTIVITIES OF CONVEX HYPERSURIACES

Sections 7 and 8 lead to problems concerning convex hypersurfaces
which are of considerable independent interest, but have only been partly
solved, although they sound very simple. What is known concerning
these problems is the content of the present section. In order not to inter-
rupt the discussion later we first establish a lemma of a general nature
which is due to Montgomery:

(1) If a Lie group I' acts transitively on the manifold M then so does ls
identity component I',.

The number of components of I is finite or countable and they have
the form ¢; Iy, ¢;eI". For any point p e M, let I'y(p) be the orbit of p under
I'y. Because I' is transitive on M, U¢q;l\(p) = M and each ¢;[\(p) is

i

homeomorphic to I'y(p), which is the union of a countable number of
compact sets. Therefore

dim ¢;Iy(p) = dim M  for all 7.
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It follows that ¢;[((p) contains an open subset of A, sce [9, p. 416], and
hence is open. If I'y(p) # M then M — I'y(p) would be the union of some
of the ¢, I'j(p) and M would not be connected.

Consider now a closed convex hypersurface K in A" (n > 2) and let I
be its interior, put K* = K _I. We complete A" to the n-dimensional
projective space P" by adding a hyperplane z"*' = 0 and will be concerned
with the group I'y of projectivities which map K on itself. These take
also I and K = P"—K° into themselves. Conversely, a projectivity
which maps I or E on itself also maps K on itself. We show first:

(2) If 'y is transitive on K then K is an ellipsoid.

The theorem is elementary for n» = 2, so we may assuine n > 2.
Then K is simply connected and by (1) the identity component I'y of I’y
acts transitively on K. According to a theorem of Montgomery [11, p. 226]
I, contains a compact subgroup I, acting transitively on I{. Now a result
due to the collective effort of several mathematicians, see Nagano [13],
implies that I', is isomorphic to a subgroup of the orthogonal group O(»)
and this gives readily the assertion.

A much more elementary method of deducing the assertion from
the existence of I, is found at the end of this section.

For n = 3 we could have referred to Lie [10] who dctermined all
surfaces possessing transitive groups of projectivities onto themselves.
However, he always assumes that the surface is analytic, and in this
area innocent looking smoothness hypotheses may change completely
the character of a problem, see Theorem 7.

The principal unsolved problem is finding all K for which Iy is
transitive on I. The problem would be quite accessible if it were known
that under this hypothesis different orbits of I'y have different closures
or that the number of distinct orbits is finite. We solve the problem
only in special cases.

For this purpose we consider the metrization of I as a Hilbert ge-
ometry (for details see [G, Section 18]).

We put k(a,a) = 0 and if a, b are distinet points of I let the pro-
jective line ab through a and b intersect K in x and y. Remembering

that for any_I)ermutations (%1, 25) and (j,, j,) of (1,2)
R(ai, 6i,, 33, 7;,) = [R(ay, ay, @, )1,

where E( ) denotes the crossratio, we put

(3) h(a, b) = |log R(a, b, =, ¥)|.

Then k(a, b) satisfies the axioms for a metric space. With this metric
I ig finitely compact, the intersections of the projective lines with I are
isometric to B and hence are geodesics. They are the only geodesics,
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unless there are two proper segments on K whose convex hull contains
points of I. (The proof of [G, (18.5)] leads to this result, but the formu-
lation of (18.5) does not quite express it.)

We prove first

(4) K* = K o I is a simplex if and only if I'y has a subgroup I, which
18 abelian and transitive on I.

The set 2 >0(i =1,...,n) in A™ may be considered as the interior
I of a simplex and the maps z° = [)’iwi, B'>0(=1,...,n) provide
a transitive abelian group of projectivities of I.

IFor a proof of the necessity we observe that for ¢/, the distance
I(r, gzx) is independent of x. For if yeI then yel, with yz = y exists
and h(y, py) = h(yx, gyx) = h(ypz, ypx) = h(z, px). Let ueK,pel, and
u # ¢n = v. We will show that « is not an extreme point of I(°.(3) Let
a, el with a, - . Then b, = ¢ga, > ou = v. If a,b, intersects K in z,

and ¥, and the names are such that the order i_s_y,, a,,b,, x, then
h(a,, b,) = logR(a,,b,, x,,y,).

Ifor a subsequence {i} of {»} we have x; > z*,y; >x*. Since h(a,,bd,)
is independent of », it follows that £* 7 v and y* + u. Therefore u lies
in the interior of a segment on K and hence is not an extreme point
of K°.

Thus every element of I', leaves each extreme point of K fixed.
Since K° is the closure of the convex hull of the set of extreme points
and dim K° = n, there are at least n-+1 extreme points which do not
lie in a hyperplane. There cannot be more since the elements of I, are
projectivities.

A hyperplane contains at most n» extreme points no »—1 of which
lie in an (n—2) flat; otherwise each element of I, would leave the hy-
perplane pointwise fixed and /, would not be transitive on I. Proceeding
in this way we see that K° has precisely n+ 1 extreme points and hence
is a simplex.

A point p of I{ is an Kuler point if the following holds: K is differ-
entiable at p, all sections of KX by two-flats through p which do not lie
in the tangent hyperplane have curvatures at p, and these obey the
classical relations of Meusnier and Kuler. Almost all points of K are Euler
points (see [3, p. 23]). The Gauss curvature at an Euler point can be
defined in the usual way as product of the principal curvatures.

Our aim is to show that K is an ellipsoid if it possesses an Euler
point with non-vanishing Gauss curvature and I'x is transitive on I.

(3) The definition and the properties of extreme points used here can be found
in [1, Section 10].
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The proof is based on a lemuma whose explicit formulation would be very
long.

In the s-dimensional euclidean space E° with Cartesian coordinates
xl, ..., x° let two closed continuous hypersurfaces which are starshaped
with respect to the origin be given by

2| =7(w) and |x| = o(u), wuedS
where § is the unit sphere. The numbers
min7(u) = ty, Maxr(u) = vy, mine(u) =e,, maxe(u) = on

are finite and positive.
Let @ be a projectivity of the E° completed to P° which leaves O
fixed and takes the first hypersurface into the second:

plr(w)u) = e(v)o, v=v(), o =1.

Then ¢ possesses a unique representation of the form

Y .
i ;_1 Az .
Yy = - - — - or Y = IAPERE with detd # 0.
Z‘b oI rt
The lemma states that
(5) laj| < 20mmmt,  ldetA|=rifeh, b <Rl

The last relation is true if b = (b, ..., d;) = 0. Assume b # 0, and
put u, = b|b|"*. We conclude from

o)y = Ar(w)u(b-r(u)u+1)"" == Au(b-utr~"(u)"
that b-r(u)u+1 # 0 for all u. Since b-u, >0, we see that

br(—uy)(—u,)+1 = —|blr{(—u,)+1 >0,
hence
1b;] < 0] < v (—wy) St

Next put uy = &(0}, ..., 6}), v(u;) = v, where & =1 if b, >0,
e = —1 if b; < 0. Then

oo = Y{ou)oh)* = X(ab? (bl +r" (w)

and from |b| <yt
OJU (a’k) 4~ Fon

which gives the first inequality in (5).
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Finally let A% be the cofactor of af in the matrix A4 so that (4fdet'4)
= A% Put A; = (3 (493" > 0. Choose ¢ = +1 such that £Y b AF > 0
k %

and put
w; = eA7 (AL, ..., AF).
Then
o (v () = Z(E al AY A5 1)2(92 b AYAT + 'r"(w))z < A7 et A vy,
7 OF 3
and
darat® < [ [Aidet® 4 < det*(Af)det™ 4 = det? 4,

where the second estimate follows from Hadamard’s Inequality, 8, p. 34].
As an application we have

(6) Let {K,} and {K}} be sequences of closed convex hypersurfaces in E°
tending to closed convexr hypersurfaces K', K* containing the origin
in their interiors. If a projectivity of E° (compleled to P°) exists which
leaves 0 fixed and takes K, into K>, then there is a projectivity ¢ taking K!
into K2 (leaving 0 fixed).

It is easy to verify with examples that assuming 0 to remain fixed
is essential.
Let K, and K? be given by

| =7r,(u) and |z} = o, (u), wueS.
Then for large » and suitable r,, r,, o, 0,
O<r, <r(n)y<r, 0<o <o(u)<op,.
The projectivity ¢, has the form
y = A,x(b,-x+1)"", detd, = det(al) #0
and we conclude from (4) that
lai] < 207", ldeb A, =006l bl <ot

For a suitable subsequence {u} of {»} we have af, —al, b
with detA +# 0 and

- b

in

7y = Azx(bz+1)~"

defines a projectivity satisfying the assertion.

Consider now a closed convex hypersurface K in E" which possesses
an Euler point p with non-vanishing Gauss curvature. Denote by H
the tangent hyperplane of K at p and by H, the hyperplane parallel to H
at distance o > 0 intersecting K, let p, be the intersection of H, with
the normal to K at p. Project C, = K ~ H, parallel to this normal on H
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and dilate it in the ratio 1 : V¢ obtaining C,. Then C, tends for ¢ — 0+
to an ellipsoid, namely to the Dupin Indicatrix of K at p, see [3, Section 3].

Assume that I'r is transitive on I and give gel. A projectivity which
maps H, on a hyperplane H, through ¢ sends C, into C, = H, ~ K.
Also, ¢,|H, is a projectivity of H, on H,.

For a suitable sequence o, — 0+ the H;v converge to a hyperplane
H' and ¢, - C' = H' ~ K. A motion of E" takes C; into C} in H such
that ¢ goes into p and C; converges to an image C! of C’ under a motion.
With (', = C, we have y,C;, = C. where y, is a projectivity of H which
leaves p fixed. 1t follows from (5) that a projectivity y of H will take C!
into C%. Therefore C!' and hence (' is an ellipsoid.

This discussion also shows that all sections of K by hyperplanes
parallel to H! on at least one side of H' must be ellipsoids homothetic
to C'. Since ¢ was arbitrary in I, this yields readily that K is an ellipsoid.
Thus we proved:

(7) THEOREM. Let K be a closed convex hypersurface in E" which pos-
sesses an Euler point with non-vanishing Gauss curvature. If the interior

I of K possesses a transitive group of projectivities then K is an el-

lipsoid.

The simplex and other examples show that the hypothesis concerning
the Enler point is essential.

(7) not only substantiates our earlier statement that very harmless
looking conditions may prove highly restrictive, but (7) will most probably
also be essential in determining all K for which I’ is transitive on I by
allowing inductive reduction of the dimension.

In addition the arguments leading to (7) provide an elementary
proof for the fact (deduced under (2) from deep results on transformation
groups) that /i is an ellipsoid if I'x possesses a compact subgroup I
which is transitive on K. Every point is an Euler point hence the Gauss
curvature cannot vanish. Let pel. The orbit I,(p) of p under I, is com-
pact, hence stays away from K. The previous arguments show that through
some point ¢ of /. (p) there passes a hyperplane H such that the inter-
sections of K with the hyperplanes parallel to H on at least one side of H
are homothetic ellipsoids. The same must hold for every point of I.(p)
and hence for every point of I.

Concerning the K with I'¢ transitive on I the following conjecture
seems reasonable:

The convex bodies K° — K o I for which Iy is transitive on [ are
convex hulls of a finite number of points and solid ellipsoids of dimension
> 2 with the property that the dimension of the hull decreases if one
of the points is omitted or one of the ellipsoids is replaced by a lower
dimensional convex subset.
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7. MINKOWSKI SPACES WITH PAIRWISE TRANSITIVE GROUPS OF MOTIONS

Consider again an »n-dimensional timelike Minkowski space with
affine coordinate z!',...,2" and the translations 2’ = z+ a as motions.
In this section we are interested in additional motions and show first:

(1) A motion ¢ of a timeltke Minkowski space is an affinity.
The proof uses

(2) Given a finite number of points a,, ..., ax thenpwithp < a; (1 =1,..., k)
exists.

This is obvious because F(0) and hence F(p) = ¥ (0)+ p is an open
cone,

Putting generally ¢z = 2’ we must show that a, = (1—1)a,+ta,
(0< t< 1) implies a; = (1—1t)a,+tay,. Let p<a; (1 =1,2,3); then
p’ < a;. Since translations are motions, we may assume p = p’ = 0.
Because the set (<) is open in A" x A™ we have b, = u,a, < a, for small
u, > 0. The ray 2Aa, (1> 0) intersects the affine segment from b, to a,
in a point b,, so with suitable 4, u, between 0 and 1

bz - #2“2 - (1—2)’)14- ].aao
It follows from (8) in Section 5 that b, = (u,4,)" = p,a, and similarly
by = pa8y = (1—2)b,+a5.
The following lemma is needed:
(3) Inthe (z, y)-plane let y = ¢(x) be a strictly convex decreasing and dif-
ferentiable curve in (y, oo), where y >0, g(x) >0 and ¢(x) - co for

x —y. Let the tangent at q = (z, g(x)) intersect the z-axis al g and
the y-axis at q,. If
BZlg—0l: 19— ¢zl =2 a>0
then y = 0 and limg(xr) = 0.
T—>00

If lg—qy) i lg—qz! = a >0 then g(z) = k™" (0 < & < o0).
For g, = (0, g(z)— zg’ (x)) hence

B=lg—qyl : lg— gzl = —xg'(x)[g(x) = «a,
whence
g(x) (7+1)‘
< for zrz<y+1
g(y+1) x v
g(x) (y—l—l)"
< for ax=v+4+1.
giy+1) "\ @ 4
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A group I' of motions of a timelike space is called pairivise transitive
if given p < ¢ and p’' < q' with o(p, q) = o(p’, ¢’) 2 motion in I exists
which takes p into p” and ¢ into ¢'. A triplewise transitive group is defined
analogously for p <g<r, p’<q¢ <r" with o(p,q) = o(p’,7'), e(p,7)
== o(p’y7'), e(q,7) = o(¢’, 7).

A metric Minkowski space with a pairwise transitive group of motions
is euclidean, [G, p. 101]. A timelike Minkowski space with a pairwise
transitive group of motions need not be a Lorentz space. It is when the
group of motions is triplewise transitive. The problem of finding all time-
like Minkowski spaces with pairwise transitive groups of motions leads
to difficult unsolved problems on convex bodies and hypersurfaces,
including the one concerning the K with I'y transitive on 7. The remainder
of this section discusses the facts which are known in this direction.

(+) A timelike Minkowski space with a pairwise transitive group of mo-
tions is finitely compact.

If p<gq, p<q¢ and o(p,q) = o(p,q¢) = 4 >0 then a motion
exists which leaves p fixed and takes ¢ into ¢’. Applying this to ¢ = 0
and using (1) we see that the convex hypersurface K,,f(r) = 4 pos-
sesses a transitive group of central affinities. Since any convex hypersur-
face is almost everywhere differentiable (even twice differentiable), see
[3, p. 23], K, is everywhere differentiable.

Let ge K. The tangent plane T, of K, at ¢ intersects the light cone
C(0) in a set 8, homeomorphic to S"~2, A line L in T, through ¢ intersects
S, in two points s, s’. The ratio |[g—s|: [¢—s’| of the cartesian distances
is an affine invariant. As § traverses S, this ratio attains a maximum f
and minimum « = f~', which are independent of gq.

According to (5.4) it suffices to show that no hyperplane separates
a generator of C(0) from K, and this follows at once from (3).

The two dimensional case is easily handled.

(H) A timelike Minkowski plane with a pairwise transitive group of motions
can in suitable affine coordinates x',.r® be represented as follows:
x <y means x' < y' and 2* <y’ and o(x,y) = (y'—2")' "y — )
with 0 < pu < 1.

Note. L; corresponds to u = 1/2 and is characterized geometrically
by the fact that it can be reflected in each geodesic.

For a proof we choose z!, 22 such that F(0) is the first quadrant
z' >0, x> > 0. A centro-affinity mapping geX, on ¢ ek, leaves the
ratio [¢—gs,|: [¢—qz,| of (3) fixed hence a? = k(x')™" with « > 0.

Because f(Ar) = Af(x) for 2 > 0 the corresponding function is

e(@) (@), O0<u<l1,e¢>0,

where ¢ may be omitted because different ¢ give isometric spaces.
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To discuss the cases » > 2 we imbed A" in the n-dimensional pro-
jective space P" by adding a hyperplane H, and a coordinate z"*!
so that H_ is £**" = 0. The cone C(0) intersects H,, in ¢, which, because
of (5.1), is a closed convex hypersurface in H,, relative to a suitable
(n—2)-flat as ideal locus. C, bounds a set I',,, the intersection of F(0)
with H_ .

A motion of the Minkowski space induces a projectivity of H, on
itself which takes C, and F_ into themselves.

Denote as stability group of a point p in a timelike space the group
of all motions which leave p fixed. If the space has a pairwise transitive
group of motions then this stability group is transitive on each sphere
S(p, 4) = {r;p< x and ¢(p,xr) = A}. Using (6.3) we prove

(6) TUEOREM. A timelike Minkowski space for which the stability group
of a point p possesses a subgroup which is transitive and abelian on the
‘spheres S(p, A) is in suitable affine coordinates given by: x < y mean-
ing x'<y' (i=1,...,n) and

o(r, y) = Iill(y"_ﬁi)aia ai>07 Zai = 1.
7=1

FFor we conclude from (6.3) that ¥, o C is a simplex in H,,. There-
fore we can choose affine coordinates in A" such that F(0) is the set
>0 (@ =1,...,n). Put 8, = S(0, A). Since 8, is almost everywhere
differentiable and the stability group of 0 is transitive on S, the sphere
S, is everywhere differentiable and being convex it is of class C' (see
[3, p. 6]). For yeS, the tangent hyperplanc of 8, is with af/dz" = f;
given by

Na'fiy) = ).

Denote its intersection with the x'-axis by @; and let ' be the i-th coor-
dinate of @;. Then a' = f(y)/fi(y). The line through a; and y intersects
z' = 0 at a point w;a@;+ (1 — u;)y with x; < 0 and
A 3
pi—1  fily) )
Then 0 < «; = p(u;—1)"' < 1 and «; is invariant under the given

motions. Therefore f(x) satisfies the differential equations filx)/f ()
= «; /' which yields

n

f@) =k[]@)ys with Yd' =1,

=1

because f(Ar) = Af(x) for A > 0. The factor k¥ has no significance since
different % lead to isometric spaces. This proves (6). We observe that

(7) B =gt >0, [Ey=1
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is the identity component of the group of motions. This may not be the
entire group, which may contain elements interchanging the coordinate
axis depending on the values of the a’. The Lorentz space is for n > 2
not a special case because C,, is not an ellipsoid.

If a connected metric space possesses a group of motions which
has on orbit containing an open set ( % ) then the group is transitive
on R. The group (7) shows that the corresponding statement is not true
for timelike spaces. It contains the subgroup

=g+, T =7, 1<h<k<n, k+1<i<n

which is transitive on {z: &’ > 0}.
Since, according to (6), the existence of a pairwise transitive group
of motions does not characterize Lorentz spaces we now prove

(8) THEOREM. A timelike Minkowski space with a triplewise transitive
group of motions is a Lorentz space.

The hypothesis implies that for any two rays in H_ issuing from
a given point 7 in F_ a projectivity of F_ induced by a centro-affinity
of S, exists which leaves r fixed and sends the first ray into the second.
This implies that C, possesses a transitive group of projectivities and
hence is, by (6.1), an ellipsoid.

This alone does not imply that the space is a Lorentz space, for C_
is an ellipsoid for all the spaces L. of Section 4 (see below). Consider
a point geS,. The tangent hyperplane T, of K, at ¢ intersects C(0) in
an ellipsoid E, with a center ¢,. If ¢ = ¢, for some ¢ on §,, then this
holds for all ¢ on 8, and S, is a branch of a hyperboloid, so that the space
is Lorentzian. We prove that ¢, # ¢ is impossible.

If ¢, and c,, are the projections of ¢ and ¢, form 0 on H,, then a pro-
jectivity of F corresponding to an element of the stability group of 0
which leaves ¢, fixed also leaves ¢, fixed, which contradicts the tran-
sitivity of the group of projectivities of ¥, on the rays with origin ¢..

As gauge funetion of L; we may take

f@) = [@y— (3 @Y, > [2, "

The light cone is the same for all « and f(x) is invariant under the
affinities |

n-1

=t L . B _

7 = 24 aire (i =1,...,n—1), (a;) orthogonal, z" = ™.
=y

Therefore the stability group of 0 is (to a high degree) transitive on the
generators of C(0), but the group of motions is not pairwise transitive.



7. Minkowski spaces with pairwise transitive groups of motions 43

As an immediate consequence of (6.2, 7) we have:

(9) THEOREM. The time cone C(0) of a timelike Minkowski space is ellip-
tic if one of the following conditions a), b) is satisfied.
a) The stability group of 0 ts transitive on the generators of ('(0).
b) The group of motions is pairwise transilive and a cross-section
of C(0) by a hyperplane not through 0 possesses an Euler point with
non-vanishing Gauss curvature.
Under either condition the space need not be Lorentzian.

We know the last assertion to be true for a) and establish it for b)
n-1
as follows. Let ¢ = C(0) be given by (a")*— Y (2>’ =0, >0 and
i=1
consider the group I'* of central affinities which maps C on itself and lea-
ves the generator G: 2, = 2,, 2, = ... = x,_, = 0 of C fixed. A sphere
S, ={x, f(x) = 4 >0, z2, >0} must have the property that a variable
segment tangent to S,, cut out by C and with one endpoint on G be
divided in a constant ratio by the point of contact with S,. In each
plane through G the metric must be of the type described in (5) with
the same u for all planes. A simple calculation shows that §, must have
the form

n-1
(10) (m“—x‘)z"-‘((m”)z—z(af‘)z)‘"" =¢, O0<pu<l.

The group I'* considered as group of projectivities of H_ is the group

n—1

of those hyperbolic motions of ) (2°)* < (¢™)* which leave the point
=

n

= =1,=...=5""= 0 fixed. They take the hypersurfaces
(10) into themselves. For n = 3 they are found in Lie [10, p. 221] in the
form obtained from (10) by the coordinate transformation z"™— z! = u,,

N —

n—1
"+ = Unp y x = u; for ¢ = 2,...,m—1, ie. ’uf”—l(un’ul—-Z(uf))l_”= ¢
=2

or, for n =3, uy = uluy '+ c'u®""" where ¢' > 0.
One checks readily that the Gauss: curvature is positive. The fact

n—1

that u,,..., %,_, occur for » >3 only in the combination > 2 then
. =2
shows that (10) is a convex hypersurface in o™ > [} («")*]'*.

For n = 3 one easily sees that the metrics given by (5) and (10)
exhaust the timelike Minkowski spaces with pairwise transitive groups
of motions either by examining Mostow [12] for the groups acting as
a plane which can be groups of motions of a Hilbert geometry or by
proving that the triangle and the ellipse are the only closed convex curves
in the plane whose interiors possess transitive groups of affinities, com-
pare also [G, p. 370]). Thus
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(10) The three dimensional timelike inkowski spaces with pairwise tran-
sitive groups of motions are in suitable affine coordinates given by
the gauge functions

3

”(wi)"", a; >0, Zai =1, >0
i=1
0or
. (.123—171)2“-. 1((1,3)2_('rl)i__(ag)Z)l-—ﬂ’ 0 < [l < 1, .’1;3 > [(‘rl)z +(-1/'2)2]112.

FFinally we observe that the group /™ as subgroup of the group I
of the motions of a Lorentz space is transitive on the side containing
F(0) of the hyperplane tangent to C(0) along G, so that we have again
a subgroup whose orbit is a proper open subset of the space.

8. TIMELIKE HILBERT GEOMETRIES

The analogues to the metric Hilbert geometries encountered in
Section 6 are of special interest because they provide a test for our axioms.
Two possibilities present themselves, one for a timelike space, the other
for a locally timelike space which cannot be consistently ordered. The
latter seems more natural, because it includes as special case the hyper-
bolic geometry defined in the exterior of an ellipsoid. In fact, in the time-
like case our axiom G, cannot be satisfied if all other axioms are.

Let K,, K, be complete convex hypersurfaces in 4" such that the
closed convex sets K}, K3 bounded by K, and K, are disjoint. (If K,
or K, is a hyperplane this condition defines K or K3.) We consider all
open oriented affine segments L(a,, a,) where a;¢K; and a, = (1—60)a,+
+a,¢K) v Kj for 0< 8< 1.

The space R is the union of all L(a,, a,) with the topology of A™.
The relation p < ¢ is defined to mean that p and ¢ lie on an L(a,, a,)
and ¢ follows p. Then p < ¢ and ¢ < r imply p<r. For p < ¢ on L(a,, a,)
we define

(1) h(p,q) = }kllog R(p, q, a,, a,)| = LklogR(p, q, a,, a,).

(For the following compare [G, Section 18].) With this distance
L(a,, a,) is isometric to the real axis.

Assume that p < ¢ < r are not collinear (see Figure). Let p, ge L(a,, a,);
q,reL(by, by); p, reL(c,,c,) the affine lines through ¢; and b; (¢ =1, 2)
intersect at a point ¢ (possibly at oo) and the line through ¢ and ¢ inter-
sects the segment from p to r in a point s. Finally, the line containing
L(e,, ¢,) intersects the line through a; and b; in a point ¢;. Then

R(_’P, q, @y, al) = R(py q, C;, C;), R(qy r, b27 bl) = R(S, 7, 0;1 0;),
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R(p, ¢y az, a;) R(¢, 7, by, b)) = R(p, 7, €2, ¢;) < R(p, 1, ¢y, ¢,) with equality
only when ¢, = ¢; and ¢, = ¢;,. Therefore h(p, ¢)+h(g, 7)< h(p,r) for
non-collinear p < g<», if and only if no proper affine segments
T; « K; ~ R exist which are coplanar. We will assume that this con-
dition 1is satisfied.

K, I
)
H,
B
kS b, %
a, A
| - ’ kP
q 2
c.
¢ > % o A
% - b,
af
Fig. 1

The sphere h(p,r) = o >0 lies on a strictly convex hypersurface;
it possesses at a given point r a supporting hyperplane H, touching it
only at r; and H, separates p from the sphere (except for r).

To see this let H; be a supporting hyperplane of K; at ¢; and H,
the hyperplane through » and the (n—2)-flat F = H, ~ H, (possibly
at oo). For convenience consider the point x = H, ~ L(a,, a,). Then H;
intersects L(a,, a,) in a, and according to our assumption either a, # a,
or @, # a, or both. Therefore

R(p, z, a,, a,) < R(p, x, a,;, a;) = R(p,r,¢s, ¢1).

Examining the space with respect to our axioms T,, T,, cne finds
that (<) is open in R X R if and only if no L(a,, a,) lies on a supporting
line (or a supporting hyperplane) of K, or K,. It is clear that (<) cannot
be open if L(a,, a,) exist which lie on supporting lines of K, or K, (or
both) which contain interior points of E. If L(b,, b,) lies on the boundary
of R then an L(a,, a,) of the previous type exists. Thus for (<) to be
open it is necessary and sufficient that no L(a,, a,) lying on a supporting
of K, or K, exists.
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If we assume this, then G, is not satisfied. For then there are points
peR with a sequence L(a], a;) containing p and such that one of the
sequences {ai}, say {a.}, tends to a point a,, whereas {a}} diverges, 50
that L(a}, a;) tends to a ray through p with a, as endpoint. (Actually
the points p for which such L(a}, a;) do not exist are exceptional.) If we
choose x, on L(a}, a,) such that p < x, and h(p,z,) = ¢ >0, then the
definition of R(p, x,, a,, a}) yields that 2, tends to a point « on R differ-
ent from p and a,. But p < x is not true since R does not intersect K,.
This with h(p, z,) = ¢ contradicts C,.

All other axioms for a timelike G-space are satisfied. The space is
geodesically complete and all geodesics are lines.

We summarize our results without repeating all details:

(2) The Hilbert metric outside two convex hypersurfaces K,, K, satisfies
all axioms for a timelike G-space with the exception of G, if and only
if no proper segments T; ¢ K, ~ R exist which are coplanar and mo
L(a,, a,) lies on a supporting line of K, or K,. Under these conditions
the awiom G, does not hold.

The L(a,,a,) are isometric to the real axis and are the geodesics,
so that the space is geodesically complete.

The case where K, is a hyperplane and K, is a strictly convex hyper-
surface is the timelike analogue to Funk’s “Geometrie der spezifischen
Massbestimmung”, see [7]. If K, is considered as hyperplane at infinity
of a euclidean space with distance e(x, y) then (1) becomes

h(p,q) = %klogz—((i%z))-

Notice that the spheres h(p, ) = o > 0 are homothetic to K,. But (<)
is not open and G, does not hold.

To define the locally timelike analogue to Hilbert’s Geometry let K
be a closed convex hypersurface in the n-dimensional projective space P"
and I its interior. This means that hyperplanes not intersecting K exist
and that K is convex with interior I relative to such a hyperplane con-
sidered as locus at infinity. Put K° = K o I.

For p¢ K*® take the union C(p) of all supporting lines of K° through
P, i.e. the lines through p intersecting K but not I. Then C(p)—C(p) ~ K
has two nappes C,(p), C.(p), and C;(p) bounds together with K an open
set F;(p). Each point p has a neighborhood U(p) such that with a proper
choice of the notations F,(q), F,(q) the set F;(q) depends continuously
(in an obvious sense) on ¢ for ge U (p). Such a choice of notation is not
possible in all of R = P"~ K°, which will be our space.

In U(p) define ¢ <,7 by reF;(q). Then ¢ <,r and r <, s imply
g <p 8. Any projective line which intersects I intersects K in two points
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a,, a, and for any two points ¢, in R on this line we define

h{q,r) = }k|log B(p, q, a,, a,)].

If ¢ <,r then the line through ¢ and r intersects I and we define

op(q, 1) = h(p, q).

Then T, is satisfied because re¢F,(q) is equivalent to geF,(r). The
time inequality

0p(q, ")+ 00(qs 8) < op(py8) for qg<pr<,s

follows from the previous discussion, which also shows that equality
holds only if ¢, 7, s are collinear, unless certain pairs of segments lie on K.
This need not be made precise because G, is valid if and only if no segment
of a projective line lies on K.

For, if L is a supporting line of K containing a proper segment with
endpoints b,, b,, let peL— L ~ K and L, a line through p intersecting I
and whose intersections with K tend to b, and b,. If ¢ is a point of L
in U(p) and different from p and ¢,¢L, tends to ¢, then

limh(p, q.) = }k|log R(p, q, by, b,)| >0

although neither p <, ¢ nor ¢ <, p which contradicts G,.
On the other hand k(p,q,) >0 if L ~ K is a point.
The remaining axioms are easily verified. So we have:

(3) THEOREM. Let K be a strictly convex hypersurface in P" with interior I.

If R=P"—K oI and U(p), 0p(q,7) are defined as above, then R
18 a geodesically complete locally timelike G-space which cannot be
consistently ordered.

The geodesics lie on the projective lines intersecting I. The length
of the arc of a geodesic from p to q is h(p, q).

The motions of R are the restrictions to R of the projectivities of P"
which map K on itself.

That such projectivities are motions is evident and that every motion
has this form is seen in a similar way as (7.1).

For a motion ¢ of R we have ¢C(p) = C(pp). Therefore, if the group
of motions is transitive on R, any C (p) can be moved into any C(q).
We note that in this case the strict convexity of K can be proved:

(4) If for a closed convex surface K with interior I in P™ the group of pro-
jectivities mapping K on itself is transitive on R = P"— K o I then K
18 strictly convezx.

According to a theorem by Ewald and Rogers [6], if H is a hyper-
plane not intersecting the closed convex hypersurface K then for almost
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all C(p) with peH the generators of C((p) touch K in one point
only. Our hypothesis implies that this is true for every C(g).

1f the group I” of motions of R is transitive on R then for no xell
the orbit I'(x) can consist of x alone since I' would then map the union
of all supporting hyperplanes of K at r on itself and hence would not
be transitive on L.

Let yel(£)—{r}. Give a point z on K and a neighborhood V(z)
of z on K. Choose ¢ in R so close to z that one of the sets on K bounded
by C(q) ~ K lies in V(z). For any point p in R collinear with x and ¥
let pel” take p into a point of F,(q) v I7,(q). Then one of the points z, ¥
goes into a point of V(z). Therefore I'(x) = I'(x) v ['(y) is dense in K.
1f I'(x) contains an open subset of A no other orbit I'(«) («el) can be
dense in K, hence /'(x) == K and K is an ellipsoid by (6.2).

The only other alternative is that dim/(x) < »—1, (9, p. 46]. Since
I'(x) is the countable union of compact sets, the number of distinct orbits
I’'(z) (reK) must be non-countable. So we sece: Unless K is an ellipsoid
it is the union of a non-countable number of distinct orbits I'(x) each of
which is dense on K. It is very probable that this cannot happen, but
the absence of information on locally compact transformation groups
seems to make a proof difficult at the present time except for n = 3.
For, dimI">»n and dimI'(x) < n—2 for reK imply that the stability
group of reK has at least dimension 2 and I" acts effectively on K.

A group of motions I” of a locally timelike G-space R is transitive
on the line elements of R if for two given line elements L, and L, a motion
in I" exists which maps p on p’ and the geodesic containing L, on the
geodesic containing L, (or equivalently, which maps all sufficiently
small segments in L, on elements of L, ).

It is clear that: in a locally timelike Hilbert space K must be an
ellipsoid if the group of motions is transitive on the line elements for
then I'(z) (xeK) is open on K.

If K is an ellipsoid we speak of a locally timelike hyperbolic ge-
ometry. 1t is the restriction to the pairs x <, y of the so-called exterior
hyperbolic geometry, see [15], which is an indefinite metric defined
for pairs in any position (compare footnote(2) on p. 28). Thus we may say

(5) A locally timelike Hilbert geometry is hyperbolic if ils group of motions
i8 transitive on the line elemenis.

We repeat that transitivity on the points suffices for n = 2,3 and
probably for all =.

For n = 2 this geometry gives rise to a second locally timelike
G-space. The geodesics through a point p are the projective lines which
do not intersect or touch the ellipse K (see [15]). Whether there is anal-
ogue to this for arbitrary strictly and/or differentiable closed convex K
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15 not known. The standard definition of distance when K is an ellipse
uses the conjugate complex intersections of the projective lines with A
and cannot be generalized.

If in (1) we choose K, and K, as the branches of the hyperboloid

n—1
(") — D' («)* = 1, the resulting timelike space is, essentially, a restric-
iz1
tion of the locally timelike hyperbolic geometry. By changing coordi-
nates it can be given a form analogous to the Poincaré model of hyper-
bolic geometry in »" > 0, namely
n-1
ds = [(dy"y = 3 (@7 (k™!
-1 :
’ w1

and @<y means y"—us" >[N (y'—o')]1"*. From this form it would
=

be hard to guess that the space, which is not geodesically complete, is
part of a geodesically complete space. We have again the phenomenon
of a subgroup of the group of all motions (of the locally timelike hyper-
bolic geometry) which has an open orbit.
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