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Abstract. This note contains the quasi-conformality criteria I and II: given n linearly
independent (rn—1)}-planes in R", a sense-preserving homeomorphism f: G —» G* (G and
G* — domains in R") is a quasi-conformal one iff it verifies Grdtzsch's inequality (5)
M < QM*, where M designates the module of an arbitrary rectangular n-parallelotope
Q. c G with the base parallel to one of these (n—1)-planes and M* the module of

Qr = f(2,). The proof for the ACL,-property (Theorem 2) is detailed, by using results
of J. Viaisdld and S. Agard.

The geometric definition of the qcty (quasi-conformality) asserts that
a homeomorphism f: G —» G* where G and G* = f(G) are domains in R”,
is a K-qc (K-quasi-conformal) mapping for a constant K > 1 if the module
M(I') of every path family I' in G and the module M(I'*) of the image
family I'* = f(I') satisfy the inequalities of Grotzsch’s type:

(1 K 'M(IN)-< M(I'*) < KM(I

([7], 13.1). Various simplifications wer€ given to this definition, proving
that it suffices to suppose inequalities (1) to be verified only for certain
path families, for instance for the families which define the module of
a ring in G or of a cylinder, or even of a right cylinder in G ([7], 36,
348.7). In [3] we showed that it is sufficient to consider only families
I' which define the module of a rectangular n-parallelotope or n-paral-
lelipiped (which is a particular case of right -cylinder) and only for the
parallelotopes whose height is parallel to one  of n linearly independent
given'directions IT%, k = 1,...,n in R"

DerINITION 1. Let us consider an n-segment
I,={xeR" x=(x;,...,x), 0<x;<;,j=1,...n}
as the direct product I, = I,_, xI,, where [; > 0 are arbitrary,

I,_, ={xel,: x = (X;s....Xs_1,0)} and [, ={xel,:x=1(0,...,0,x,)}.
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We call I,_, the base of I, and I, its height. We designate by 2(I,,I,_,)
the family of all the 1-segments in I, which are parallel to I, and by
FA(I,, I,_,) the family of all the paths which join in I, the base I,_, with
the parallel face to I,_,.

The module M (I,, 1, ) of I, with respect to the base I,_, is defined
by the module of the family ¥ (1,,I,_,) and is equal to the module of
2l 1,2 y):

(2) M, I-) = M[F(,, 1,-)] = M2, I,-)].
All homeomorphisms considered in this paper are supposed to be sense-
preserving.

DerINITION 2. A topological cube P, will be the image of I, by a homeo-
morphism ¢: I, > P, which gives also the vertices and the faces of P,.

We take P,_; = ¢(I,_,) as the base of P,, and define the module of P,
with respect to P,_; by

(3) M(PmPn-—l)zM['y)(PmPn—l)]a

Whel’e 'y(Pn’ Pn-l) = (D[y(l,., ]n—l)]'

DerFINITION 3. A rectangular n-parallelotope Q, will be the image of an
n-segment I, by a translation and a rotation ¢. In this case we put

Z‘(Qn’gn—l) = (P[Z(In’ln—l)]’ Qn—l = q’un—l)’ Ql = (p(Il),

and we have

4) M(Q,,Q,_1) = M[2(2,,2,-,)] = M[¥(Q,, 2,-,)].

Q,_, will be the base and 2, the height of Q,.

DEerINITION 4. Let f: G — G* bg a homeomorphism and I1,_; an (n—1)-
plane. We say that f verifies the Gritzsch inequality

(5) M < QM* (Q — a positive constant)

for the (n—1)-plane II,_,, if (5) holds when M designates the module of an
arbitrary rectangular n-parallelotope @, with the base Q,_, parallel to I1,_,,
M=ME,,Q,_,), 2, <G, and M* = M(Q* Q¥_,) the module of the
topological cube QF = foe(l,) = f(Q,) with respect to the base QF ,
= f(Q.-))-

DeriNiTION 5. Let x,e€G be an A-point (-oint of regularity) of the
homeomorphism f: G - G* and [I,_, an (n—1.-plane through x,. We say
that f verifies the Grotzsch inequality (5) for the (n—1)-plane II,_, at the
point x, if (5) holds for every Q, = G, where ¢ is the translation 0 > x,
and a rotation such that Q,_, = ¢(I,_,) be contained in I1,_,.

The family which plays in (5) the role of I' in (1) is evidently
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S(2,, 2,-1). In what follows it will be useful to consider the orthogonal
direction to I1,_,, which will be designated by IT,.

By means of Rengel’s inequalities we established in [2]. see also [3],
§ 1, 1.4, under the hypothesis of Definition 5:

THEOREM 1. Grotzsch’s inequality (5) for f at x, with respect to II,_,
implies

(6) Ji < QJn,

where J, is the Jacobian of f at x, and J, the norm of the derivative
of f on the dircction I1; at xq, i.e. the Jacobian of flz, at x,.

Inequality (6) remains valid even if x, is only a differentiability point
of fand J, =~ 0 at x,, ie. in this case J, = 0 too.

Combining this theorem and its consequences ([3], § 2) with classical
devices given by Strebel, Pfluger, Viisdld and Agard, we prove the following
geometric qcty criteria for Q = 1(*):

I. A homeomorphism f: G — G* which verifies Grstzsch’™s in o7
(5) for all the n coordinate (n—1)-planes is Q" ! n"" 12 qc.

Il Let IT“_,, k = 1,....n, be n linearly independent (n— 1)-plancs in R".
A homeomorphism f: G —» G* which verifies Grotzsch's inequality (5) for
these (n—1)-planes is a qc mapping.

The proof of these criteria is based on the reduction to the analytic
definition of the qcty in Viisald’s sense ([7], 34.6). Thus one has to
demonstrate that f is ACL, (hence, according to a result of Viisdld [6],
n-a.e. differentiable) and then, one obtains by means of the consequences

of Theorem 1 ([3], §2, 24-25) in the case of the first criterium the
inequality

(7 L) < @,
n-a.e. in G, and in the second case an analogue inequality
(8) IS (" < CJ,,

where the constant C depends on the (n—1)-planes for which f verifies the
Grotzsch inequality (5) ([3], § 3, 3.2).

The fact that [ is ACL, is a consequence of the following

Tueorem 2 ([3]. § 3, 3.1). A homeomorphism f: G — G* which verifies
Grotzsch’s inequality (5) for an (n—1)-plane II,_, has the properties:

1° f is AC on the orthogonal direction I, to I,_,, ie. if Q, is an
arbitrary rectangular n-parallelotope in G with the base ,_, parallel to
1,_,.fis AC on (n—1)-a. every l-segment in X(£2,,Q,_,), where (n—1)-a.e.
refers to the Lebesgue measure in £, _ .

(') The case 0 < | need St;pplementary conditions on Q ([3]. §2. § 3).
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2’ The derivative of f on the direction Il1,, which exists n-a.e. in Q, and
is measurable, is L"-integrable on Q,. Its norm is equal to J,, the Jaco-
hian foln]-

3 At every differentiability point of f it holds (6), where J, is the
Jacobian of f.

The purpose of this note is to detail the proof of assertions 1° and 2°
of Theorem 2, assertion 3° being already contained in Theorem 1.

In this aim we use for 1° a method of Viisild (Lemma 2 in [6]) which
is based on [5] and [4], and for 2° a method of Agard (Lemma 4.3
in [1]). The same dealing is indicated in [7], 34.8.6.

Proof. Let us suppose that IT,_, is the (n—1)-plane x, = 0, hence that
11, is the direction of the axis Ox,. We write every point x€R" in the
form x = (&, x,) with ¢ = (x,,...,x,_{). The n-parallelotopes Q, with the
base parallel to II, ; will be now n-segments and we shall generally
denote one of them by I, = I, | xI,. (We change the notation in Definition 1
in the sense that by I,,I,_,,I, we understand now the image of the
segments in Definition 1 by an arbitrary translation.) Evidently we sup-
pose I, = G. :

Fix an arbitrary n-segment .4, = 4, x4, in G.

The measure function
9 O,y 1)) =m,[f(1)], I, =1,_,xI,

is a positive additive segment function of the variable I,_, = #,_, as well
as of the variable I, < .#,.
As a function of I,_,; (I, being fixed), ¢ admits a derivative

eLl,-,(.0).14]

in

Do (&, 1) = lim
e—0
for (n—1)-ae ¢e.#, ,, where I,_,(,0) is an (n—1)-cube with the center
at ¢ and the side of length p. It holds
(10) ) § D@, 1)do, | < @I,y 1))

n—1
As a function of I, (I,_, being this time fixed), ¢ admits the derivative

&[I,_,.1,(x,,
(p,(ln—lﬂxn) = lim [ n-1 l(’c Q)]
¢—0 0

for ae. x,e.#,, where I,(x,,0) = [x,—30,x,+3¢]. It follows also

(11) _’-¢’(In—1!xn)dal S ¢(In—l’11)'
Iy

Taking into account that for I, = [x;, x, ], x, —x, = a,and I,_, = I,_(&, 9)
the module M = M(I,,1,_,) = (¢/a)"~! and that according to Rengel’s ine-
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quality the module M* = M [f(I,). f(I,-y x{x,})] < @UL;-y, 1)/5 (I, -1, 1)\

where 6(I,_,1,) is the distance between f(I,_, x{x,}) and f(I,_, x{x;})

and liné S, 1) =03, I,) = |f(&, x;)—f(&, x))I, Grotzsch’s inequality (5)
o

implies

(12) (?(In—l’ ) Q (D(In 1o 1)'

a a in

I° Following the Strebel-Pfluger—Viisild device one proves that fis AC
on each segment .#,. = {{} x.#,, where ¢ is an arbitrary point in .# _,
at which D@ (¢, # ) exists. Let us choose for every ¢ > 0 a finite number

N of segments I = [x),.x),] in .#, with disjoint interiors and with
N

Y a, < e a = xj—xy, write (12) for each I¥ = I,_, xI%, sum these
k=1

inequalities, and by Holder’s inequality one obtains

(ia(ln_l,l'i))" e Q (D”"—’—’{)
k=1 0"

By letting here ¢ tend to zero the deduced inequality shows that f is
AC on ;.

2 In order to prove now that Jf/dx,, which exists n-ae. in G and
is measurable, is locally L"-integrable in G, we adapt Agard’s device. Fix
for the moment an arbitrary I, in ¥, and choose ¢ such that D® (¢, 1))
exists. Further write (12) for I,_, x I,, pass to the limit ¢ — 0 and integrate
over an arbitrary but fixed (n—1)-segment I,_, = .#,_,. By (10) one has

(13) if_l (M)"do,_l <2 oq, .1,
n a a

Now choose x,€.#, such that &' (I,_,, x,) exists, take I, = I, (x,, 1/v),
and by Fatou’s Lemma inequality (13) gives

j 5 h_m( (f/ 1)) On-1 < Q‘D’(Tn—laxn)'
n—l vo o

From here, applying (11) to an arbitrary segment I, = .#, one deduces

ij ILH_] (ﬂ%)")"d"n <oe(,-,. 1)

for each T, = T,_, xI, in .7,
But n-ae. in #, one has

n v—o

of

p )
ox,

v Ly

(x)' k]

what ends the proof of 2°.
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It is natural to look for a qcty criterium in the case when the homeo-
morphism f satisfies n-a.e. in G the local form of Grotzsch’s inequality
given in Definition 5, assuming that the n linearly independent (n— 1)-planes
through a point x,e G depend on x,. Let us denote these (n— 1)-planes
by I1¢_,(x,) and the corresponding orthogonal directions by IT%(x,),
k=1,...,n If we suppose that the angles between these directions are
minorized independent of x, by positive constants and further that f is
ACL,, then it will result (again from Theorem 1) that f is qc.
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