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ON PROJECTIONS OF L*(G)
ONTO TRANSLATION-INVARIANT SUBSPACES
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W. CHOIJNACKI (WARSZAWA)

1. Introduction. Let G be a locally compact Abelian group with the
Haar measure u. Let @ be a translation-invariant *-weakly closed subspace
of L”(@). Regard L*(@) and @ as Banach spaces with the norm topology
of L*(@). The present note is a contribution to solution of the following
problem (P 1042): when is & complemented in L*(@)% Let @ be the dual
group of @. Denote by o(P) the spectrum of @, i.e., the set {y € @: y € &}.
If @ + {0}, then o(®P) # D. The main result of this note is Theorem 2
which gives a sufficient condition for @ to be uncomplemented in L (@)
expressed in terms of o (D).

2. Some examples. The first example of a complemented subspace
is the most general. Let @ have a finite spectrum. Then @ is the *weak
closure of the linear space spanned by o(®). Hence @ is finite-dimensional
and complemented in L®(G).

The second example involves a group G of a spccial type. Let G
= @,®@G,, where @, and @, are locally compact Abelian groups. Let u,
be the Haar measure on @,. Let

I={feL&: [f(s,8)p(ds) =0 for almost all ¢e@,}.
G,

I is a closed ideal in the group algebra L'(@), i.e., a translation-in-
variant closed subspace of L'(@). Let ¢ € L'(G,) and

fgdlh = 1.
&
Write . .
- Bf(s,1) = fl8,)—9(s) [flu, hm(du), 56,10y
&

P is a continuous projection of L'(@) onto I. Denote by AnlI the
annihilator of I, i.e., the set

{p e L°(@): {f, > = 0 for every fel},
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where

rod = [fedn, feI'@), peL™(@).
G

An I is a translation-invariant *-weakly closed subspace of L™(@),
and Q = E—P' is a continuous projection of L*(@) onto An I, where E
denotes the identity operator on L*(@). The spectrum of An I may be iden-
tified with @,. In particular, if @, is infinite, then An I provides an example
of a translation-invariant *-weakly closed subspace of L™(@) which is
complemented in L*(@) and has an infinite spectrum.

3. Main results. We introduce‘ the following notation:

C.(@) = {all continuous functions on @ with compact support},
C,(G) = {all continuous functions on G vanishing at infinity},
C,(@) = {all bounded uniformly continuous functions on G},
B(G@) = {all bounded complex functions on G},

M(G) = {all bounded regular Borel measures
on the field of Borel subsets of G}.

THEOREM 1. Let @ be a translation-invariant *-weakly closed subspace
of L™ (@) which is complemented in L (G). Let @ be connected. Then ® = L™(G)
or dnC,y(@) = {0}.

Proof. We use argumentation based on ideas which go back to K. De
Leeuw and are contained in [1], Theorem 4.1.

Suppose that @ is a continuous projection of L*(@) onto @. At the
beginning we prove that there exists a continuous projection R of L*(@)
onto P such that

(1) T,R = RT,

for every s €@, where T, h(z) = h(z+8), # €@, b — any function on G.
Let # denote a Banach mean, i.e., a linear functional on B(G)
satisfying the following conditions:

1) 1Ayl <lpl, Iyl = fil.laplv(i?)l,
(ii) #T,p = My for every 8 €@,
(ili) ##¢ = ¢ for any function ¢ constant on G.
The proof of the existence of a Banach mean may be found in [2],
Theorem 1.2.1, p. b.
Consider the function

v(f,9)8) =, T_,QT,p), [el'(@),pecl™@), scq.
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For an arbitrarily fixed s € @ we have

lp(fy ) () < If I IT_s@Ts@lleo < IQUNS 1 llplleo -
Thus y(f, ) € B(@) and by (i) we have

2) 149 (F, 2)| < IQIIF 1 Iplleos

whence the mapping f— A y(f, ¢p) with fixed ¢ is a linear continuous
functional on L'(@). It is represented in the form

(3) Ay(f,9) = <[, Rp)
for some Ry € L*(@). From (3) and (2) it follows that R is a linear con-
tinuous operator and ||B|| < |@Q|l. Let An® denote the annihilator of P,
i.e., the set

{fe I"(@): <{f, 9> = 0 for every ¢ € D}.

If 9 € L*(@) and f € An @, then y(f, ) = 0 and, by (3), Rp € AnAn®
=@ . If p € D, then T_,QT,p = ¢, and by (iii) and (3) we obtain Ry = ¢.
Actually, we have proved that R is a continuous projection of L™(@)
onto @. In order to prove (1) notice that for every ¢ € G we have

v(f, To0) () = {f, T QTi To0> = <fy ToT_(116QT14.9>
= (T_,f, T—(t+s)QTl+a¢P> = 9(T_.f, )(t+39)
sV (T_ofy @) (3).

and (1) now follows from (ii), namely
fy BT,9> = Ay(f, Top) = MTp(T_,f, ¢) = Mp(T_.f, )
= (T_,f, R‘P) = <f’ -TaR‘P>~

Now we show that C (@) is an invariant subspace of R. For ¢ € 0, (@)
and an arbitrary ¢ > 0 there exists a symmetric neighbourhood of zero V,
such that

T o < seV,.
s?— ol "R”

Hence by (1) we obtain
ITs Bp — Bpllo, = IB(To0 — )l < IR Top — ¢l < &,

whence for a non-negative continuous function 7, on @ such that
suppn, < V, and f n.dp =1
@

we have
[Bp*n, — Rell, <



364 W. CHOJNACKI

Evidently, Rgxn, € C,(@), whence there exists a function ¢ e C,(@)
such that &(z) = Re(x) for almost every x. After modification (if necessary)
on a set of the Haar measure zerQ we may assume that Ry € 0 (G).

Next we show that C,(@) is an invariant subspace of E. The mapping
p— Rp(0) is a linear continuous functional on C,(@). By the Riesz theorem,
it is represented in the form

Ry(0) = [gdv
aq
for some v € M (G). Hence by (1) we obtain
Ry(s) = (T, R¢)(0) = (RT,¢)(0) f«p(s+m)v(dw>

Consequently, if ¢ € 0,(G) and K is compact with

K)<
PI(GNK) < ” &

then for s ¢ suppp — K we have |Rg(s)| < . Hence Ry € Cy(G). For ¢ € Cy(G)
choose a sequence ¢, € C,(@) such that

lim|lp —g,l| = 0.

n—->o0

Then
lim|Rp—Rg,|| =0 and Ree0,(&),

n—oo

80 0y (@) is an iﬁva.riant subspace of R. Now for ¢ € C,(G) we can write

[ o(s)v(ds) = Bp(0) = R'¢(0) = [Ro(s)2(ds) = [ g(s+1)v(dt)v(ds),
G . Q@ axG
whence vy =». Thus #(y) =1 or 0 for every y € @, where » denotes
the Fourier transform of ». Since the mapping y— #(y) is continuous and @
is connected, we have » =1 or » = 0 and R = E or R = 0, respectively,
on Cy(@). In the case R = FE on (y(G) we have Cy(G) = &, whence
® = L™(G). In the case B = 0 on Cy(G) we have ®n(y(G) = {0}. Thus
the proof is completed. ‘
Let M,(@) denote the class of all closed subsets of @ which contain
a support of a non-zero measure belonging to M (@) with the Fourier
transform vanishing at infinity. Every closed subset F of G such that
p#(F) > 0 belongs to M,(Q). In a non-discrete G there may exist F € My(G)
such that u(F) = 0 (cf. [3]).
THEOREM 2. Let D be a iramslation-invariant *-weakly olosed proper

subspace of L (@) and let @ be conmedted. If o(P) € MQ(G), then & i8 unoom-
plemented in L™(Q).
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Proof. Suppose that @ is complemented in L*(G@). By Theorem 1,
®nCy(G) = {0}. Let » be a non-zero measure supported by o(®) such

that » € C,(@). For every fe An® we have {f, ») = {(f,») =0, whence
»€ AnAn® = @. Thus » is a non-zero element of ®NCy(G). This contra-
diction proves our theorem.

THEOREM 3. Let I be a non-trivial ideal in L' (@) and let G be connected.
If o(AnI) e My(@), then I i3 uncomplemented in L'(G).

Proof. If P were a continuous projection of L'(@) onto I, then
Q = E—P’ would be a continuous projection of L* (@) onto AnI, contrary
to Theorem 2. '

The author should like to express his sincere thanks to Professor
J. Kisynski for suggesting a problem considered in this note and the idea
of using & Banach mean. The author is also grateful to Professor S. Hartman
and Professor C. Ryll-Nardzewski for their kind and valuable remarks.
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