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1. Introduction. We will use the symbol U, to represent the class of
functions meromorphic and univalent in the open unit disk 4, 4 = {z: zeC,
lz] < 1}, normalized by the conditions

(1.1) fO) =0, [f(0=1 and [(p)= oo,

for a fixed p, 0 < p < 1. Functions satisfying these conditions have been
studied by several authors (see [5], [6], for example); and by using variational

methods Ziotkiewicz [8] characterized the region {Cf © : f(2)e U,}, for {
fixed in 4. J©

Our purpose here is to determine some common properties of the set
S[4], the image of 4 under an arbitrary f(z) in U,. The principal result
is the theorem which follows.

THEOREM 1. For a given R, R > 0, and an f(z) in U, let m(R; f(z)) be
the Lebesgue measure of the arc of the circle Cp = {w: ol = R} left
uncovered by f[4], ie.

(1.2) m(R; f(z)) = meas (C, NS [4]),

where % is used to denote the complement with respect to the complex
plane; and let

(13) O(R) = sup \m(R; f@)): f@)eU,};

* This work was performed while the second author was in Lublin under a program
sponsored jointly by Polska Akademia Nauk and the National Academy of Sciences.
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then
’4Rarcsin[(l+p) i—l:' 4 "< R<p
p od+pr T T
(14) O(R) = . [ \/7] p
4R arcsin| 1 —(1— — |, <R ——,
T | Psfsap
L0, otherwise.

This conclusion cannot be improved.

Similar questions have been considered by others. Jenkins [2] obtained
the corresponding result for the class &% (of functions f(z) regular and
univalent in 4 normalized so that f'(0)—1 = f(0) = 0) and Reade and
Zlotkiewicz [7] considered the same question for regular univalent functions
with Montel’s normalization. In both these papers the main tool is circular
symmetrization and this is the case in the proof of Theorem 1. However,
the normalization (1.1) together with the boundedness of %f[4] for f(z)
in U, cause technical difficulties in our proof which were not experienced

in either case cited. The proof of Theorem 1 is given in Sections 3 and 4
below.

In Section 2 we given an explicit representation for the Koebe set
of U,; this is the set

(1.5) A U,)= (1 f[4].

Sf(2)eUp
XA (U,) contains all points common to each f[4] and no others.

2. The Koebe set of U,. If f(z) is in U, and f(z) does not assume
the value —c, then

¢f (2)
c+f(2)
is in . Taking limits we may write g(p) = c. It follows from a well-known
bound of Grunsky [1], p. 117; that
< log (ﬂ)
1-p

log c—log( l—ppz )

Conversely, if ¢ satisfies (2.2), then there is an f(z) in & such that f(p) = c.

Now ¢(z) = f(p)f@f(P)—S(2) is in U, and ¢(z) does not assume the
value —c. Rearrangement and exponentiation of (2.2) gives the result which
follows:

THEOREM 2. For z in A we let

I 1+p ¥
(2.3) F(z) = 1 (1-p>’

(2.1) g(z) =

2.2)
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where the principal branch is chosen. Then the region of values omitted by
some function in U, is the image of the closure of the disk under F(z), ie.,

(2.4) ¢A (U, = F[4].
CoroLLARY 1. If for z in 4,
25) iz| log (%ﬁ) <,

then the set of omitted values is simply-connected; otherwise it is the closure
of a ring domain.
CorOLLARY 2. If d is a value not assumed by an f(z) in U,, then

P
(1-pp -

14
26 —— < |d| <

The last bounds can also be obtained directly from (2.1) and known
bounds for &.

3. A special subclass of U,. Here we construct and examine the functions
of U, which map 4 onto the complement of the union of a segment of the
negative real axis and a circular arc symmetric with respect to that axis;
the cases where either the arc or the segment degenerate to a point will
be included.

The Zhukovskii function,

1—-ow

(3.1) Z(0) = wg :
0—w

maps d4 onto an arc of the circle of radius g centered at the origin which
is symmetric with respect to the real axis. This makes sense for ¢ < 1 and

in this case the tips of the arc are the points g+i /1—g?.
For —1 <t < 1, we let

z
32 he) = 1-2tz+2%°
for z in 4. h(z) is typically-real and starlike with respect to the origin and
maps 4 onto the complement of the plane slit from oo along the real axis.
The ends of the slit are the points —1/2(1+1¢) and 1/2(1 —¢) which correspond
to the boundary points —1 and 1, respectively.

Now the function given by h(kh(z)), where & denotes the inverse of h
and 0 < k < 1, maps 4 onto itself but equipped with radial slits issuing
from 04 along the real axis. The image of this set under Z(w) is a trans-
formation of the type we seck. To guarantee normalization and that an arc of
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the circle of radius R be left uncovered we introduce the function

/(R
"(ﬁ)
(3.3) w(z) = Mﬁ(

B0 ).

R
with the parameters satisfying the conditions M > 1 and h(ﬁ) = kh(p).

R
Prior restrictions on k and properties of h(z) insure that h(ﬁ) < h(p),
R < Mp and w(p) = R.

Modifying (3.1) to correspond to the disk of radius M we form the

composition
l_(R)(a)(z))
2 _
G4y Fi=-F M)\'M ) R M?—Rw(z)

Fm(z) (R)ﬁ(w(z)) I YE () R-w(z)
M M

Normalizing F(z) so that its interior mapping radius is 1 gives the additional
condition that

o RY .
(3.9) Mh (ﬁ) = h(p).

We denote the class of all functions F(z) defined by (3.1) through (3.5) by
K,; K, is a subclass of U, with the property that if F(z) is in K,, then
F[4] is its own circular symmetrization with respect to the negative real axis.

We now proceed to give a solution to the problem of Theorem 1 over
the subclass K,.

LemMa. sup \m(R; F(z)): F(z)eK,} = ®(R), with ®(R) given as in (1.4).

To justily the lemma we [urther analyze the mapping properties of F(z)
in K,, for R satisfying (2.6), ie., when

P 4
36 < R < )
(36) 1+ p) (=pf

Il R is at either end point of (3.6), then ®(R) takes on the value 0 and
the corresponding function F(z) in K, has the property that F[d4] is simply
a segment of the real axis. In all other cases F[d4] includes a circular arc.
Therefore we need consider only the cases where R is inside (3.6).

For such an R, fixed, the end points of the circular slit are among
points on 04 where h'(z) = 0. A calculation shows that h'(z) = 0 when
z = +1 and when o = w(z) satisfies

3.7 w?-2Rw+M?* = 0.
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The first two zeros correspond to the end points of the segment on the
real axis, hence we are interested in the solutions of (3.7). We write these as

(3.8) ® = R+i./M*—R? = Met™

and assume that h(z,) = Me”, a > 0.
The angular measure of the arc of the circle of radius R contained

in h[4] is
M —Re"
.9 = e —
3.9 2arg h(zy) = 2 arg ( Re"—M

- R
= 2[n+2(—2—n—+a)] = 4 arc cosﬂ—

and the angular measure of the arc of the same circle subtended by h[d4] is

) = 2[n+2arg (M?—RMe"™)]

R R
3.10 2n—4 0s — = 4 arc sin —-.
(3.10) n—4 arc cos M rC sl M

To complete the proof of the lemma we maximize the quotient R/M.
Because of (3.5), M is not arbitrary. Indeed, (3.2) together with (3.5) give
the relation

(3.11) (%—t)z = (t—R)’—[R’—(p+%)R+l].

R
M
interval —1 <t < 1, shows that for

Now writing = s(t), solving (3.11) for s(t) and maximizing s(t) over the

< R < p, s(t) assumes its

_pP
(1+py

maximum ¢ = —1 and for p < R < , 5(f) assumes its maximum

p
(1-py
at t = 1. This together with (3.9) and (1.4) concludes our discussion of
the lemma.

Finally, to ease discussion in the next section we will speak of domains
of “type K,”. Such a domain will consist of the complement of a segment
of the negative real axis met by a circular arc symmetric with respect to
that axis and with its center at the origin. Furthermore we will frefer to
the components of the complement of such a domain as the “left segment”,
“right segment” and “the arc”. Clearly, for each f(z) in K,, f[4] is a domain
of type K,, however, the converse does not follow.

For each R the function f(z) in K, corresponding to the value m(R; f(2))’

= @P(R)is unique. If p < R < L, then €f[A4] is the arc of Cy together

(1-py
with the right segment; if R = p, 4f[4] is only the arc of Cg; if
p

(1+p)?

< R < p, then €f[4] is the arc of C, and the left segment; and

6 — Annales Polonici Matbematici XL.3.
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when R assumes either end point ( l-fp)z , or a _pp)z , then %6f[4] is the
P P -
segment [ , ]
(1+p)*” (1-py

4. Proof of Theorem 1. U, is a compact family, hence there is a function
f(z) in the class which is extremal for the problem of Theorem 1. This
means that the set of omitted values on |z = R is maximal for f(z).

Let D = f[4] and let D'V be the circular symmetrization of D with
respect to the positive real axis. Let r(D; 0) be the inner conformal radius
of D with respect to zero and let g(0, z; D) be the corresponding Green’s
function. Then it follows [rom well-known properties of symmetrization [3]
that

4.1) 1 =r(D;0) < r(DV;0)
and [rom the work of Krzyz [4] that
(4.2) g(0,0; D) < g(0,0; D'V) and p* < p,

where p'!) is the pole of the function mapping 4 onto D).

We now place D" inside a domain D of “type K,” chosen so that
the arc of the complement of D® coincides with the circular arc of radius R
of the complement of D'V. (We have essentially cut the “fat” from D'V to
obtain a domain of type K,.) This operation gives

43 rO, D)< r©0,D?) and ¢(0, 0;D") < g(0, w0;D?).

Next we remove the left or the right segment of the complement of D®
and again obtain a domain D of type K, whose complement has at most one
segment. Which segment i1s removed in this operation depends on R and the
corresponding extremal function in K, as discussed in the preceding section.
We then have the inclusion relation D® < D®. Now, if r(0, D®) and p*®
carry meanings like those above we have, from (4.1), (4.2), and (4.3), that
4.4) 1<r(0,D? and p? <p.

Equality can occur in (4.4) only if D = D™ (see [3], p. 136, for a discussion
of this point).

Suppose 1 < r(0, D). We modify domain D'® by prolonging its segment
and obtaining a domain D™ still of type K, such that D) < D). This

operation decreases the inner conformal radius and shifts the pole to the
right. We prolong the segment until we obtain one of the following:

r p®=p and r(0,D9) =1,
4.5) Z p¥<p and r(0,D¥) =1,
¥ p¥=p and r(0,D¥) > 1.

We will show that 2 and 3° are untenable; we dispense with 3 first.
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It follows from the construction of the family K, given above that
a function mapping 4 onto a domain of type K, has the form

_ z+Q \_ _p—gq
""Z"A{F(ng) F(Q)} for @ = 1— -

f(2) in K, and 4 > 0. Now, if we assume furthermore that @[4] = D¥
and p = q, ie, we let ¢ — p, then ¢(z) = AF(z) and A = r(0, D'¥) > 0.
An examination of ¢[4] and F(z) reveals that F(—1) = ¢(—1) = —R for

the case when p < R < __P and F(1) = ¢(1) = R otherwise. In either

(1-p)?*
case we conclude that 4 = 1, ie.,, r(0, D) = 1. Consequently, 3 cannot
hold.

Now we suppose ¢(z) and F(z) have meanings like those above and
that 2 holds. Then, with ¢ = p'¥, we have

z+Q
F(1+Qz)_F(Q)

(1-0*) F(Q)

Condition 2 requires that ¢(—1) = f(—1)= —R, or (1-Q)F(Q)R
= R+F(Q), and that ¢ < p. But if this equation has a solution for g,
with ¢ < p, then it follows from the lemma that to this smaller value g,
ie, p'* smaller than p, there corresponds a smaller value to the measure
of the uncovered circular arc. But this contradicts our choice f(z) as being
the extremal function for the problem.

We conclude that 1° of (4.5) is the exclusively valid condition and
consequently that the unique extremal function given in the lemma gives
the solution for whole class U, as well.

ez =
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