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1. Introduction. Assume that the bichromatic random graph G, , ,
has m given labelled points P,,P,,...,P, of one colour (say red), »
given labelled points @,, @, ..., @, of another colour (say blue) and let
each of mn possible edges connecting only a red point with a blue point
occur with a prescribed probability p =1 —g¢q (0 < p < 1) independently
of all other edges. A connected bichromatic graph which has k red points,
! blue points, and %k +1—1 edges is called a (k,l)-tree. Let the random
variable 7,; (k> 1, 1> 1) denote the number of isolated (k,1)-trees in
the bichromatic random graph @G, , ., i.e., (k, l)-trees which are isolated
subgraphs of G, ,,. In this paper, we give first the exact probability
distribution of the random variable 7; ;. A similar result concerning the
distribution of the number of isolated trees of order % in a usual random
graph G, , is presented in [11]. Next, we formulate theorems describing
the asymptotic character of behaviour of 7, ; as well as the size of the great-
est isolated (k, k)-tree in G,, ,, ,. These theorems are analogous to the ones
of Erdos and Rényi [3], concerning the asymptotic probability distribu-
tions of the number of isolated trees of order k and the size of the greatest
isolated tree in the random graph G, 5 which has % labelled points and
N edges randomly chosen from among the (g) possible edges. We would
like to remark that the methods used for the proofs of Theorems 3, 5,
and 7 are mainly those of Erdés and Rényi [3]. For a review of the
results on random graphs, we refer the reader to [6].

We denote by P, , ,(4) the probability that the graph G,, , , has the
property A. Next, E(£) = E£ and D?(£) mean the expectation and the
variance of the random variable &, respectively. As usual, for every -
and every natural number m we set

@) = 2(@—1)... (@—m+1), (2) =1,

and let [#] denote the integer part of «.
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2. The exact result. In this section we give the exact probability
distribution of the number 7, ; of isolated (k, l)-trees in the bichromatic
random graph G, ,, ,.

THEOREM 1. If h = min([m/k], [n/l]), then

h—1

Pm,n,p(fk.l =1) = 2( 1)j(z+]) Si+j (t=0,1,...,h),
j=0
where
(M) (%) t et Im—(i
(1) 8; = ik L (k,:ll’ qk +1 (+l)kl)

and 1, ; is the probability of occurrence of a (k,1)-tree, i.e.,
(2) tkl — kl—llk—lpk-l-l—lqkl—(k-l-l—l).

Proof. Let 4; (1<j<h) denote the event that the j-th (k1)
element subset of the (m 4 m)-element set of points is an isolated (k, l)-
tree of G,,, , and let B; be the event that exactly ¢ among the events
A, A,, ..., A, occur. It is clear that

(3) P, . .(t, =1i) = Pr(B).
Now, if j, #j, #... #j;, then
Pr( Afl Aiz LA i) = t;;,l gHn— W +ilm—ik)HiG-kt t;:,l g lkn+im—G+1kl)

where t,, ; is given by (2). Formula (2) follows from the fact that the number
of bichromatic (%, I)-trees is equal to K~11*~! (see [1]). Thus it is easily
ohecked that for ¢ =1,2,...,h

(4) 8; = 2 ]E'I'(AhAj2 . A,-‘,) = '&('_TI:"")‘((”T)";‘ (tk’lqkn+lm—(i+l)kl)i’

where the summation is extended over all ¢-tuples of pairwise point-dis-
joint (%, l)-trees which can be formed by using m labelled red points and »
labelled blue points. Let 8, = 1. Then by (3) we obtain our thesis from
the well-known Jordan’s theorem (see, e.g., [4]).

3. Asymptotic distributions. We deal now with the case of m ~ ¢n,
where ¢ > 0 does not depend on m and n. Using the Bonferroni inequality

1=8, < Pppp(ty =0)<

and applying (1) we have
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COROLLARY 1. If m ~ c¢n, then for each fized k,1>1 and p >0

LmP,, , (7, = 0) =1.
n—o0

This property follows also from another known result of random
graph theory. Indeed, if p is constant, then the mean number of edges
in G, ,, (m ~cn) has the order of magnitude »?% and the bichromatic
random graph G,, , , i8 connected with probability tending to 1 as n — oo
(see [10]). Thus, G, , , does not contain any isolated tree. This situation
changes if the edge probability p depends on m and n, i.e., p = p(m, n),
and p — 0 as m, n - oo. As a matter of fact, the following theorem is
valid:

THEOREM 2 (Palasti [8]). If m ~nandp =p(m,n) >-0asm,n - oo
in such a way that

(5) lim pp®+ME+=-D — 5 (0 < p < o),
n—>00
then
. ) ie? )
lim Py, , (7 = ©) = il (¢=0,1,...),
n—>00 .
where

k+1-1 kl-—l lk—l

e
k!l

(6) A=

In other words, the number of isolated (k, l)-trees contained in @,, , ,
{m ~ m») has in the limit for » — oo the Poisson distribution with expecta-
tion . Now we give a little different proof of Theorem 2, which follows
from Theorem 1.

Proof. Since
(W) = (L+o())n* and 1-—p =exp(—p+0(p?),

from (1) and (2) we obtain
1 kl—lzk—l
5 = ( K1l

Further, it is easily seen that, by (5), p» — 0 a8 » — oo, and because
m ~n, we have

.
(N mEntpFti-t o"‘""*"""’) {14 O(i(kn +1m) p)} .

¢!

lim 8; = —

o T
where 4 is given by (6). Now, if u; denotes the i-th factorial moment of
the random variable 7;, then (see, e.g., [2], p. T1) uy = ¢!8;. Thus
n

~—+00
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On the other hand, the ¢-th factorial moment of the Poisson distribu-
tion with expectation 4 is equal to A* (see, e.g., [2], p. 77). Since the Poisson
distribution is uniquely determined by its moments, by the second limit
theorem (see, e.g., [7]), we obtain our thesis.

Now let us pay our attention to the following substantial fact. If (5)
holds, then a random graph @&, ,, , (m ~ n) contains only such (k, I)-trees
which are isolated. Indeed, if a (%, l)-tree were a subgraph but not an
isolated subgraph of G, , ,, then G,, , , would have a connected subgraph
consisting of ¥+ 1-+1 points and %+ edges. We will show that it is impos-
sible. Let 4, ;, denote any non-empty class of connected balanced bi-
chromatic random graphs which contain % red points, ! blue points, and v
edges (connecting points of different colours), where k¥,?> 1 and k+41—1
< v< kl. Then the threshold function concerning the property B that
Gpnp (M ~m) contains a subgraph isomorphic to some element of %, ,;,
is equal to n?~(*+) (5ee [9]), i.e.,

0 if lim pn?—k+de — o,

. . n—oo
(8) }330 P, np(B) = 1 if lim pa—G+de — oo,

n—»o00

Since, in our case, p satisfies (5), we have

lim pn2~*++DIEHD — ¢

f—>00

and, by (8), the probability that @, ,, contains a connected subgraph
congisting of k¥+1+1 points and k41! edges tends to zero as #» — oo.

Now, if A denotes the property that the bichromatic random graph
Gpn.p (M ~ m) contains some (k,l)-tree (not necessarily isolated), then

by (8) we have

0 if lim p,n(k+l)l(k+l—l) — 0’
(9) ,}E:Pm,n,p(A) = 1 it E:pn(kw/(m-x) -
n—>00

Now, let us consider the asymptotic distribution of the random
variable 7, ; when

(10) lim pu®+0+-1) — o,

n—>oo

THEOREM 3. If m ~ n and (10) holds, bui

(11) nll_li (np — logn — ——k—_’-_—i—— loglog'n) = — o0,

k+1
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then for —oco <2< + o0

. T I—an 1

limP,,, ., ("——— < w) =— f exp( —u*/2)du,
n—o00 }/_M”’p

where

kl—l lk-l

(12) Mn,p =n AT (,np)k+l—16—(k+l)np.

Proof. Note first that the two conditions (10) and (11) are equi-
valent to the condition

(13) im M, , = oo.

n—>o00

Since the normal distribution N (0, 1) is uniquely determined by its
moments, it suffices to show that

+ o0
7., —M, r 1
14 lim B %4 ”’p) =— fu"e —u?/2)du.
(14) m }/MM, Von J XP ( /2)

Taking into account the relation between moments and factorial
moments (see [5], p. 77, and [2], p. 71), we have

r

E(d,) = D oi!8,,

i=1

where o/ are the Stirling numbers of the second kind. Thus from (7)
we get

(15) B(z,) = (1+0(r(k+hnp?)} 3 o0,
=1
where M, , is given by (12). Now using the identity (see [3], p. 33)
r o0
, o A,
2'050,1' =2, 57 v (r=1,2,...),

=1 ]
we obtain
—-M r
(16) E( 1’6,1 n,p )
VM, ,

[ <]

1 M :
= M 2 ._._z':P [exp(—M, ;)]s — M, )" {1+O(r(k+1)np?)}.

P w0



158 Z. PALKXA

Since in our case M, , — oo by (13), the right-hand side in (16) con-
verges to the r-th moment of N (0, 1) (see [3], p. 33), and (14) is proved.

Let us notice now that from (15) we have
E(Tk,l) ~ Mn,p’

and as limM, , = oo, this means that the assertion of Theorem 3 can be
7—00

expressed as follows: the number of isolated (%, l)-trees in &, , ,, Where
m ~n, i3 always asymptotically normally distributed if # — oo and
p(m,n) -0, so that the mean number of such trees tends to infinity.

From Theorems 2, 3 and from (9) we get the following asymptotic
property of 7 ;:

COROLLARY 2. If m ~ n and p(m, n) — 0 in such a way that (5) holds,
then the number of isolated (k, l)-trees in @, ,, ,, 18 finite and has the Poisson
distribution, whereas the number of isolated trees of order less tham k-1
has a mormal distribution and there are mo isolated irees of order greater
than k+1.

Finally, let us turn to the case where

(17) (k+l)np = logn + (k+1—1)loglogn +y+o(1),
—o<<Y< o0,

Then the mean number of isolated (k, l)-trees is again finite and the
following theorem is valid:
THEOREM 4. If (17) holds and m ~ n, then

lz'e—l
imP, , (1, = 1) = 7 (t=0,1,...),
n—>00 .
where
kl—llk—l _ _ _
(18) A=— (B+1)~k+Demv,

Proof. From (17) we obtain

(k+U)np = (L+o(1))logn,
80
n(np)+~'exp(—(k+1)np)
~ exp (ldgn +(k +l—1)(loglogn —log(k+l)) — (% +l)fnp)
~ (kD)6 D6,
and by (7) we get
}_‘

lim S‘ =T
1!
~—+00 .
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where 4 is given by (18). Thus the proof is completed by the use of factorial
moments exactly as in the proof of Theorem 2.

4. The size of the greatest isolated tree. We investigate here the size
of the greatest bichromatic isolated (k,l)-tree of G, ,, in a particular
case where ¥ =1 and m ~ n. Let y denote the number of points of the
greatest (k, k)-tree which is a component of G, , ,. Let p ~ ¢/n, where
¢ > 0 does not depend on n. We have

THEOREM 5. Suppose p ~ ¢[n with ¢ # 1. Let w, be a sequence tending
to + oo arbitrarily slow. Then

(19) limP,, , ,(y > a ' (logn —3loglogn) + w,) = 0
and T

(20) LimP,, ., ,(y > a7 (logn —3loglogn) —w,) =1,
where o

(21) e % =ce'° (ie, a=c—1—loge>0).

Proof. Let us notice that
Prup(?>2) = Proy( U (e > 1)< D B(r,y).
k>z/2 k>z/2
Since m ~ n, by (15) and (12) we have

kk—l 2
k!

E(rp) = n( *e~*(1 4+ O (kep)).

Using the Stirling formula and taking into account (21) we have
further

m—az
Pm,n.p(7>z) =0( e )

Now, if 2z, = a~!(logn —3loglogn)+o,, then
Pm.n,p(? = 2) = O(pr( —aw,,)),

which proves (19). To prove (20) we have to estimate the expectation
and the variance of 7;,, where 2¢ =2z, = a'(logn—3loglogn)—w,.
By (15) we have

1 me 4qa®

(22) B(ry,) ~ 5o~ ~ —— exp(aw,).

and
(23) D’("u) = O(E(Tt,t)) .



160 Z. PALKA

Now we have clearly

Pm,n,p(?’ = 2p) = Pm,n,p(Tt,t =21)=1 _Pm,n,p(tt.t = 0).

Using the Chebyshev inequality and taking into account the fact
that the random variable 7, , is nonnegative, we infer from (22) and (23)
that

Popnp(ty =0) = O(OXP( —awn))'
Thus
Pm,n,p(y = zz) = 1— O(exp( ‘—a’mn))

and (20) is proved.
" In other words, Theorem 5 states that if p ~e¢/n (¢ = 1), then the
gsize y of the greatest isolated (k, k)-tree satisfies

ly —a~* (logn —3loglogn)| < o,

almost surely. Now, let us investigate the number of isolated (k, k)-trees
when

(24) 2k = h = a~'(logn —3loglogn)+1,
where ! is an arbitrary real number such that % is a positive integer. We
have '

THEOREM 6. If m ~mn, p ~c¢/n with ¢ #1, and a = ¢—1—loge,
then the number of isolated trees of size h, where h ts given by (24), con-
tained in G, , , has for n — oo the Poisson distribution with expectation
A = 4a*e™%/(¢cm).

Proof. Since ¥ =1, m ~n, and np ~ ¢, we have from (7)

—142 1
ko

it le\ K

Using the Stirling formula and taking into account (21) and (24)
we have further

1 (4 i1 [ 4 ¢
S‘ ~ ( % 6—2104) N___(__ ase—la) ,

it \en (2k) ! \em

and the proof is completed by the use of factorial moments exactly as in
the proof of Theorem 2.

Now, let ¢ = 1. In this case, the size of the greatest isolated (k, k)-tree
contained in G,, , , (m ~ n) satisfies

w;l < y”—IIS < W,

almost surely. As a matter of faet, the following result is valid:
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THEOREM 7. If p ~ 1[n and w, 18 a sequence tending to -+ oo arbitrarily
slow, then

(25) . IimP, ., (y=>95"w,) =0
n—»o00

and

(26) lim P, , ,(y = n"|w,) = 1.
n—+00

Proof. Proceeding analogously as in the proof of Theorem 5 we have
P, . p(y=>2) = O0(n/d).

Thus, if z, = n'%w,, then
Ppnp(y=2) = 0(wg?),

and so (25) holds. Now, if 2t = 2, = #'?/w,, then
4
E(7,) ~;w2 and D*(7,) = O(w,),

80 (26) follows by using again the Chebyshev inequality.

5. Remark (added on February 14, 1980). It should be mentioned
that K. Schiirger in his unpublished Ph. D. thesis [12] has considered,
among other problems, the probability distributions of the number of
isolated k*-trees (where k* = (k,, k,,..., k,)) in the r-partite random
graph G, n, #* = (ny, %, ..., w,), which has N edges randomly chosen

from > m;n; possible edges. It appears that Theorems 2-4 of our paper
I<i<ji<r
are special cases of more general theorems proved by Schiirger. We would

like to remark also that the method used for the proofs of Theorems 2
and 4 differs from that applied by Schiirger.
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