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OF HOLOMORPHIC FUNCTIONS IN THE UNIT DISC
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1. INTRODUOTION

A sequence of vectors ¢,, ¢,, ... in a separable Banach space B is
said to be a Schauder basis for the space B if every vector ¢ of B can be

expressed as a sum,
@ = Z CrPr
=

convergent in B, with scalar coefficients ¢, uniquely determined by ¢.
In this note we shall give an explicit construction of a Schauder basis
in the following Banach spaces.

I. The spaces H”,1 < p < oo. Recall that H? consists of functions
@(2) holomorphic in the unit disc |2] < 1 such that

1,

= [ Ip(re*Pa0

2r I

remains bounded for 0 <r < 1; the norm is
T AT
Il = lim (= [ Ip(re)Pas) .
r—1 kD Yn
This norm is equivalent with the L?-norm of the boundary function

¢(?) = 111151 p(re”) (Y).

II. The space A. This space consists of all functions continuous in
the closed unit dise [2| <1 and holomorphic in the interior |2] < 1 with
the uniform norm.

() For 1< p < co, the trigonometric exponentials 1, ¢, ¢¥® ... form
a Schauder basis in HP.
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The question as to the existence of a Schauder basis in the space A
occurs in Banach’s treatise, Théorie des opérations linéaires (Warszawa
1932, p. 238).

Our procedure of construction is to form an interpolation series
of a type studied in a recent paper [1] by choosing the nodes of inter-
polation conveniently in the unit dise. Actually, we take these nodes
uniformly distributed on the circle || = 4. We prove three things:
1° the sequence of remainders of our interpolation series interpolating
a fixed function ¢ B, has a compactness property in the Banach space B;
2° this sequence of remainders converges to 0 uniformly on compact sub-
sets of |2] < 1; 3° the coefficients of the series are uniquely determined
by the given funection ¢.

It is curious that a dyadic partitioning occurs in the present note
as well as in Schauder’s original construction using Haar’s functions [4],
and in extensions of this construction [2].

An open question is to find out whether and how strongly the nodes
can cluster at the unit circumference and still preserve the basis property
of the functions B, (z).

2. AN INTERPOLATION SERIES

It is important for the sequel to enumerate a sequence z,, 2,, ...
of distinct complex numbers of modulus 4 in a certain way. We take
the arguments of the z; to lie in the interval ]— =, n] and to have the
form

(2.1)

™

for some integers k,n. The rule of enumeration is to choose 2z, = 1,
then successively 2,,23,... such that the product of the distances to
the already chosen points is maximum. In cases of ambiguity, when
the maximum is realised at several distinet points, we choose the point
with smallest positive argument of the form (2.1). The distribution of
the points z2,, 2,, ..., 2, remains for every index » as near as possible to
the uniform distribution of » points on |2] = 4. The sequence z,, 2,, ...
thus begins as

I 1 L 1o 1wy L iy L gomy 1 —iwiny) 1 imiy
2’2" 2 2 ’'2 ' 2 ’2 ’2 ' 2 ’
Having fixed this sequence, put
- Ek Rp—R%

B,(2) =1 B, (2) = —_ .
@ =1, B =] [ i,
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Our interpolation series is a series of the form

D onBn(2),
n=0

where the ¢, are certain continuous linear forms on the Banach space B.

A sequence of functions y,(?), ¥,(¢), ... is uniquely determined on
the unit circle [t{| = 1 as a sequence of linear combinations of 1/(t—z;)
by the triangular systems

70(t) Bo(2) +--+ ym(t) Balia) = 3=

The following identity in ¢, 2 can be checked, for instance by exam-
ining the zeros and poles on both sides:

~ S nom — ellem) 1

~ Bu()(t—2npr) t—2

Now if ¢(2) is any function belonging to a space B, it is represented
by the Cauchy integral over its boundary values on |{| = 1. Hence, for
|2 <1 and » =0,1,..., we have

n

_i Bn(z)(z_zn+1) (P(t)
22 gl)— D aBe) =5 D Bali—2ms) =

(k=1,2,...,n+1).

t—2

k=0
where

Ok f @(t)ye(t)d
b

Denote the right-hand side of (2.2) by R,(z) = R,(z; ¢). Clearly,
if peB, then also R,eB.

To show that R,(2) converges to 0 uniformly for |z| <r <1, we
use the estimate

Z2— 2 1-|—2'r

<
247

. (el <7).

We then have

1 /142r\® 1427
|R,.(z)|<§( )

e mf P01 1ad,

which proves the stated convergence to 0.

3. A COMBINATORIAL LEMMA

By the n'® generation we understand the collection of those points z;
with argument of the form (2.1) for ¥ = —2"+1,...,2"—1,2". An
interval of length p in the n'™ generation is a sequence of p adjacent
points on |2] = } which belong to the jnth generation.

Colloquium XV. 19
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An important role is played by the following lemma of combina-
torial nature:

LEMMA. For every n, for every pair of disjoint imtervals A,, A, of
equal length in the n'™ generation and for every imitial segment J of the
sequence z,, 24, ..., if J intersects A, and A, in k, and k, points, then the
excess |k,—k,| satisfies

ey — e < 2.

Remark. In the sequel, any absolute constant would do as an
upper bound for |k;—k,|.
Proof. Let us begin by writing the points of the »n'" generationin a table,

2y % 23 %
g g 27 %
(3.1) iy ¢

zzn ’

whereby the division into columns is nothing but the division according
to quadrants on [2|] = 1/2. It is enough to consider the intervals A,,
A, as lying in one and the same column. Since the argument of each
point (3.1) is some absolute constant multiple of

& &y En
?+‘2—2+...+’2—n, 8,=0 or 1,

we can use the usual binary notation (e, ¢, ... &,) to represent such a point.
Thus for instance for » = 4 we would have the column

& & &

g

o
(=]

_ O O O O
O O o O
—_ - - O OO
[~ R — A~ I - -]

QO QO O O
= OO M o-=O O
b - - O O OO
:—'l—l)—li—ll—ll-li—l!—l



SCHAUDER BASIS 291

According to our rule of enumeration, the points of a column are
enumerated according to height, highest first, etc. The points of the
equal intervals A,, A, lie scattered in a certain manner amongst the
points of the column.

Proceed by induction on the generation index.

Direct examination shows that the maximum excess for arbitrary
intervals A;, A, of equal length in the 3" generation is 2. (There are no
disjoint intervals containing at least 3 points in the 2"% generation; the
existence of such disjoint intervals is required for our induction.)

1° Suppose an excess of 3 is attained before passing the midpoint
of the column of the n*® generation. Then, since each point in the upper
half-column has the »'* digit &, = 0, we can consider the configuration
(initial segment, 4,, 4,) restricted to the (n—1)" generation. However,
in the (n—1)™ generation it is impossible to have an excess of 3, by our
induction assumption. 2° Suppose an excess of 3 is attained after tra-
versing at least half of the column. We then consider the dual intervals
A; and A, obtained by exchanging 0’s and 1’s in the binary expansion
(reflection about mid-point), and we are in the impossible situation 1°
just dealt with. This completes the proof of the lemma.

4. COOMPAOTNESS OF THE SEQUENCE OF REMAINDERS

We are going to examine the variation over the range —w <4 <=
of the argument of the product

B, (") = exp{i D) wi(9)},
k=1
where wi(®) = arg(es,— e”) — arg(z}—¢*), 2; = 1/%.. In fact, we shall

prove the following
LEMMA 2. The sequence of functions

() = Y op(®), n=1,2,..,
k=1

forms an equicontinuous family in the uniform topology.
Proof. We shall show that the derivatives satisfy

(4.1) sup

on

< oo

G

s

It results by a trivial computation that
4 —5cos(?— %)

€08 wy(3) ? 1 e
w = —_
k 5—dcos(d—dx) ° 2

0y
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By differentiation we obtain

3
 B—4cos(d—3y)’

dwk
ad

where the sign depends upon the relative position of ¢*® and z;. By (4.2)
it follows that

(4.2)

dazm

ad

(4.3) sup

o,n

< sup
o,m

3 9

so that it is sufficient to consider only indices » which are multiples of 2.
We shall now prove that

dagm
4.4 8
(L4) | a8 | =
and this will prove that the set of functions B,(e®),» =0,1,..., is
equicontinuous. .
According to the rule of enumeration, m points amongst 2,, 25, ..., 2om

fall in every semi-circle of |2] = } (counting end-points as lying on
both semi-circles). Let n be the maximum index such that all points
of the (n—1)® generation occur amongst 2,, ..., Zn. Let (X, 2,) be any
partition of |2] = 4 into semicircles with end-points coinciding with
points of the n'® generation. We are now in a position to pair the functions
wy(0) associated with z;eZ; with functions w;(0) associated with z;eX,.
It may not be always possible to associate with z;e2, its reflection in the
diameter (ZX,, 2,) because the reflected point may not belong to the
segment 2,, ..., 25,. We adopt the following rule of pairing. Traverse X
starting at one end-point and associate with the first point encountered
which belongs to the sequence z,, ..., 2,, the first point of 2,,..., 2.,
encountered by traversing X,, starting at the same end-point. Delete the
two associated points from z,,...,2,, and repeat until all points are
paired. The lemma of §3 shows that this will pair points whose argu-
ments are out of kilter by at most

1
2'?&‘27'C < A/2n,

where A is an absolute constant.
Let 6, be the argument of the end-point of X, and consider the
interval |0 —6, < =/2""'. Then, by (4.2),

do; do;
ag  dd

1 1
=3 _
l5—4cos(60—0k+17) 5—4c08(0,—0,—n+pu) |’

lu] < A12n7
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where we have put # = 6—6,. It is essential to observe that the minus
gign occurs on the right-hand side, since the increments of w; and w;
are in opposite sense. It follows that

gt -

with an upper bound independent of 6,, 0, n. Since the semi-circle 2
is arbitrary, we can drop the condition |6—6,] < =/2"' in (4.5), and
this yields (4.4), (4.1) and the equicontinuity of the sequence B, (6%).

LEMMA 3. The k' Fourier coefficient of B,(e"®) in absolute value
does not exceed A 2%, where A denotes an absolute constant.

Proof. Writing 2; = 1/2¢*% and

dazm

(4.5)

2"0(%,,):0(1), 16— 6, < /21,

had e—‘ikﬂj .
S,('ﬂ) — 2 2k elkt”
k=1

we have

EH H—e 1,

%] 1—%6® 5 (1—38(9)
and

B, (6°) =

1\" =
(é) {1—31_2:81(0)+321<j;l;ns,-(0)81(z9)—...—|—(—3)"81(0)82(0)...8,,(19)}.

The k¥** Fourier coefficient of B, (e”) is therefore equal to

n

1\" 3 _ 32 iy
w (s St s 5o

1<i<Ig<n '7'+vl=k

... _i_.(;sz)" e—i'l"r---—i'ﬂ"n}.
v+ top=k
Using here the estimate
l e_iulol-..._ivmoml
"t Frm=k
m—l — 1 1—tg—...—lp
2% Yym [ .. Ay .. dty_y < 28™1,

tm_1=0 tl=°
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we find that (4.6) does not exceed in absolute value

s {(’1‘) (3%/2%) + (’2‘) (3k/2%) 4 ... + (3k/2")"}

-+ 1]
i | e

as required.
With perhaps a different constant, the Fourier coefficients y,; of

Bn(t) = (Bn(t)(1—Z,4,t))"" satisfy an estimate of the same type.
LEMMA 4. For each function peA the sequence of functions

1 @(t) Ba(t)
C __ PV Pal") —1.2..
»(?) 2n1 o t—2 a, m »

. .,
18 an equicontinuous set in the annulus § < |2| <1.
Proof. For 4 = ¢“, é real, we have

1 p(4)Ba(41) .,

Cn(d2) = 21 t—z
=1
1 1) v
: @ (4t) y,,,,A'kt_kdt
271t t—=z
=1 =0
> 1 @ (At)
= Yk = f X 4% dt
g 2me o A%t (t—2)
C O #(0)
(4.7) = vy d ¥z ((p(Az)— —_— Ajzj).

In view of the trivial bound,

v #(0)
> A z’j<((1+a)|z|)"-‘, any o> 0,
7=0 )

it follows that the series (4.7) converges uniformly with respect to
6] <1,$4 <2/ <1, n=1,2,..., provided only that o < 3} This
suffices to establish Lemma 4.



SCHAUDER BASIS 295

The reader will note that the continuity of ¢(2) in the closed unit
dise |2] <1 is used in an essential way at this point. Our argument fails,
a8 it must, for p e H*, where in fact no Schauder basis exists since the
space H* is not separable.

LEMMA 5. For each function peA, the sequence of remainders R, (z; ¢),

n=1,2,..., 18 an equicontinuous set in the space A.
Proof. The remainders are of the form
n(2)(2—2ny1) @(2)
Ra(2; 9) f dt
’ i Ba)(t—2ni1) t—2

and we have R,e¢A. According to the maximum principle, it is sufficient
to show that if ¢ > 0 is given, then
sup |R,(42; 9)— R,(2; 9)| < &,

n=1,2,...
3/4<(8<1

provided only that 4 — ¢ is sufficiently close to 1. As we have shown
that the factors B,(?)(z—=2,.;) and C,(2) do have this equicontinuity,
it follows immediately that also R,(z;¢) does.

That the functions B,(z2) form a Schauder basis in A now follows
easily. Indeed, given peA, there exists, according to Lemma 5, a sub-
sequence R, (z;¢) convergent in 4 to some yeA. By the Cauchy integ-
ral formula, R, (2;¢9) converges uniformly on compact sets of |2| <1
to y. But we know that R, (2; ¢) converges uniformly on such sets to 0.
Therefore every convergent subsequence of R, converges to 0 in A,
which implies that R, converges to 0 in A.

It remains to verify the uniqueness of the coefficients of our inter-
polation series. Since the linear form given by evaluation,

@ = @(2),

is continuous on A4, if we have

0= Zw:c,,Bn
0

in A, we can evaluate the series at points of the sequence z;, z;, ... to
conclude that the coefficients ¢, must all vanish.

Only the slightest modification of the preceding line of reasoning
will show that our construction also yields a Schauder basis in the spaces
H”,1 < p < co. We ought here to recall the following criterion of com-
pactness in H?, 1 < p < oo, due to Marcel Riesz (see [3]): A subset Q = H”
8 (relatively) compact if and only if

sup | |p(6®)Pdd < oo
?Q
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and for every ¢ > 0 there is a 6 > 0 such that
sup [ |p(e**M) — g (6”)[Pdd < e,
PeQ o

provided only that |h| < 6. This condition is satisfied for any uniformly
equicontinuous family, and hence by the sequence {B,(¢'’)}. The proof
of Lemma 4 is also valid for H?, 1 < p < oo, and this is all that we need.
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