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Edward Marczewski was a disciple of the Warsaw school of mathe-
mastics in the interwar period, known for its contribution to the develop-
ment of set theory, topology and the theory of real functions. His teachers
and later colleagues were S. Mazurkiewicz, W. Sierpirski, 8. Saks, K. Kura-
towski, and B. Knaster.

Among subjects of interest to the Warsaw school the theory of
analytic sets figured largely. Its discovery by Suslin, as a consequence
of Lebesgue’s “creative” error (the latter did not realize that the inter-
section of projections can be larger than the projection of the intersections),
was still, at that time, engaging attention. Mathematicians were fascinated
by the various ways of characterizing analytic sets and constructing
analytic non-Borel sets. The Tarski-Kuratowski method of estimating
the Borel or projective class of a set by means of quantifiers occurring
in its definition both helped to solve many problems and suggested new
ones. Certain problems were soon considered to be hopeless as, for instance,
the question of what cardinality the complement of an analytic set can
be (“nous ne saurons jamais” said Lusin, and his words made a great
impression on Sierpiriski) or whether the projection of such a complement
is always measurable. Some mathematicians considered such problems
to be very special, of little use and beyond the region of “true mathe-
matics”. Their role in topology soon diminished but they continued to
be of interest and a challenge for mathematicians working on the founda-
tions of mathematics and the logical discoveries of the sixties (J. Addison,
P. Cohen) proved their real significance in mathematics. Marczewski was
profoundly interested in the theory of analytic sets. Due to his inborn
tendency to pursue essential features of mathematical arguments and
thus to arrive at generalizations, he found a purely set theoretical approach
to theorems which say that every analytic set in R"™ is measurable in
the sense of Lebesgue (Lusin) and satisties Baire’s condition, i.e. it differs
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from an open set for a set of the first Baire category (Sierpinski). His
result [9] (}) is as follows:

A o-algebra K is invariant under the (Suslin) A-operation if it has
the following property: every set E is contained in a set K € K such that if
Z > B, Z € K, then every subset of K\Z 13 in K.

Now if K is the algebra of measurable sets, it is enough to choose
K to be a G,-set containing F and such that the inner measure of K\ F
is 0. If K is the algebra of sets satisfying Baire’s condition, one may choose
K > E, open and such that K\E does not contain any set of second
category.

An interesting application of the sieve method can be found in a joint
paper of Marczewski and Kuratowski [7]. If Y is a metric compact un-
countable space, then the space 2¥ of closed subsets of ¥ with the Haus-
dorff distance is a continuous image of the Cantor set O: » — H (x) € 2¥.
The set U = {(x,y): y € H(x)} is a universal closed set in C x ¥. Let
K be a family of closed non-empty sets in ¥. We say that the set I'(U, K)
= {r: H(z) e K} = C is obtained by sifting C through the sieve U by
means of K. In [7] the authors prove that if I'(U, K) is Borel (analytic)
in C, then K is Borel (analytic) in 2¥. We may replace C by an arbitrary
uncountable Polish space X, and U by an arbitrary closed set Fin X x Y.
Then the sifted set, i.e. I'(F, K) = {#: ({} X Y)nF e K}, is Borel (analytic)
in X if K is Borel (analytic) in 2¥. Let F run over the whole class of closed
sets in X x ¥, and @ (K) be the family of all I'(P, K). It is proved that
the family &(K) consists of Borel (analytic) sets if and only if K is
Borel (analytic) in 2¥. If ¥ = [0,1] = I and K is the family of closed
sets in Y containing at least one irrational, then @(K) is the family of
all analytic sets in X and thus K is analytic non-Borel in 27,

Earlier results ensure that &(K) consists of all analytic sets also in
some other simple cases; e.g. if K is the family of all uncountable closed
sets in Y. Consequently, also this class is an analytic non-Borel set in 2¥.

The papers [17], [24], [26], and [30] are devoted to the equivalence
of classes of sets and to related notions. Two sequences or two indexed
families (4,) and (B;) of sets contained in spaces X and Y, respectively,
are called equtvalent if there exists a one-to-one onto map ¢: X — Y such
that ¢(4,) = B; [17]. In general, the equivalence of classes A and B
means the existence of a one-to-one onto map such that ¢(4) e B for
each A € A and ¢~'(B) € A for each B € B. The problem of equivalence
of set classes seems to originate from Ulam who asked whether for every
sequence A of sets in a space of cardinality ¢ there exists a sequence not
equivalent to any subsequence of A. Marczewski gave a positive answer
to this in [17], simultaheously showing that in RB™ there exists a sequence

() The numbers in brackets refer to the list of papers on p. 13-17.
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of non-dense sets of measure 0 not equivalent to any sequence of pro-
jective sets. This follows from the fact that there exist 2° sequences of
non-dense pairwise non-equivalent zero-sets which in turn can be deduced
from the following purely set-theoretical proposition:

If w < |X| < ¢, then there exist 2!*! non-equivalent sequences of sets
in X,

Such and similar problems have been solved by Marczewski by means
of characteristic functions of sequences. The characteristic function (often
called the Marczewski function) of a sequence (H,) is defined as the map
X — C (C = ternary Oantor set):

&2 D6, (v)/3",
n=1
where ¢, is the characteristic function of ¥,.

If we assume OH, then there exists a sequence of sets no subsequence
of which is equivalent to any sequence of measurable sets [17]. Given
two equivalent set families in topological spaces X and Y, it may happen
that ¢ can be chosen to be a generalized homeomorphism in the sense
of Kuratowski. Then we call these families B-equivalent. For example, let
X and Y be Polish spaces without isolated points and of the second cate-
gory and let u,, us be continuous Borel measures. If u,(X)=u,(Y), then
there exists a generalized homeomorphism k: X — Y preserving Baire
category and such that u,(A4) = p,(h(A4)) for every Borel set 4 = X [24].
This theorem is derived from the following decomposition theorem proved
by Sierpifiski: a separable metric space equipped with a continuous Borel
measure can be decomposed into an F -set of the first category and
a G4-set of measure 0. The problem of decomposing a space into a “big”
set of measure 0 and a “small” set of full measure was further examined
by Marczewski in the post-war period in collaboration with Sikorski.
They proved [44] that for a metric space X the following conditions are
equivalent: (1) for every finite or o-finite Borel measure on X there exists
a decomposition X = X,UX, with X, of measure 0 and X, separable,
(2) the cardinality of X i8 not real measurable.

Sierpinski’s decomposition theorem has stimulated some further
results on two classes of sets which were investigated by the Warsaw
school with particular interest: the class of Lebesgue-measurable sets
and that of sets satisfying the Baire condition. Marczewski and Sier-
piniski were fascinated by the perceptible analogy between these classes
and even more intrigued by the difference between them. The two classes
have turned out to be non-equivalent [13]. Assuming CH, the ideal of
sets of measure 0 is equivalent to that of sets of first category (Sier-
pinski) but they are not B-equivalent [24].
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Apart from equivalence, Marczewski introduced and examined some
weaker relations between families of sets, e.g. the “weak isomorphism”,
that is, the existence of a map X — Y preserving inclusion between sets
belonging to these families. In [30] he proved that if each of them con-
tains all singletons and if they are weakly isomorphic, then they are
equivalent. An application of this theorem to the classes of closed sets in
two topological spaces shows that any T,-topology v is determined up
to equivalence by the lattice structure of the class of r-closed sets.

Edward Marczewski always favoured measure theory. Even though
he abandoned it occasionally, especially in the sixties when he was
engaged in universal algebra, he never really lost interest in it and
it was the centre of his didactic activities in the last years of his life. We
have already mentioned his important result on equivalence of measures
[24]. Before characterizing his later achievements in measure theory,
we would like to mention one striking result belonging both to measure
theory and topology: every m-dimensional set in a euclidean space is
homeomorphic to some set in R**!, the (n-1)-dimensional measure of
which vanishes [21].

Invariant extensions of Lebesgue measure are treated in [15]. Mar-
czewski, referring to the unpublished and, consequently, probably for-
gotten result of Jankowska-Wiatr (%), gives a construction of a large
class of extensions of Lebesgue measure by means of a o-ideal I of sets
of inner Lebesgue measure zero, invariant under translations (or generally
— isometries). The measure algebras of these extensions do not differ
essentially from the Boolean algebra of Lebesgue measurable sets. In this
way Marczewski obtained an invariant extension in which the sets of
(new) measure zero have no basis of power ¢. (For sets of Lebesgue meas-
ure zero such a basis consists of G,-sets.) In the same paper another
significant method of constructing extensions with essentially new sets
of positive measure was given. This method makes use of Sierpinski’s
set which together with its complement is totally imperfect (i.e., every
perfect subset is countable).

The problem of invariant extensions of Lebesgue measure was takeg
up by various authors. In 1950 two papers appeared, one by Kakutani
and Oxtoby and the other by Kodaira and Kakutani. The first uses the
same idea of constructing invariant extensions of Lebesgue measure (on
the one-dimensional torus 7') as was presented by Marczewski in [15],
whereas in the second paper a different method, consisting in adding
new non-measurable characters of 7', is used.

Further work on invariant measures was done by Hulanicki for
compact abelian groups and by Hulanicki and Ryll-Nardzewski for com-

(3) The only available source of information on her result is in [15].
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pact groups which are not necessarily abelian (this volume, p. 223-227).
In addition, since the fifties, investigations of invariant measures have
been systematically carried out by a group of mathematicians from Thilisi,
lead by Pkhakadze.

A result of a different type on the existence of extensions of finitely
additive measures for arbitrary algebras of sets was obtained by Mar-
czewski and Z.0o§ [53].

In the general measure theory of fundamental importance are the-
orems on clasgification of measure spaces. We have in mind Maharam'’s
theorem on the structure of measure algebras (Boolean isomorphisms)
and papers of Rokhlin on pointwise isomorphisms of abstract Lebesgue
spaces. It is little known that Marczewski was a pioneer in this field and
the first to prove [28] that a normalized measure is isomorphic to the
Lebesgue measure on the unit interval if and only if it is atomless and
its Fréchet-Nikodym space is separable. Later Marczewski and Sikorski
[68] obtained Cantor-Bernstein type theorems for arbitrary measare
algebras.

In 1919 Borel introduced the following property of sets on the line:

A set has property (c) if it can be covered by a sequence of intervals
of arbitrarily small length.

Sierpiniski studied this condition very extensively and proved (assum-
ing CH) that, e.g., there exist uncountable sets with property (c). In [1]
Marczewski showed that uncountable analytic sets do not have thisﬁprop-
erty and, in general, that sets with property (c) are totally imperfect.
Furthermore, he proved that (¢) is invariant under continuous mappings
and, consequently, that the sets satisfying (¢) are of absolute measure
zero (i.e., are of measure zero for every continuous Borel measure).

%2 Non-separable measures (i.e., those with the non-separable Fréchet-
-Nikodym space) are today a subject of research of specialists and some-
times tools for mathematicians in various fields. This has not always
been the case. Even the existence of such measures was once an open
problem, raised by Nikodym. In [25] Marczewski proved that there exists
& family of power ¢ of set-theoretically o-independent F,-subsets of [0, 1]
and he constructed a non-separable measure on a o-algebra of Borel
subsets of [0, 1]. This provides an important example of a finite measure
which cannot be extended to a measure on all Borel subsets of [0, 1].

It was the intention to dispense with the topological concepts in
measure theory that led Marczewski to the notion of a compact measure [63].

We say that a finitely additive measure m on a finitely additive
algebra of sets is compact if there exists a compact family F of sets (not
necessarily measurable) approximating m, i.e., for every measurable set
A and every £ > 0 there is a measurable set B and a set F' € F such that
Bc F < A and m(A\B) < ¢ (F is compact if every countable subfamily
of F with the finite intersection property has non-empty intersection).
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It turned out that every compact measure m can be extended to
a compact (countably additive) measure on the o-algebra generated by
the algebra of m-measurable sets and that for compact measures the
theorem on the existence of non-direct products of measures is true [65].

The notion of a compact measure has turned out to be prolific both
in probability theory and in measure theory (applications to the theory
of projective limits of measures, theory of conditional probabilities, ete.)
and is frequently applied today in research.

In [35] Marczewski presented the results he had obtained during
the war in Lvov. The reader today may ask why various properties of
topological spaces, which in the metric case are equivalent and signify
separability, had had to wait so long for systematic studies. One possible
reason is that in the first half of the century the role of non-metric spaces
in analysis was of less importance than it is today. The existence of & count-
able basis in a Hausdorff space viz. the second countability axiom (in
[35] called property (B)) turns out to be the strongest separability-like
condition. Essentially weaker is the existence of a dense countable subset
(property (D)) and weaker again is the condition (s) of Suslin that reads:
every family of disjoint open sets is countable. Between (D) and (8) there
is the following property (k) of Knaster: every uncountable family of
open sets contains an uncountable subfamily consisting of sets with pairwise
non-void intersection. In [35] it is proved that the cartesian power
X7 (card X > 1) has (i) property (B) iff X has it and T is countable,
(ii) property (D) iff X has it and card T < ¢, and (iii) property (k) if X has
it (whatever T is). The proof of (iii) is the most difficult. The author
writes that he does not know whether the property (s) is preserved even
in the case card T = 2. This question remained unanswered for a long
time. In 1971 Arhangel’skii and Juh4sz proved that the finite multipli-
cativity of (s) is independent of ZFC. In a paper in Fundamenta Mathema-
ticae 103 (1979) J. Roitman quotes the result of Galvin and Laver stating
that the finite multiplicativity of (s) does not hold under the assumption
of OH, as well as the result of Kunen asserting that it does hold under
assumption of Martin’s axiom together with [TCH. In [35] Marczewski
states that if cardT > w, then the space X7 contains an uncountable
isolated set and by putting X = [0, 1] he deduces therefrom that [0, 1]T
(card T > ) contains a closed set which is not a continuous image of the
whole space, a phenomenon which does not occur if 7' = w.

Two papers concerning analysis, [11] and [12], stand separate in
Marczewski’s work. Strong results are obtained there by set-theoretical
methods, in particular by the Baire category method. The first of these
papers, joint with 8. Kierst, contains striking existence theorems consid-
erably ameliorating some earlier results on the set of values of an entire
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function or a function holomorphic in the dise or meromorphic in the
plane.

Let us say that a set A = C belongs to the class S if A contains
a connected, unbounded subset having positive distance from the comple-
ment of A. Using Runge’s theorem the authors prove that the set of
entire functions taking every complex value on every A € S is the com-
plement of a set of the first category in the space of entire functions
equipped with a metric derived from natural seminorms. Previously, one
had only an example of Zygmund of an entire function assuming every
complex value in every sector of the plane. Even a stronger theorem
holds: except for a set of first category, every entire function satisfies
the equation f(z) = ¢(2) for each rational function ¢, each 4 €S, and
intinitely many z € A. Furthermore, except for a set of first category,
every entire function maps any connected unbounded set disjoint from
some ray onto a set dense in . Analogous theorems hold for functions
holomorphiec in the disec.

If in the space M of functions meromorphic in C a distance is intro-
duced by means of the stereographic projection, then it can be shown
that every function in M, except for a set of first category, maps any
set from S onto the whole plane. And again, except for a set of the first
category in M, every function maps any connected unbounded set onto
a set dense in C. (An example of such a function had been given by Gross.)

In [12] Marczewski introduced the notion of a function almost sub-
harmonic in a region @ < O, which is what he calls a function if for almost
every point (v, y) € G and every closed disc X < G with centre in (w, y)
and radius r one has

flz,y) < —n%,- f 1@, w)dtdu.
K

The author proves that every almost subharmonic function is almost
everywhere equal to some subharmonic function. The problem was at
the time rather unusual as it was not till much later that the theory of
functional equations was developed and problems of the following kind
arose: assuming that the function f fulfills some functional equation or
inequality almost everywhere, decide whether f is almost everywhere
equal to an (exact) solution of this equation or inequality (such was, for
example, the problem of Erdos concerning Cauchy’s equation, solved
by Jurkat and by de Bruijn).

The work of Marczewski in algebra covers the period 1958-1970
and is concerned mostly with the general notion of independence. In
a short note [75] published in 1958 he found a general notion of independ-
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ence which embraced many kinds of independence considered in mathe-
maties such as linear independence in vector spaces, algebraic independence
of elements of a field relative to a subfield, independence of sets, etc.
The idea is as follows: take a universal algebra and consider the set of
all compositions of fundamental operations (projections being considered
as fundamental). The operations obtained are called algebraic. Now, a sub-
set of the algebra carrier is called independent if any two algebraic oper-
ations coinciding on it necessarily coincide everywhere. It can easily
be seen that this definition — without any reference to algebraic operations
— can also be stated as follows: a subset I of an algebra A is independent
if and only if every mapping of I into 4 can be extended to a homo-
morphism of the algebra generated by I into A. This makes this notion
close to that of a free algebra.

The new notion of independence gave rise to several problems. One
class of questions which arise in this area is concerned with algebras
in which independence has certain properties of linear independence like
Steinitz’s exchange property, the invariance of the cardinality of a maxi-
mal independent set, etc. Marczewski himself [77] introduced a class
of algebras which have the main properties of linear spaces with respect
to independence. Later Urbanik found a characterization theorem for
this class.

If we define a basis of an algebra as an independent set of generators,
then it is not difficult to construct examples of algebras with bases of
different cardinalities. However, it turned out that the set of all possible
finite cardinalities of bases in a given algebra always forms an arithmetic
progression. This result was proved by Marczewski and Ryll-Nardzewski
in 1961 and later Swierczkowski showed that every arithmetical progression
can be the set of cardinalities of all bases in some algebra.

Thanks to the interesting problems in universal algebra, inspired by
the work of Marczewski, this domain has become attractive for many
mathematicians in the world.

Before concluding we would like to pay full credit to Edward Mar-
czewski for the inspiration of research also in other directions. The very
lively seminars, he led for many years together with Steinhaus, deter-
mined various domains of work which have been systematically culti-
vated up to the present time by many mathematicians in Wroclaw;
a8, for linstance, the theory of stochastic processes, ergodic theory,
measure theory and harmonic analysis.

Edward Marczewski was a familiar and beloved figure to the Polish
mathematicians, known for his enthusiasm for science and kindhearted
approach to people. Even when defeated by a long illness he was still a
part of the Polish mathematical life.
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1930

[1] Sur unme hypothése de M. Borel, FM 15, p. 126-127.

[2] Sur une classe d’ensembles linéaires, CRV 22, p. 179-184.

[3] Sur un probléme de¢ M. Banach, FM 15, p. 212-214.

[4] O mierzalnodoi i+ warunku Baire’a (On measurability and Baire’s
condition), CR du I Congrés des Mathématiciens des Pays Slaves,
Warszawa 1929, p. 297-303 [in Polish].

[6] Sur Vewtension de Vordre partiel, FM 16, p. 386-389.

[6] Un théoréme sur les opérations de M. Hausdorff, CRV 23, p. 13-15.

1931
[7] (and K. Kuratowski) Sur les cribles fermés et leurs applications,
FM 18, p. 160-170.
[8] Sur un ensemble non mesurable de M. Sierpinski, ORV 24, p. 78-85.

1933
[9] Sur certains invarianis de Vopération (A), FM 21, p. 229-2356.
[10] Remarque sur la dérivée symétrique, FM 21, p.226-228; Reconnais-
sance du droit d’auteur, FM 22 (1934), p. 319.
[11] (and 8. Kierst) Sur certaines singularités des fonctions amalytiques
untformes, OCR Acad. Sci. Paris 196, p. 1453-1455, and FM 21,
P. 276-294.
[12] Remarques sur les fonctions sousharmoniques, Ann. of Math. (2) 34,
p. b88-594.
1934
[13] Remarques sur les fonctions complétement additives d’ensembles et sur
les ensembles jouissamt de la propriété de Baire, FM 22, p. 303-311.

* The papers [1]-[33] and [36] have been published under the name of Edward
Szpilrajn. Bibliography of papers of Edward Marczewski, including non-mathema-
tical ones, can be found in Wiadomoéci Matematyoczne 23 (1979).
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1935
[14] Sur ume classe de fonctions de M. Sierpiniski et la classe correspondante
d’ensembles, FM 24, p. 17-34.
[16] Sur Vextension de la mesure lebesguienne, FM 25, p. 551-558.

1936

[16] (and W. Sierpifiski) Remarque sur le probléme de la mesure, FM 26,
pP. 256-261.

[17] Sur Véquivalence des suites d’emsembles el Véquivalence des fonctions,
FM 26, p. 302-326; Correction, FM 27, p. 294.

[18] (and W. Sierpinski) Sur les transformations continues biunivoques,
FM 27, p. 289-292.

[19] (and W. Sierpifiski) Sur un ensemble toujours de I catégorie de
dimension positive, Publ. Math. Univ. Belgrade 5, p. 117-123.

1937

[20] O zbiorach © funkcjach bezwzglednie mierzalnyoh (On absolutely meas-
urable sets and functions), CRV 30, p. 39-68[in Polish, with a summary
in French].

[21] La dimension et la mesure, FM 28, p. 81-89.

[22] (and 8. Mazurkiewicz) Sur la dimension de certains ensembles
singuliers), FM 28, p. 305-308.

[23] Remarques sur les ensembles plans fermés, FM 29, p. 304-306.

1938
[24] On the equivalence of some classes of sets, FM 30, p. 235-241.
[28] Bnsembles indépendants et mesures mon séparables, CR Acad. Sci.
Paris 207, p. 768-770.
[26] The characteristic function of & sequence of sets and some of its appli-
cations, FM 31, p. 207-223.
[27] Concerning comvergent sequences of seis, ASPM 17, p. 116.
[28] On the space of measurable sets, ASPM 17, p. 120-121.
[29] Operations upon sequences of sets, ASPM 17, p. 123-124.
1939
[30] On the isomorphism amd the equivalence of classes and sequences of
sets, FM 32, p. 133-148.
1940
[31] Remarques sur Vensemble de Lusin, Mathematica (Cluj) 16, p. 50-52.

1941
[32] Remarques suy les produits cartésiens d’espaces topologiques, CR
(Doklady) Acad. Sci. URSS (NS8) 31, p. 525-527.
[33] Sur les mesures dans les produits cartésiens, Recueil de Travaux,
Inst. Math. Kiev.
1945
[34] Sur deuw propriétés des classes d’ensembles, FM 33, p. 303-307.
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1946
[38] Séparabilité et multiplication cartesiénne des espaces topologiques,
FM 34, p. 127-143.
[36] K npo6aemamure meopuu mepdl, Ycnexu mat. Hayk 1 (2), p. 179-188.

1947

[37a] Sur les mesures a deux valeurs et les idéaux premiers dans les corps
d’ensembles, ASPM 19, p. 232-233.

[37b] Two-valued measures and prime ideals in fields of sets, CRV 40,
p. 11-17.

[38] Remarques sur UVéquivalence des classes d’ensembles, ASPM 19,
p. 228.

[39] Mesures dans les corps de Boole, ASPM 19, p. 243-244.

[40] (and M. Nosarzewska) Sur la convergence uniforme et la mesura-
bilité relative, CM 1, p. 15-18.

[41] Sur Visomorphie des mesures séparables, CM 1, p. 39-40.

[42] Remarque sur la mesurabilité absolue, CM 1, p. 42-43.

1948
[43] Indépendance d’ensembles et prolongement de mesures (Résultats et
problémes), CM 1, p. 122-132.
[44] (and R. Sikorski) Measures in non-separable metric spaces, CM 1,
p. 133-139.
[45] Ensembles indépendants et leurs applications & la théorie de la mesure,
FM 35, p. 13-28.
[46] Une généralisation de la mesure relative, CM 1, p. 171-172.
[47] Un théoréme d’Ulam et les espaces absolument mesurables, CM 1,
p- 186-187.
[48] Concerning the symmetric difference in the theory of sets and in Boolean
algebras, CM 1, p. 199-202.
[49] Généralisations du théoréme de Steinhaus sur Vensemble des distances,
CM 1, p. 248-249.
[60] Remarques sur les fonctions de Hamel, CM 1, p. 249-250.
[61] Sur un théoréme de Bamach et ses conséquences, CM 1, p. 253-2564.
[62] Sur Visomorphie des relations et homéomorphie des espaces, ASPM
21, p. 336-342.
1949

[63] (and J. L.o§) Extensions of measure, FM 36, p. 267-276.
[64] (and R. Sikorski) Remarks on measure and category, CM 2, p. 13-19.

1950
[68] (and 8. Hartman) On the convergence in measure, Acta Sci. Math,
(Szeged) 12A, p. 125-131.
[66] (and 8. Hartman, O. Ryll-Nardzewski) Théorémes ergodiques et
leurs applications, CM 2, p. 109-123.
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1951
[67] Sur les congruences et les propriétés positives d’algébres abstraites, OM
2, p. 220-228.
[68] (and R. Sikorski) On tsomorphism types of measure algebras, FM
38, p. 92-98.
[69] Measures in almost independent fields, FM 38, p. 217-229.
1952
[60] (and C. Ryll-Nardzewski) Sur la mesurabilité des fonotions de
plusieurs variables, ASPM 25, p. 145-154.
1953
[61] (and K. Florek, O. Ryll-Nardzewski) Remarks on the Poisson
stoohastic processes I, Studia Math. 13, p. 122-129,
[62] Remarks on the Poisson stochastio processes 11, ibidem 13, p. 130-136.
[63] On compact measures, FM 40, p. 113-124.
[64] (and C. Ryll-Nardzewski) Projections ¢n abstract sets, FM 40,
p. 160-164.
[66] (and O. Ryll-Nardzewski) Remarks on the compaoctness and non-
direct products of measures, FM 40, p. 1656-170.

1954
[66] (and A. Goetz) On the frequency of numbers in certain expamsions,
OM 3, p. 86. 1955
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