ANNALES
POLONICI MATHEMATICI
XLVI (1985)

The global Yang-Mills equations depending on
an arbitrary metric

by BERNARD GAVEAU (Paris), JErRzy KaLina, JULIAN LAwRYNOWICZ,
and Leszex Woitczak (Lodz)

Franciszek Leja in memoriam

Abstract. One of us (J. Lawrynowicz, [5]) has recently posed the problem of replacing a
given Yang-Mills field, in general with currents, by a Yang-Mills field in a diflerent, curved
space-time, by way of including currents in the geometry so that the field becomes Maxwell-like.
This is closely related to a rigorous derivation of the global Yang-Mills equations depending on
an arbitrary metric (riemannian or pseudo-riemannian), distinguishing their “solenoidal” and
“nonsolenoidal” parts, studying their global properties, and motivating a suitable choice of the
principal fibre bundle (real or complex, and in particular holomorphic) with the manifold in
question as the base space. Our paper aims at discussing these questions.

lntroductlon Denote by su(2) the Lie algebra correspondmg to SU(2).
By a Yang—Mills field we mean any vector field 4 =(A4,), k=1,...,n, in an
open set U in R, with values in su(2) ([1], p. 12-13).

Suppose that T is a representation of SU(2) in a vector space F and
¥: U - F is a C*-mapping. Then the covariant derivative of the vector field
¥ is given by the formulae

P = (ex) P +1(4) Y,

t being the representation of su(2) corresponding to T and x =(x%),
k =1,...,n, denoting the coordinate system in U. It satisfies the identity

(VJOVk_VkOV) -f( k)lll
where

(1 Fj, = (8/dx)) A, —(0/ox*) A;+ [ A}, A].

If SU(2) is replaced by SU(l1), then [A4;, 4,]=0 and [F;] is the
electromagnetic tensor.

Take now a C*-function ¢: U — SU(2) and consider the following gauge
transformation of the pair (¥(x), A(x)), where xe U:
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¥ (x) = ¥'(x) = T(e(x)) ¥ (x),

A(x) = A (x) = o(x) A (x) @™ () = [(8/8x) e ()] 0™ (%).

With each functional of the form (2) we may associate the functional [4]:
(3) L [¥, A]=(L[¥Y«x). (V; ¥ (x)])dx+ .2 [4],

where #[A] is a volume integral involving the Killing form acting on [F),]
(we apply the Einstein summation convention):

(4) L[Al=—3[g"g"Tr(FyFrn)dV,

2

g = [gu] i1s a (pseudo-)riemannian (which means: pseudo-riemannian, and in
particular Riemannian) tensor on U, and dV is the volume element in the
manifold (U, g). It can be seen that (3) is invariant with respect to (2). Thus,
£~ expresses the action of the vector field ¥ on the Yang—Mills field 4,
which may be interpreted as a compensation field, whereas . expresses the
action of a free compensation field.

In the case of the Minkowski space-time we have g/ = —1 for j
=1,2,3,9=1,g¢*=0forjs#k jk=1,2,3,0, and the extremals for ¥
satisfy the Yang-Mills equations ([1], p. 12-13):

(5) Vijk=O, j=1, 2, 3, 0,
where
(6) rr=g"v, 7 Fy = (8/0x") Fi+[A; Fyl.

In the present paper we start with a rigorous local generalization qf (5)
to the case of a compact orientable (pseudo-)riemannian manifold N (Section
1) which from the physical point of view is the space of a particle (cf. [2]).
Then we take an arbitrary G-vector bundle over the base space N, where
G = SO(m) or SU(m), and consider the Lie algebra % corresponding to G.
‘We define the %-vector field which is a generalization of the Yang-Mills field
and we extend (5) for such fields using the codifferential operator & = »dx,
where * is the metric-dependent Hodge *-operator (Section 2). Physically this
means that now we have much more freedom in choosing symmetries of the
field and we allow hermitian structures via the constructed complex (in
particular, holomorphic) vector bundles. Now we are able to derive the
global Yang-Mills equations depending on an arbitrary metric g and an
arbitrary non-abelian compact Lie group G (Section 3), to distinguish their
“solenoidal” and “nonsolenoidal™ parts, and to discuss their global properties.
Finally, we give a motivation for a suitable choice of the principal fibre
bundle (real or complex, in particular, holomorphic) with N as the base space
and discuss the physical consequences of our results.

1. The Yang-Mills equations in the presence of external fields. We are
going to derive rigorously the system of local Yang-Mills equations in the
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case of an arbitrary (pseudo-)riemannian metric or, differently speaking, the
Yang-Mills equations in the presence of external fields.

LEMMA 1. Suppose that N is an n-dimensional compact orientable (pseudo-)
riemannian manifold with metric g of index Q or 1. Let su(2) be the Lie algebra
corresponding to SU(2) and A =(A,) a C*-Yang-Mills field in a coordinate
neighbourhood U of N. Further, in a coordinate system (x*) in U, let Fj be
given by (1). Consider functional (4), where dV is the volume element in U. If
the functional attains its stationary value for some Yang—Mills field A, then this
field satisfies the generalized Yang—Mills equations

(7) (DivFY+[A,, F¥]1=0, j=1,2,....n,
where |

(Div Fy = g™ [(&/éx™) F— ' Fi1,
F* = g g™ F\p, Fl =g Fp,

and I'j, are the usual Christoffel symbols:

@®)

T o 8
9m i =3 @gmh""a—xkgjm—ﬁgjk :

Proof. Let us denote the Killing form —Tr(F; F,,) in (4) by {Fj, Fp).
We calculate the first local Gateaux variation 6. [A4]; this means that the
supports of 64;, j=1, 2,...,n, are compact:

0% [A] = "%I g’" g"*(OF jt, Fpi )+ (Fj, SF ) dV

= ’%_‘.gimglh <5th ka>dV-
On the other hand,

8 8
57 04— 04+ [84, AQ+[4;, 641).

éFﬂ = ax,

Therefore, integrating the integrand by parts under the hypothesis that the
supports of §A4; are compact, we obtain

10

©) XAVIES N

k=1

where, with the notation ; = 9/dx’ and dV,,, = (+detg)”'/2dV,

ewel
61 =%§ g™ g" (64, (8/0x)) F o) (£ detg)' 2 dV,,q,
8 =3[ g{'g"™ (3A;, Fpy>(tdetg)'/?2dV,,,
03 = ’115 gjmgff (BA;, F)(tdetg)/2dv,,,,
04 =3[ g™ g™ (0A, Fpy)(0/0X') (L detg)' /2 dV,,,,
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s = —4 [ g™ g" (84, (3/0x') Fpy ) (£ detg)' ' dV,,,
66 = — 3§ gfi"g" (BA;, Fm (L detg)/?dV, .
07 = —3§ g™ gl 64;, F> (L detg)'’?dv,,,,
0 = —3[ g™ g" (64}, Fpu>(0/0x)) (L detg)!2 dV,,,
dg = —%I ¢ g™ ([A;, 4], Fy(Ldetg)/2av,,,
610 = —1[ g g" ([04;, A, Fr)(Ldetg)'2dV,,.
By the properties of the Killing form, we have
09 =% [ g™ g™ ([0A,, A;], Fp>(Ldetg)'/2dV,,,
= —3[ g™ g" (BAy, [Fpy, A;])(tdetg)/2dV,,,
=3[ ¢ 9" (3A;, [A1, Ful> (2 detg)2dV, = dy0.
Moreover, 6, = 05, d, = 8;, 43 = d¢, and d4 = dg. On the other hand, with
the notation 4’™ = g'™dety, we get

3 I o .
@(J_rdetg)”2 =j(tdetg)'?g 50 9im = —%(idetg)”zg,-m@g’ :

the latter equality being the consequence of the identity g'"g;, = 4. Now we
express the derivatives of g™ by g and the related Christoffel symbols:

(10) gl = —Thg™—Thg";
so, finally,
(11) (6/0x") (£ detg)"/? = (£ detg)/2T7,.

Thus, the corresponding addends 0, become:
J;, =94
= —3[{¢"(=Tng™~T5g") OAj, Fr) (L detg)/2dV,,
=3[ (" g* Th+9™™g" [}) (34;, Fu)(Ldetg)''?dV,,,

53 = 56
=5{(g* g™ Ih+g"%g" I7) (OA;, Fru)(Ldetg)'?dv,,,
04 = 0g

= _%’ gjmglk Iy, <5Aj» Fo > (£ det g)]'lz chucl'

By the above calculations we have
01 +95+05+0d10 = —jgjmg"‘ (0A;, Vi F ) (+detg)'2dV,,,,
82+0,+03+06+8,+0g = | RI™ (§A;, Fo>(£detg)'?dV,,
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where VF,_, 1s given in (6) and
ijk — gjmglr I’L‘,+g"‘ grm Iﬂ{l+glk gir r:r;

Since 4;, j=1,...,n, are arbitrary and the Killing form in question is non-
degenerate, . [A] = 0 implies by (8)

(12) g"g ViFpy=R™Fp, j=12,..,n

In order to prove that the systems (12) and (7) are equivalent we have to
introduce the notation (9) and to apply again the formulae (10). Namely,
from (12) we deduce that

g" W&/x') Fi+[ A FII}
=g" TnF{+g" T) Fi—g" I Frt g [(2/2x) g™ ] F oy
= §" I Fi+ g™ I3 F{— " T Fly + g™ Ty Fy— g T FY,

and distinguish in a natural way five addends a,,...,as in the expression
obtained. Clearly, a; = —as. Since F = g™ F!, equals —F" = g'* F}, we also
have a, = —a,. Therefore

g " ojox' Fi+[A, Fi1, =¢"ThF, j=1,2,...,n;
and hence

(13) g (0/ox) Fi— Ty Fi+g"*[A;, F{1} =0, j=1,2,...,n;

so we arrive indeed at (7) with the notation (8). It is clear that we can
proceed as well in the opposite direction, and so the proof is completed.

2. The case of an arbitrary symmetry within SO(m) or SU(m). Now we
should like to extend the situation considered to vector fields of a more
general symmetry than the Yang-Mills fields, namely of any symmetry within
SO(m) or SU(m).

Let E = (E, n, N) be a G-vector bundle over the base space N — an n-
dimensional compact orientable (pseudo-)riemannian manifold with metric g,
where E denotes the boundle space, n: E — N is the projection, and G is an
arbitrary compact subgroup of SO(m) or SU(m). Among other things, we
allow complex (in particular, holomorphic) vector bundles. It is obvious that
there is a covering # = {U;: jel} of N with local formes over U; such that
the corresponding transition matrices have their values in SU(2). Then a
connection V on E is called a G-connection if for every local frame in
question the connection matrix  has its values in the Lie algebra %
corresponding to G. It is not difficult to prove (cf. [6]), using the partition of
unity, that on a given G-vector bundle there always exists a G-connection.

By a “G-vector field we mean any vector field 4 on N with values in %.
Thus, a Yang-Mills field is an su(2)-vector field. A G-connection F is called
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the connection corresponding to a %-vector field if in any local frame
belonging to the G-structure the curvature form Q2 corresponding to A4
satisfies the differential equation

(14) SF +2Tr,(A®4F) = 0,

where ®4 denotes the G-dependent tensor product operator and, locally,
(15) F=F;dx ndx* A= A4,dx
F; and A, being given by (1) and 4 = (4,), respectively, and A denoting the

wedge product operator. This definition is motivated by the following

LemMMA 2. Let N, g, G, 4, and E be as before. Then the system of
differential equations (7) with notation (8) is well-posed and equivalent to (14).
Proof. By (13) and the relation

(16) Gim = TinGir+ T Grms
analogous to (10), equations (7) with notation (8) become

g [(6/ox)Fi—T} Fp]+9™"[A;, F1 =0, m=1,2,...,n.
Hence

g* [0/0x' F o= Fp = 'im @ FL— I gom F{1+ 9" [A1, Fy] =0
and, consequently,

" [(0/0x") Foug = T Fup = Tt Fot = T3 gom Fil + 9" [A1, Fru] = 0.
Since, by the antisymmetry of FY,

g*IigmFi = Tygm FV = I};FVg,, =0,
we arrive at
—g*(0fOXVFpy— Ty Frpp— iy F i+ 9™ [A4), Fin] =0, m=1,2,...,n.

By the definitions of § and ®,, the above system is identical with (14), as
desired.

3. The global Yang—Mills equations. We are now going to derive the
global Yang-Mills equations depending on an arbitrary (pseudo-)riemannian
metric g and an arbitrary non-abelian compact Lie group G.

THEOREM. Suppose that N is an n-dimensional compact orientable (pseudo-)
riemannian manifold with metric g of index O or 1. Let E = (E, n, N) be a real
or complex G-vector boundle over the base space N, where E denotes the
boundle space, n: E— N is the projection, and G is an arbitrary compact
subgroup of SO(m) or SU(m). Suppose further that, in a local frame,



Global Yang-Mills equations 111

(17) F=dA+AAA with A=A.dx

where (x*) is a coordinate system in a coordinate neighbourhood of N, and A
denotes the wedge product operator. Consider the functional

(18) LA = —4 [ TK(F A *, F),
N

where A is the C’ G-vector field on N such that, locally, A =(A,) and A
= A,dx*, and «, is the g-dependent Hodge x-operator. Finally, suppose that
functional (18) attains its stationary value for some %-vector field A. Let
P(N, G) be the boundle of orthonormal frames of E, equipped with the
connection I' induced by a given G-connection V on E, corresponding to A.
Then the field A satisfies on N the system of generalized Yang—Mills equations

(19) D(x4 %) =0,
where D is the covariant derivative operator related to I,
(20) *y. APP > A" PP,

where A" P is the modulus of horizontal r<forms on P, of the type ad G, and Q2
is the curvature form corresponding to A.

Proof. By Lemmas 1 and 2, the %-vector field A satisfies the differential
equation (13). Let o denote the connection matrix corresponding to A. This
means that, for any local cross-section s of P(N, G), we have

(21 s*Q*=F, s*ow=A,
where F and A are given locally by (15), and also
(22) D (%4 Q%) = d(%4 Q)+ @ A 24 Q2.
Consequently,

5* D (g Q%) = s* d(xg Q%) +(s* W) A (5*35 Q%) = ds* (x4 Q%) +(s* @) A (s*54 Q7).
Since, as it can easily be verified, s*x, = *,5*, relation (22) yields
(23) %, % D(%g Q%) = (x,d %)) s* Q% + %, [(6* w) A x,(6* 2%)].

Therefore, by the definition of the codifferential operator: 4, = »,d*, and
equalities (21), relation (23) becomes

(24) 5" D (%4 Q%) =8, F +x,(A A %, F).
If we succeed to prove that
(25) *g(A A %, F) = 2T1,(A®4 F),

then the global differential equation (14) is shown to be equivalent to
(26) *,5* Dy, Q% = 0.
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In order to demonstrate the statement formulated above, let us consider
in any coordinate neighbourhood u of N, mentioned in Lemma 1, an
orthonormal system (e,), r = 1,...,m, of vector fields. Consider further the
system (ef), j =1....,n, of one-forms on U such that ef[e¢,] = 4; for each
(j, k). Then (15) becomes

(27) F=4fkex nef, A=def,
and we calculate, subsequently,
s F =3 x,(ef net) =2 " eiel nep,
where ¢jp denotes the totally antisymmetric Levi-Civita tensor, and
Anx, F=5[d,f*]evet net nef, x,(x,F nA)=5[d, e ers ek,
where &l efs, = 2(858; —038;) and &% denotes the Kronecker symbol. Thus,
¥ (A A ¥, F)=5%2-2[d, f*]) 6, e* = 2Tr,(A®qF),

where J;, is the Kronecker symbol, and the global differential equation (14) is
indeed equivalent to (26).

The system of differential equations (26) holds in particular for every
local cross-section s on P(N, G). On the other hand, the Hodge operator #,
is an isomorphism, and so we conclude that the %-vector field A satisfies on
N the system of differential equations (19), as desired.

After Lemma 1, following the classical analogies, it would be natural to
distinguish the “solenoidal” and “nonsolenoidal” parts of the generalized
Yang-Mills equations as (Div F)y and [4,, F/*], respectively (n =1, 2,...,n).
After Lemma 2 the natural candidates would be 6F and 2Tr,(A®.F),
respectively. However, if we look for a suitable global decomposition of the
final equation (19), the proper choice is d(x,Q?) for the “solenoidal” part and
x¢Q? A, for the “nonsolenoidal™ part, where A, denotes the %-dependent
wedge product operator. Namely, the following result holds true:

CoroLLARY. Under the hypotheses of the theorem, without assuming that
A corresponds to a stationary value of (18), we have

(28) D(xg Q%) = d(%4 Q1)+ %4 Q> AW,

where both addends are well-defined global tensorial forms. An analogous
statement for the decomposition (24) is, in general, false.

Proof. Consider the global tensorial form D(x,922) which, by the
theorem, or — more exactly — by (24) and (25) without assuming that A
corresponds to a stationary value of (18), is equivalent to the left-hand side of
(14), where F and A can locally be expressed by (27), where (e,) and (ef) are
as in the proof of the theorem. The forms F and A themselves have their
values in the Lie algebra %, defined over a coordinate neighbourhood U of
N such that (z~'(U), =, U) is a trivial bundle.
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The first statement of the corollary is obvious. In order to prove the
second statement, in view of (25) we have to check whether vanishing of the
one-form Tr,(4®4 F) depends on the choice of a local trivialization. Thus,
let us take into account another local trivialization over U. The forms F and
A are then transformed according to the formulae

F=G'FG and A=§ 'A§+§ 'dg,
respectively, where §: U - GL(m, R) or GL(m, C). Consequently,

Tr,(A®q F) = Tr,[(§™ ' AG+§ ™' dj)®4(§™ ' F§)]
=Tr, (7' AG®qd ' FG)+Tr,(§7'dj®sd™ "' F)
=Tr, [§7 (A F)§1+Tr, {371 (d§)§™ ' ®9 F13}
=4 ' [Tr,(A®¢F)1§—§ ' [Try(gdi™ ' ®4 F)14.

Hence the equation Tr,(A®4F) =0 is not invariant with respect to local
trivializations, and this completes the proof.

4. The canonical principal fibre boundle and physical consequences. By the
theorem proved in Section 3, the global formulation of the generalized Yang-
Mills problem, depending on an arbitrary metric g and an arbitrary non-
abelian Lie group ¥, involves in a natural way the bundle P(N, G) of
orthonormal frames of E, which is equipped with the connection I' induced
by a given G-connection V on E, corresponding to the %-vector field 4. We
can go still further, considering a more general situation, namely that
P(N, G) is an arbitrary principal fibre bundle of E — a real or complex G-
vector bundle over N, where G is an arbitrary compact subgroup of some
SO(m) or SU(m). Then we can construct on E the canonical riemannian
(hermitian) metric h (cf. e.g. [6], p. 69) and consider the h-depending Hodge
s-operator s4. The distinction between the “solenoidal” and “nonsolenoidal”
parts of the generalized Yang-Mills equations now motivates, even purely
mathematically, the following definition: a connection V corresponding to a
%-vector field is called solenoidal if the corresponding connection matrix w
satisfies the condition '

(29) ‘992 /\,0)=0.

In [3] we have given another motivation for the above definition,
proving that, if ¢ is a horizontal tensorial two-form on the principal fibre
bundle P in question, then

(30) Do(X, Y, 2)=do(X, Y, 2)-3{[¢(X, Y), 0(2)]+
+lo(Y, 2), o(X)]+[¢(Z, X), o(Y)]}

for arbitrary vector fields X, Y, and Z on P. From this fact we have deduced
that a connection V corresponding to a %-vector field, where % is the Lie

8 — Annales Polonici Mathematici XLVI
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algebra of a semi-simple Lie group G, is solenoidal if and only if
(31 Q?=Dw =0.

If, in particular, the principal fibre bundle P(N, G) is not trivial and admits
a solenoidal connection, then N is multiply connected.

The physical consequences of the above results, obtainied in our paper
[3], have already been indicated in the paper. Here we indicate only the addi-
tional physical consequences resulting from the present paper. Namely, the
possibility of obtaining the Yang-Mills equations, reduced to a form
equivalent to the Maxwell equations appearing in some class of metrics,
shows that the variety of physical fields can be treated as a result of
geometry while their sources are of the same nature by physical principles.
This observation will be treated by us rigorously in a subsequent paper. The
whole research clucidates the problem, posed recently by one of us in [5], of
replacing a given Yang—Mills field, in general with currents, by a %-vector
field in a different, curved (pseudo-)riemannian manifold, by way of including
currents in the geometry, so that the field becomes Maxwell-like.
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