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1. Introduction. In this paper, R" will denote the n-dimensional
Euclidean space, and J, the ring of all Jordan measurable subsets of R".
Moreover, B, and L, will denote the o-fields of all Borel measurable and
Lebesgue measurable subsets of R", respectively. The n-dimensional
Jordan and Lebesgue measures will be denoted by ¢, and 1,.

The following proposition is well known:

Assume that a set function m defined on J, (on L,) has the following
properties:

(i) m ¢s non-negative;
(ii) m ¢8 o-additive;
n

(iif) m(X [0, 1)) = 1;

(iv) if A ed, (A € L,) and a i8 an arbitrary rigid motion of R" (that i3, a
i8 an isometry preserving orientation), then m(a(A4)) = m(4).

Then m = ¢, (m = 4,).

That is, properties (i)-(iv) characterize the measures ¢, and 2,.

It is easy to see that property (iv) cannot be omitted; there is a set
function m defined on L, with properties (i), (ii) and (iii) for which m # 4,
(see 4.2).

Consider the property

(ii)* If a is an arbitrary rigid motion of R", then

m[a(‘)r(l[o,l))] ~1.

This property is obviously stronger than (iii) and is weaker than the
conjunction of (iii) and (iv).

In this paper we show that for » > 2 conditions (i), (ii) and (iii)* are
strong enough to characterize the set functions ¢, and 4,. The following
theorems will be proved.
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THEOREM 1. Leét m be a non-negative and (finitely) additive set function
defined on J, (n > 2) for which (iii)* holds. Then m = u,.

THEOREM 2. Let m be a o-additive set function defined on B, (n > 2)
for which (iii)* holds. Then m(X) = 4,(X) for every X € B,,.

Since 4, is the completion of its restriction to B,, Theorem 2 to-
gether with Proposition 4.4.25 of [3] yield

THEOREM 3. Let m be a non-negative and o-additive set function defined
on L, (n > 2) for which (iii)* holds. Then m = A,.

Sets of the form [a,b) x [¢, d) = R® will be called intervals. A set
H < R? i a rectangle if H = a(I), where I is an interval and «a is a rigid
motion of R If I = [0,1)x[0,1), then @ = a(I) is a wunit square. The
ring generated by the rectangles will be denoted by P. Obviously, P <
JsNB;.

Our results are based upon the following

LEMMA. Let m be an additive set function defined on P. Suppose that m
8 bounded from below and that m(Q) = 1 for every unit square Q. Then there
are countable sets X, Y c R' such that, for every a € R'\X, ¢ € R'\Y and
posilive rationals p, q, we have

(1) m([a, a+p) % [¢,c+q) = pq.

2. Proof of the Lemma. Let m be a set function satisfying the condi-
tions of the Lemma and suppose that m(X) > K for every X e P (K < 0).
Our proof (using an idea of Christov [2]) is carried out in several steps.
First we give some additional notation. The interval I = [a, b) X [0, d)
is said to be an interval of continuity (with respect to m) if for every ¢ > 0
there exists 6 > 0 such that

lm(X)—m(I)| < ¢
whenever X € P and
[64+8,b—38)x[6+68,d—8) c X< [6—8,b+0)x [c— 8, d+ 8).
In the course of the proof the points of R? will be considered as
vectors. We write
A+a ={x+a: xeA} and b-A=1{bx:xed}

for every A c R?, @ € R?, and be R
Let @ and b be perpendicular vectors. The set of points k-a+1-b
(k and 1 are arbitrary integers) is said to be a laftice and is denoted by
A(a, b). The lattice A(a, b) is a unit lattice if |@| = |b|] = 1. The rec-
tangles
{z-a+y-b: k<ox<k+l, n<y<ntl}

are the fumdamental squares of A(a,b). The rectangle H is a lattice
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rectangle if

H={gatyb:k<ov<n,r<y<s},
where k, n, r, and 8 are integers. Every lattice rectangle is the union of
some fundamental squares.

2.1. If A € P, then A is bounded, and thus A can be covered by a finite
number of disjoint unit squares @,, @,, ..., @,. Hence, for every X < A,
X e P, we have

KE<mX) = m(gQ,)—m(g)lQ‘\X)< n—K,

that is, m is of bounded variation on every A € P.
Let n and » denote the positive and negative variations of m, respec-
tively. Then

m(A) = n(A)—»(A) for every 4 eP

by the Jordan decomposition theorem.

n and » restricted to the semiring of intervals are non-negative
and additive interval functions. Hence there are countable sets X,, ¥, = R!
such that for every a,be R'\X, and c¢,d e R'\Y, the interval I
= [a, b) X [¢, d) is an interval of continuity with respect to » and ». Thus
for every & > 0 there exists é > 0 such that X e P and

(2) [6a+8,b—8)x[c+68,d—8)cX c[a—8,b+8)x[c—3b,d+ )
imply
l"(X)—=n(I)]<e and [p(X)—»(I)|<e.

Hence |m(X)—m(I)] < 2¢, that is, I is an interval of continuity
with respect to m.

2.2. Let @ be a unit square, and H a rectangle,
Q =a([0,1)x[0,1)) and H = a([a,d)x[c,d)),

where b—a <1, d—e¢ <1, and a is a rigid motion of R’ Let p,q,r,
and s denote the vertices of @ listed going around counter-clockwise.
We show that

(3) m(H +p) —m(H +g) +m(H+r)—m(H+3) = 0.
Since the sets
A =a([a,8+1)x[¢,e+1)), B =a(b,db+1)x[e,c+1)),
C =a(b,b+1)x[d,d+1)), D =alla,a+1)x[d,d+1))
are unit squares, we have
m(A) = m(B) =m(C) = m(D) = 1.
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Thus
m(ANB) = m(B\A) and m(D\C) =m(C\D).

Subtracting we have
m((ANB)\(D\C)) —m((D\C)\(A\B))

= m((B\NA)\(O\D))—m ((O\D)\(B\A4)),
that is,

m(H+p)—m(H+8) =m(H+q)—mH+7r),
which proves (3).

2.3. Let @ be an arbitrary unit square and let p, q, r, and 8 denote
its vertices (listed going around counter-clockwise). Suppose, for the
interval H = [a, b) X [¢,d), that H+p, H+q, H+r, and H+8 are
intervals of continuity with respect to m. Then (3) holds.

In fact, let ¢ > 0 be arbitrary. Since H+p, H+q, H+r, and H+8
are intervals of continuity, there exists 8, 0 < 4 < 1, such that

(“ Im(X+p)—mEH+p) <e [m(X+q)—m(HA+q) <e,
) im(X+r)—mH+7r)<e, m(X+8)—mH+S)<s

whenever X € P and X satisfies (2).
Consider the lattice

é é
4 - 4(3a-p), 36-p)
and put
N = {§Q+a: aeA}.

Let N,, N,, ..., N, be the elements of N having at least one common
point with H and let

k
X = UN‘-

=1

Then (2) holds because of the choice of § and X. Applying 2.2 for the
squares N; we have

m(N;,+p)—m(N;+q)+m(N;+r)—m(N;+8) =0 (¢t =1,2,...,k).
Adding these equalities we have

m(X+p)—m(X+q)+m(X+r)—m(X+s) =0.
Hence, by (4),

|m(H+p)—m(H+q)+m(H+r)—m(H+8)| < 4e.
Since e is arbitrary, this gives (3).
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2.4. Let A be a unit lattice and let H be an interval. Suppose that
H + @ is an interval of continuity for every & € 4. We show that (3) holds
if p,q, r, and s are the vertices of any lattice rectangle of A (listed going
around counter-clockwise).

In fact, let 4 = A(a, b) and let

p=*ka+lb, q=na+lb, r =na+tb, 8 =rFka+tb.
Then for the points p;; = ta+jb (¢,j =0,41,4+2,...) we have
MmHEA+p; ) —mHE+Pyyyg) +ME APy g00) —mE+P;50,) =0

by 2.3. Adding these equalities for k < ¢ <n and I < j <t we get (3).

2.5. Let u be an arbitrary vector of length 12 V2. We prove that there
exist countable sets X, Y, = R! such that if a,b ¢ X, and ¢,d ¢ Y,
then, for the interval H = [a, b) X [¢, d),

() m(H) = m(H 4+ u).

Let & and  be perpendicular vectors for which |§| = || =1 and
12¢+12 5 = u. The number of unit lattices having at least two common
points with A = A(&, ) is countable. Let {4,}2, denote a sequence of

0

these lattices. Then the set | ) A; is also countable. Let

=1
©0
H 4, = {pn(‘vfn yn)};o-l'
We are going to show that the sets

00 (=]
Xu = U(Xo— n) and Yu = U(Yo'—yn)
n=1 n=1
satisfy the requirements (where X, and Y, have the same meaning as in 2.1).

Suppose that a,bd ¢ X,,, ¢,d ¢ Y, and put H = [a, b) X [¢, d). Since
a+2,,b+wx, ¢ X, and ¢c+y,,d+vy, ¢ Yo, H+p, is an interval of conti-
nuity for every =.

This implies that if p,q, r, and s are the vertices of a rectangle T
(listed counter-clockwise), p,q, r, 8 € 4, and the lengths of the sides of T
are integers, then (3) holds. In fact, T is a lattice rectangle of A, for a
suitable n, so we can apply 2.4 for 4, and H.

Now let a, b, ¢, d € A be the vertices of a rectangle (listed counter-

clockwise) for which b—a = }u and |d—a| = 4V2. We prove
(6) m(H+a)—m(H+b)+m(H-|Tc)—m(H+d) = 0.

Consider the lattice points e, f € A as marked in Fig. 1. Then we obtain
(7) mH+a)—mH+f)+m(H+c)—m(H+e) =0,
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(8) m(H+f)—mH+ad)+m(H+e)—m(H+b) =0,
since for the rectangles a, f, ¢, e and f, d, e, b we have
le—a| =1, |f—a| =7, and |d—e]=|b—e|=035.
Adding (7) and (8), we get (6).

Suppose now that p,q,r,s € A are the vertices of a rectangle T

(listed counter-clockwise) for which ¢ —p = ku and |s—p| = 12nV2.
Then (3) holds. In fact, let

v = 1 (s ) and = +ilu+"v
= 3n p 9, =P n Jo.

Then, by (6), we have

m(H+q ) —mHEH Q) +mH Ay 500)—m(H+q,4,) =0
for every ¢,j.

Adding these equalities for 0 < i < 4k and 0<j) < 3n we get (3),
8iNCe Go,0 = Py Gax,0 =) Yo,3n = 5 ANA Gyp 5, = T

Finally, we prove that if @, and b, are lattice points of A for which
b,—a, = ku, where k is an integer, then m(H + a,) = m(H + b,).

Let the points ¢,, c,, ¢, @,;, b; be chosen as in Fig. 2, that is, let
the points a,, ¢,, ¢;, b, form the four vertices of a square @, listed going
around counter-clockwise, let ¢; be the centre of @,, and let @, = ¢, +
+ (@, —¢,) and b, = b, + (¢, —¢;). Then ¢,, ¢,, €5, @;, and b, are lattice
points in 4 and the length of the sides of @, is 12%V2. Hence

(9) m(H+a,)—m(H+c¢,)+m(H+c)—m(HA+ b)) = 0.
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Since @,, a,, ¢,, c; are the vertices of a square with sides of length
12k, we have

(10) m(H+a,)—m(H+ay)+m(H+c,)—m(H+c,;) = 0.
Similarly,
(11) m(H + ¢3) —m(H + ¢5) +m(H + by) —m(H + b,) = 0.
ob1 ob2

Ajge oCy

Fig. 2
Adding (9), (10), and (11), we have
2[m(H+a,) —m(H+b,)]—m(H+a,) +m(H+by) =0,
that is,
(12) 2[m(H +a,) —m(H +b,)] = m(H +a;) —m(H+b,).
Since b,—a, = 2ku, we can repeat the calculations above for a,
and by, and we get the lattice points a; and b, for which
(13) 4[m(H +a,)—m(H+b,)] = 2[m(H+ay) —m(H+b,)]
= m(H + a3) —m(H + b,).
Continuing this process, we get a@,, b, € A such that for every n
(14) 2" [m(H +a,) —m(H +b,)] = m(H+a,)—m(H+Db,).

The right-hand side of (14) is bounded. In fact, H can be covered
by a finite number of disjoint unit squares,

N ’
H c 4LJ1 Qn
whence

N
H+ixc | J(Q;+x) for every x.
=1
Repeating the first argument of 2.1 we have
K<mH+x2)< N—-K for every x,
thus
lm(H+a,)—m(H+b,)| <2(N—K) for every n.
However, the left-hand side of (14) can be bounded only in the
case where m(H +a,) = m(H+ b,).

Finally, since 0 and u are lattice points of A and their difference is u,
we get m(H) = m(H +u), which was to be proved.
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2.6. We show that for every a& e R® there exist countable sets X,
and Y, such that m(H) = m(H +a) whenever H = [a,d) X [6,d) and
a,b¢X,, c,d¢Y,.

Let A denote the set of those vectors @ for which X, and Y, exist
with the property described above. Since every vector can be represented
as a sum Qf vectors of length 121/5, it is enough to prove that @& € A and
|u] =12V2 imply b =a+ucA.

Let

@ =(z,9), Xp=2X,U(X,—2), and Y,=7Y,V(¥,—y),
where X,, and Y, are as in 2.5.

Ifa,b¢ X, and ¢,d ¢ Yy, then for H = [a, b) X [0, d) We have

m(H) =m(H+a) =m(H+a+u) =m(H+Db),
that is, b € A.

2.7. Now we are going to complete the proof of the Lemma. We
put X = {J(Xa—p) and ¥ = (J(¥,—q), where the unions extend over
all vectors @ with rational coordinates and rational numbers p and g.
Suppose that a ¢ X and ¢ ¢ Y. We show that

(16) m([a, a-+ -l-) X [o, c+ —1-))
n n

i—1 ) Jj—1 J 1 . .
=ml||la+ " ,a+—n— X|e+ - ,c+; = (2,7 =1,2,...).
Indeed, a ¢ X and ¢ ¢ Y imply
1 1 .— o_
a,a+—¢X, and c¢,c+—¢Y,, where a=(' 1,‘7——1),
n n ) n
whence

1 1
(16) m([a, a+ ;)x [c, e+ —;&-))

= [+i_1 att x[c+j_1 ot J f ;)4
=m|lé+—, - pt " or every 4,j.

On the other hand,
[6, 6+1) x [0, c+1)

o2

and m([a, a+1) X [¢, ¢+1)) = 1 by assumption. These equalities and (16)
imply (15). Finally, if p and q are arbitrary positive rationals, then (15)
obviously gives

j—1
n

p .
,a+7)x[o+ ,c+%):1<i,j<n}

m([a, a+p) X [¢, c+9)) = pg,
which proves the Lemma.
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3. Proof of Theorems 1 and 2.

3.1. Let n = 2 and let m be a non-negative and additive set function
defined on J, for which (iii)* holds with » = 2. By the definition of Jordan
measure and by the monotonicity of m it is enough to prove that for
every interval H = [a,b) X [c,d) the equality m(H) = (b—a)(d—o)
holds.

Since m > 0, the Lemma is applicable and we get the countable
sets X and Y. Let ¢ > 0 be arbitrary. Then there exist intervals

H =[a,b)x[cyd') and H" =I[a",bd")X[c",d")

such that H <« H <« H', a’ya"" ¢ X, ¢',¢"" ¢ Y, the differences b'—a’,
d' —¢', b’ —a'", and d"’ — o'’ are rational, and

b'—a"'—e<b—a<b —a'+e, d'—¢"'—e<d—c<d —c' +e.
By (1),
(b — ') (@ — ') < m(H) < (b — ") (@ — ")
and, consequently,
(b—a—¢e)(d—c—e)<mH)< (b—a+e)(d—c+e).

Since ¢ is arbitrary, we have m(H) = (b —a)(d —¢), which proves
Theorem 1 for n = 2.

3.2. Let m be a o-additive set function on B, and suppose that m(Q)
= 1 for every unit square Q. By the o-additivity of m and 4,, it is enough
to prove that m(X) = 1,(X) for any bounded X € B,.

m is bounded from below, since it is bounded either from above
or from below (this is true for every c-additive set function defined on
a o-field; see [3], 3.3.2, p. 17) and, obviously, m(R?) = co. Hence, by the
Lemma, there are countable sets X, Y — R! such that a ¢ X and 0 ¢ ¥
imply

m([a, a+p) x [¢, c+q)) = pq
for all positive rationals p and gq.

Fix a bounded open set U = R? and put

E ={XeBy: X U and m(X) = A (X)}.

As m is o-additive and bounded on the o-ring {X € B;: X < U}
(ef. 2.1), E is a monotone class. Hence, in order to prove that ¥ = {X e B,:
X < U}, it is enough to show that E contains any open set G < U. As
eagily seen, G can be represented as a countable disjoint union of intervals
[a, b) X [¢, @) with a ¢ X, ¢ ¢ Y, and b—a, d—oc rational. It follows that
@ e E, and Theorem 2 is proved for n = 2.

3.3. We prove Theorems 1 and 2 for every n by induction. Let n > 2
and assume that Theorems 1 and 2 are true for n—1. Sets of the form
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a( X [0, 1)), where a is a rigid motion of R", will be called unit cubes of
j=1

dimension n.
It is easy to see that the set function m(a([0, 1) x X)) satisties the
conditions of Theorems 1 and 2. Hence, by the inductive hypothesis,

m(a([0, 1) X X)) = t,_,(X)

for any X e J,_,NB,_, and any rigid motion a of R".
Given a,b e R' with ¢ < b and a unit cube @ of dimension n—1,
there is a such that

n—1
a(jxl [0,1) x [a, b)) = @ X [a, b).
It follows that
n—1
m(Q X [a, b)) = ‘”“L’ﬁ [0,1) x [a,b)] = b—a.
Hence, applying again the inductive hypothesis for the set function
(b—a)'m (X X [a, b)), we get
m(X x [a, b)) = (b—a)e,_,(X) for every X ed},_,NB,_,.
In particular, for every interval

H = 1)721 [aj’ bj)
we have
(17) mH) = [](%;—ay).

j=1
Now, if m is non-negative and additive on J,, then (17), obviously,
gives Theorem 1. Finally, if m is o-additive on B,, then the assertion
of Theorem 2 follows from (17) by an argument similar to that given in 3.2.

4. Remarks.

4.1. The theorems are not valid for » = 1. In fact, let f(#) be a con-
tinuous and increasing function for which f(#+1) = f(#)+1. Then for
the Lebesgue-Stieltjes measure i, generated by f we have

X([a,a+1)) =fla+1)—f(a) =1

(i.e., every unit interval is of measure 1) but if f(«) is not of the form « + ¢,
then A, is not equal to ¢; on J,.

4.2. The question arises for what families Q of unit cubes of dimen-
sion n it is true that if m is a non-negative and additive set function on
J, (n > 2) and m(Q) = 1 for every @ € Q, then m = ¢,. It follows from
the proof of the Lemma that there exists a countable Q for which the
statement above is true.
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On the other hand, if m is the direct product of the above-mentioned 2,
and A,_,, then m is ¢-additive on L, and

m(‘;( [a;, 6;+ 1)) =1
=]

for every a,, az, ..., a, but m # A,.

4.3. Theorems 1, 2 and 3 remain true if condition (iii)* is replaced
by the following:

(iii)** If a 48 an arbitrary rigid motion of R", then
m(a(‘XI[O, 1]) =1.

In fact, in the proof of the Lemma it would be enough to use m(Q) = 1
for unit squares of continuity only, and it is known that the measure
of every interval of continuity equals that of its closure.

4.4. In the following we show that Theorem 1 fails to remain valid
if we drop the condition m > 0.

Denote by £, the linear space generated by the characteristic functions
of Jordan measurable sets, and by @,, its subspace generated by the charac-
teristic functions of unit cubes of dimension n. A standard Hamel basis
argument shows that there exists a linear functional L: #, — R' such
that L(f) = 0 for all fe@, and L(x,) = 1 for some A €J,. (Moreover,
we can choose L to be bounded in the linear space #, endowed with the
supremum norm ||-[l,,. This is a consequence of the fact that ||y, —fllo = %
whenever f e @, and A €J, does not belong to the ring generated by the
family of unit cubes of dimension n.)

Let m(X) = ¢,(X)+ L(xx) for every X eJ,. Then m is additive
on J, and m(Q) = 1 for any unit cube @, since y, € @,,, and thus L(y,) = 0.
Nevertheless, m # ¢,. If L is chosen to be bounded, then m is bounded
from below and, as it easy to see, is of bounded variation on every set
Xed,.

4.5. Theorem 3 fails to remain true if we suppose m to be only ad-
ditive (but we retain conditions m > 0 and m(Q) = 1 for unit cubes).
In fact, let J, denote the field generated by J, and let
X) if Xed,
m(X) = i (X) . )
oo if R"\X ed,.
Then m is non-negative and additive on J, . Hence, by the theorem
of X.o§ and Marczewski ([6], Theorem 2), for every ¢, 0 < ¢ <1, there

exists a non-negative and additive set function m’ defined on all subsets
of R" for which m’(X) = m(X) if X e J,, (consequently, m(Q) = 1 for any

4 — Colloquium Mathematicum XL.1
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unit cube Q) and m(I) = ¢, where I denotes the set of rational points of
”n
the unit cube X [0, 1).

=1
4.6. In this section we deal with the following generalization of The-
orem 3:

PROPOSITION. Leét m be a o-additive set function defined on L, (n = 2)
for which (iii)* holds. Then m = A,.

We show that this proposition is consistent with the axioms of set
theory (ZFC).

THEOREM 4. Lét n > 2 and let 21! denote the o-field of all subsets
of [0, 1]. The following statements are equivalent:

(1) There exists & measure u defined on 2!V such that u(X) = A,(X)
Jor every X e L,, X < [0,1].

(2) There ewists a o-additive set funotion m defined on L, such that (iii)*
holds and m +# A,.

Proof. Let 4 be a measure satisfying the conditions of (1). 4 cannot
be invariant under translations (this can be shown by the argument of [4],
P. 93). Hence there exists h € [0, 1] such that for the measure u, defined by

ur(X) = p{([0, L—R)NX) +A)+u(([L —}, 1]nX) + 1 —1)
we have u; == u. On the other hand, u,(X) = u(X) for every X < [0, 1]
Xel,.
Let H < [0, 1] be such that u,(H) # u(H) and let

m(X) = 4,(X)+ w(X N[0, 1]) —p(X N[0, 1])

for every X € L,. Then H e L,, m is o-additive on L, and m(H) = u,(H)—
—u(H) #0 = A,(H). In addition, for every Q we have QN[0,1] € L,,
and hence m(Q) = A,(Q) = 1, i.e. (iii)* holds. This proves (2).

Now we suppose (2) and prove (1), Let m be a s-additive set function
defined on L, and satistying (iii)* and let H € L, be such that m (H) # A, (H).
Let {Q.} be a sequence of disjoint unit cubes of dimension » with

e, =B

=1
and let @, be such that m(HNQ,) # A,(HNQ,).

Since HNQ; € L,, we have HNQ; = AUB, where A,(A) =0 and
BeB,. By Theorem 2, m(B) = 4,(B) and thus m(4) # 1,(4) =0,
and we can suppose m(A) > 0. The subsets of A belong to L, since 4,(4)
= 0; hence m is defined on every subset of A. m is finite-valued on the
subsets of A, since 4 c @, and m(Q,) = 1 by assumption. In addition,
for every ¢ € A we have m({w}) = 4,({w}) = 0 by Theorem 2.

It follows that there exists a probability measure » on 2[%! vanish-
ing at points. Put f(#) = »([0, #]) for # € [0,1]. As easily seen, 4,(X)
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= »(f""(X)) for X eL,, X < [0,1] (cf. [6], p. 56, (°). Hence u(X)
= »(f~1(X)) for X < [0, 1] is as desired, and Theorem 4 is proved.

" Tt is well known that if the cardinality of continuum is less than the
first weakly inaccessible cardinal, then statement (1) in Theorem 4 does
not hold (see [8], Satz (A)). That is, in this case our proposition is valid,
and 8o it is consistent with the axioms of set theory (ZFC). On the other
hand, if statement (1) in Theorem 4 is consistent with the axioms of ZFC,
then so is the following statement: “there exists & measurable cardinal”,
and vice versa (see [7], Theorem 2, p. 398). It follows that the proof of
the Proposition would yield a proof of the non-existence of measurable
cardinals.

We remark that with the additional condition m < A, (i.e. m is abso-
lutely continuous with respect to 4,) the Proposition follows immediately
from Theorem 2. Another way of proving this assertion (for n = 2) is the
following.

If m <4, then, by the Radon-Nikodym theorem, there exists
a measurable function f: R?*— R' such that

m(X) = ffd}.2 for every X € L,.
p.q
Hence, by (iii)*,

[(f-1dr, =m@-1=0
Q

for every unit square Q. If f is continuous, then, by a theorem of Christov [2],
we have f =1. In the general case we can apply Christov’s theorem
to f convoluted with smooth functions with compact support and we get
f—1 = 0 a.e. in R? (see [9], Sections 1 and 7). Hence

m(X) = [1dly = 2,(X).
X

4.7. The interesting result belonging to this topic is Chakalov’s the-
orem [1] by which there exist a = 0 and b # 0 such that
ffsin(aw+b?/)dwdy =0
K
for every circle K with radius 1(*). This implies that there are measures on J,
for which m(K) = = for every circle K with radius 1 and m # ¢,. Indeed,

m(X) = (X)+ [ [ sin(ao+ by) dody
X

is a measure on J,, and m(K) = «3(K) = n whenever K is a circle with
radius 1 but m # ¢,.

(!) A similar example was earlier constructed by P. Szymanski and W. Woli-
bner in Annales de la Société Polonaise de Mathématique 13 (1934), p. 134.
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