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ON THE STRUCTURE OF THE SOLUTION
OF THE ALLOCATION PROBLEM

0. Introduction. This paper grew out of some economical problem
which we shall explain further on. It is known that the total production
costs of x units of some good consist of two main parts: the constant part
(fixed costs = K,) which is constant independently from the amount
of production and which exists even if the production equals zero (e.g.
expenses for the amortization of the factory buildings) and a wvariable
Part (variable costs = K,(x)) depending upon the volume of production
(e.g. expenses for raw materials, wages, etc.). The function of variable
costs (and, consequently, the function of total costs) is an increasing
function with one point of inflection (the optimum of production). Fig. 1
llustrates the shape of the total costs curve. In the interval <0, a> the
function K () is strictly concave and in the interval {(a, + o) it is strictly
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convex. From the structure of the function K (x) it follows the structure
of the function of marginal costs K'(z). In Fig. 2 the shape of the curve
of marginal costs is illustrated. Let us suppose that some good may be
Produced in two factories ¥'; and F,. Then it is necessary to consider the
following three cases as possible decisions:
(@) To produce only in the factory F, with total costs C,-+f,(x).
(b) To produce only in the factory F, with total costs C,+ f,(2).
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(¢) To produce in factories ¥, and F, with total costs
C1+Cyt+my(x), where my(z) = min[f,(z—y)+fo(y)].
o<<y<czc

An optimal decision will be that one which realizes

min [C; +f1(z), Co+fo(®), C1+ Co+my(2)].

In connection with the considered problem of production costs J. X.o§
has raised the question: is the function m,(x) of the same type as functions
fi(x) and f,(x)? This question requires the research of the structure of
the function
(0.1) My (2) = min  [f (@) + fo@e) + ... + fr(2,)]

zy+... +a,=2
;20

under the assumption that the funetions f,(x) are continuous and any
of them has one point of inflection. The knowledge of the function (0.1)
is useful in solving many problems in economy and in operations research
(see e.g. [1]-[4] and [6]). Problems of this type are generally named
problems of allocation.

Therefore we call the function (0.1) solution of the problem of allocation.
The function (0.1) may be found from the following recurrence formulas:

“my (x) = fi(@),

m;(x) = min[f;(y)+m;_,(x—y)], ¢=2,3,...,n.
o<y<x

(0.2)

I wish to express thanks to Professor Jerzy Los who encouraged me
to undertake this problem and helped me in writing.

1. Notation and definitions. Given are the functions ¢g(x) and h(x),
defined and continuous for z > 0. We assume that each of these functions
has one point of inflection. Let a > 0 be the point of inflection of the
function ¢g(x) and let b > 0 be the point of inflection of the function k(z).

Let us write shortly '

Gz, y) = h(y)+9(r—y).
We define the functions

(1.1) M (x) = min G(x,y) for rel; (i =0,1,2,3,4),

a;(x)<y<b;(x)

where
ay(x) =0, bo(x) = x, I, =<0, +c0),
a,(z) = max(0,x—a), b,(x) = min(b, z), I, =<0,a-+0),
ay(r) = b, by(z) = x—a, I, ={a+b, + ),
az(x) = 0, by(x) = min(b, x—a), I, = {a, + ),
a,(r) = max(b,x—a), b,(2) =, I, =<b, +o00).
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In Fig. 3 we sketched the domains, the boundaries of which are the
curves a;(r) and b;(x) with the same numeration as the numeration of
the domains. More exactly, a;(x) is the lower and b;(x) the upper boundary

A

Fig. 3

or the ¢-th domain. The functions M;(x) are continuous in the intervals
in which they are defined. It is easy to see that

M, (x) for 0 < <a
min[ M, (x), Ms(z)] for a << <b

lmin[Ml(:v), M,(x), M,(®)] for b<a<a+b, if a<bh.
min[M,(x), Ms(x), M,(®)] for a+b<«x

My(z) =

Analogously we construct the function M,(x) for the case a > b.

2. The structure of the solution in the case where the function is
convexo-concave. In this section we assume that the functions ¢g(«) and
h(x) are comvero-concave. More exactly, the functions g(x) and h(x) are
strictly convex in the intervals <0, a) and <0, b), respectively, whereas
they are strictly concave in the intervals {a, +oc) and (b, + o), respec-
tively. The main result of this section is the following

THEOREM. If ¢ (a)> g, (a) and h_(b) = R, (b)(Y), then there ewist
numbers T and x such that:

(a) the function M,(x) is strictly conmvex im the interval (0, z,> and
Strictly concave in the interval {(xy, + o),

(b) M,_(zy) = M, (x,), where x, = min(z, x).

The numbm T is the unique root of the equation M,(x) = My(w) in the
miterval {a,a+b> and the number T is the umique root of the equation
M,(x) = M, () in the interval (b, a+bd.

(*) Since from the convexity or concavity of a function in a closed interval
it does not follow that onc-side derivatives are finite at the ends of the 1nte1va.1 in
our casc may be in particular: '

g+ (0) = — 00, ht}- (O) = — 00, g,— (a) = + 00,
g'_i_ (a) = + oo, hl (b) = + oo, hfi- (b) = + o0.
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The proof will require the following lemmas:
LEeMMA 2.1. The function
M(x) = minG(x,y), where a<z,<a+b, 0<y,<z,—a,
0<yY<y
18 strictly concave in the interval {x,, + o).

Proof. Let x, and x, be any two points satisfying the inequality
Zo < ; < x, and let us denote by y* an arbitrary point satisfying the
conditions

M(xl_;xz) = minG(xl—;%,y) =G(w1+x2,y*), 0<y* <y,

0<Y<VYy 2

It is easy to see that the inequality @ < x,—y* < 2,—y* holds;
then, from the strict concavity of the function ¢g(x) in the interval {a, + o0),
we have

1
>—[g(m1—y*)+g(m2—y*)].

2

wl—y*+wz—y*)
2

T+, * * 1 * * 1 * *
= y( —y ) +h(y) > E[g(wl—y )+ h(y )]+§[g(w2-—y )+h(y)]

> [ min Gz, )+ min Gz, )] =5 (M) + M (@]

2 0<Y<yy 0<Y<VY

LeMma 2.2, If min[M,(x,), Ms(xo)] = M,(x,), where a < xy < a+ b,
then M, (x) > My(x) for x,<ax < a-+b.
Proof. Let

(2.1) Mi(wo) = min G(x,, y) = G(xo, Yo), Where 0 < yy< zp—a.

0SY<zg—a

Hence and by the assumption the inequality
(2.2) G (2o, Yo) < G (2o, y) for 0 <y < min(b, z,)
follows.

Now we shall prove two important inequalities by indirect proof:
(2.3)  G(x,y0) <G(x,y) for x> x, and ¥, < y < Min(z—xy+y,, b),
(2.4) G(r,r—x,+7y, < G(x,y)

for #y <@ <b+4ay—y, and x—xy+y, <y < min(b, ).
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Let us suppose the contrary, i.e. that inequality (2.3) is not true.
Then there exists a point z* > z, such that the function G(«*, y) has
a minimum in the interval (y,, min(z*, ®,+¥,, b)> in a point y* > y,.

Hence the left-hand derivative of the function G(z*, y) in a point
y* must be non-positive:

(2.5) h_(y*) < g (o™ —97).
Since from the inequalities
0<yo<®—a and Y,<y" < min(z*—zy+y,, b)
the inequalities
0<yo<y <b and a<a,—y,<a*—y*

follow, from (2.5) and from the strict convexity of the function h(x) in
the interval <0, b) and from the strict concavity of the function g(w)
in the interval (a, + o) we have
Ry (o) < R_(Y") < g4 (@™ —y") S gL (@ —90)  if 2o—Yyo > a
or
P, (yo) < h_(y") < g’+ («* —y") < g'+ (@) it 2g—y, = a.

Hence, and since by assumption g.(a) < ¢g_(a), we have in bcth

cases the inequality
h:(?/o) < g_(wo—Y,).

The inequality means that the right-hand derivative of the function
G(z,, y) at the point y, is non-positive. This fact contradicts that point
Yo Is an optimal one (see (2.2)).

Now let us suppese that inequality (2.4) is not true. Then for some
point (2%, y*) we have
(2.6) G (¥, & — 3o+ Yo) = G(a", ),

2o < &F < Vb ao—Yo, X —Ly+Yy <Y< min (%, b).

Let us consider the auxiliary function

U (@) = b — 2o+ Yo) + 9 (@0 — o) — h(@ — " +y*) — g (" — ")
for z, < x < a*.
By transformation of the inequality 2 —xzy+y, < ¥* < min(a*, b) we
get the inequality 0 < z—wy+¥o<x—a*+y* <b, where z,<z<a*.
Hence and from the strict convexity of the function h(x) in the interval
€0, b), it follows the existence of the derivative

U (2) = I (£ — 2o+ 90) — W' (& —a* + %) < 0
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almost everywhere in the interval (z,,2*)>. Then the function U(x)
is decreasing in the interval (x,, 2*). Since it is easy to verify that
U(@y) = G(@qy Yo) —G (20, xo—x* +47), and U(s*) = G (2", 2" — 2o+ y,) —
—@(2*, y*), from the monotonicity of the function U(z) and by (2.6)
we obtain the inequality

G (29, Yo) > G (2, wo_x*‘l’?/*)-

This inequality is contradictory to (2.2), because as is easy to see
0<y, < xp—2 +y* < min(z,, b).
Let us remark that

min(x —xy+ Yo, b) = 2 —xo+Y,, When xo<ax<<a-+b.
Hence and by (2.3) we get
(2.7) G(z,y,) <G(ryx—20+y, Tfor zg<ax<a+b.
Since a+4+b<b+x,—y, and x—x,+Y, < x—a, Iinequality (2.4)
holds also for every y e {x —a, min(b, z)> for any fixed x e (xy,a+b).
Hence, in particular, we have (see definition (1.1)):

(2.8) G(z, v —xo+Y,) < min  G(z,y) = M,(x) for zp <z <a-+b.

2—a<<y<min(b,r)
Obviously, for > z,, we have 0 < y, < x —a, then (see also (1.1))
(2.9) My(2) = min G(x,y) < G(x,y, for xp<ax<a+b.
0<y<z—a
By (2.7), (2.8) and (2.9) we obtain M, (x) > M,(x) for o < x < a-+b.
This completes the proof.

COROLLARY 2.1. If the point x, fulfills the assumptions of lemma 2.2,
then the function M,(z) is strictly concave in the interval {(x,, + oo).

Proof. Let the point (x,, y,) fulfil conditions (2.1). If y varies in
the interval (@ —w,+vy,, min(b, x —a)> then, according to (2.4), for arbi-
trary @ e {xy, b+x,—1vy,> we have
(2.10)

min G(x,y) =Gz, x—xo+y,) Tor 2y <o <b+ai—1y,.
2—2¢+Ye<y<min(b,z—a)

On the other hand, from (2.3) it follows

(2.11) - min G(r,y,)=G(r,y,) for > x,.

Yo<sy<min(h,2—zy+yg)

Thus, by (2.10) and (2.11), we have

(2.12) min G(z,y,)=G(x,y, for x> x,.

Yosy<min(b,z—a)
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According to the definition (1.1) and by (2.12) we obtain

M, (x) = min G(r,y) = min G(z,y) for x> x,.
o<y<min(b,r—a) 0<Y<Y,

Hence and from lemma 2.1 it follows the strict concavity of the
function M,(x) in the interval {x,, -I- o).

COROLLARY 2.2. The equation M,(x) = M;(x) has exactly one root
T in the interval {a, a-+b) such that

Mi(x) for a<<

in[ M, (z), My (@)] TS
min [ M, (z x)] =
LM (@), Mo My(z) for z<x<atb

and the function My (x) is strictly concave in the interval (x, + o).
Proof. According to the definition (1.1) of the functions M,(x)
and M,(xz) we have.
M,(a) = min G(a,y) < G(a, 0) = M,(a),

<y<a
My(a+b) = min G(a+b,y) <G(a+b,db) = M,(a+D).
0<y<b
From these inequalities and from the continuity of functions M, (x)
and M,(x) the existence of the root z follows. The rest of corollary 2.2
follows, as it is easy to see, directly from lemma 2.2 and from corollary 2.1
except of the strict concavity of the function M,(x) for >z = a+b.
This last follows in this case from lemma 2.1.
Let us remark that according to the definition (1.1) of the functions
M,y(x) and M,(x) we have

My(x) = min [h(y)+g(z—y)] and M,(2) = min [g(y)+h(z—y)].
o<y<ch <y<a
T—y=a z—y=b
It is easily seen that from this and by the assumptions which are
satisfied by the functions g and & (it is sufficient to exchange the functions
9 and h and the numbers a and b) from corollary 2.2 we obtain the fol-
lowing
_ CororLrARY 2.3. The equation M,(x) = M,(x) has exactly one root
@ in the interval <(b,a-+b) such that

M,(x) for b<ax<=z
min[M,(z), M,(x)] ={ ] - ’
X a

My(2) for &<

&l

and function M,(x) is strictly comcave in the interval (x, + o).

Proof of the theorem. Let us establish that a<b and z =
= min(Z, ), where Z, # are numbers defined in corollaries 2.2 and 2.3.
From the strict concavity of function g(x) in the interval <{a, --o0) and



56 W. Sobieszek

from the strict concavity of function h(x) in the interval <b, + o) it
follows the strict concavity of function G (x, y) with respect to variable
Yy e {b,z—a) and for any arbitrary fixed = > a+ b. Hence, according to
the definition (1.1) of the function M,(x) we obtain

My(x) = min G(r,y) = min[G(z,d), G(x,xr—a)] for x>a-+Db.

b<y<z—a
On the other hand, for z > a--b we have

My(x) = min G(z,y) < G(x,b) and M, (x) = min G(r,y)<G(z,r—a).

o<y<bdb r—a<y<zx
Applying the above given equality to the function M,(x) we get
(2.13) min[M,(x), My(x), M,(2)] = min[My(x), M(x)] for x> a-+b.

By (2.13) and by corollaries (2.2) and (2.3), according to (1.2) we

have
M, (x) for 0

My (x) ={M;(x) for
min [ M,(x), M,(x)] for =

0

&l

8l
AVARR/AN/AN
8
NN

L

.

From the strict concavity of the function M,(x) in the interval
{x, + o0) (see corollary (2.2)), from the strict concavity of the function
M,(x) in the interval (@, -+ oo) (see corollary (2.3)) and by the continuity
of funections M,(x), M,(x) and M,(x) it follows the striect concavity of
the function

M,(x) for < @,

%
M,(x) =
o) min [ M,(z), M,(z)] for

VoA
81 8

in the interval {Z,+ oo). From the strict convexity of the function h(x)
in the interval <0, b)> and from the strict convexity of the function g(x)
in the interval {0, a) it follows the strict convexity of the function M, (x)
in the interval <0, a+b) (see [4]). It is easy to see that this completes
the proof of part (a) of our theorem.

To prove point (b) of the theorem, let us remark that M,(z,) =
= M,(xy) = M3(x,) for z, = z.

Let

M,(z,) = min - [h(y)+g(xo—Y)] = k(Yo) +g(xs— o),
“2o—a<y<min(b,xg)
X < Yo < min(b, x,),
My(xo) = min  [h(y)+g(zy—y)] = h(?/o)‘}‘g(‘vo“?/o),

0<y<x0—a
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With this notation it is obvious that
(2.14) Mo(x5) = h(Yo) + 9 (%o—¥o) = h(Yo) + g(Zo— ¥s)-
In the case of y, > 0 for sufficiently small 4z > 0 we have the in-

equalities 0 < y,+ 4z < xy+ 4z and 0 < y,— Az < x,— Az, whence

My(zg+ o) = min  [k(y) + 9@+ d2—y)] < k(Yo + A2) + g(@,— ¥,),

0<y<wy+dz

Mo(zg—Az) = min  [h(y)+g(@o— A2 —y)] < h(Yo— A2) + g (20— Yo) -

0<y<ry—dx

In virtue of the last two inequalities we have by (2.14)

Mo (g + Ax) — Mo (2) < h(yo+ Ax) — h(9)

Az h Ax ’
M o(xg— Az) — Mo (2,) . h(yo— Az)—h(y,) .
— Ax = — Ax |

Passing to the limit when Adx — 0, we get the inequalities

My, (o) < I, (y) and My () = bl (y,).

Henece and from the strict convexity of funetion h(x) in the interval
<0,b> we infer that My, (%) < y(ye) < h_(yo) < My_(x,) because
0<yo<y,<b.

Let us remark that in the case ¥, = 0 it must be y, = 0 and x, = a.
Thus, by (2.14) and by the inequalities

My(a— Az) = min [h(y)+g(a— Az —y)] < h(0)+g(a— Ax)

o<y<a—x
and
My(a+ Az) = min  [h(y)+g(a+ 42 —y)] < h(0) + g(a+ Aw)

o<y<a+dx
We obtain the inequalities

Mo(a— Az)— Mo(a) _ g(a—Az)—g(a)

=

__Z]x — Az ’
Mo(a+ Ax)—Mo(a) _ g(a+ Ax)—g(a)
Az - Az .

Passing to the limit when 4z — 0 we get the inequalities M,_(a)
> g_(a) and M,, (a)< g+ (a). Hence and from the assumption ¢’ (a)>¢/, (a)
we infer that M, (a) > M,, (a), which completes the proof of the theorem.

It is easy to remark (see formulae (0.2)) that the theorem we have
Proved can be generalized for the function (0.1) for » > 2.
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3. The structure of the solution if the function is concavo-convex.
In this section we assume that

(a) g(x) and h(x) are increasing functions of the class C' for > 0;

(b) ¢g(x) and h(x) are functions of the type coneavo-convex, i.e. they
are strictly concave in intervals <0, a> and <0, b), respectively, and they
are strictly convex in intervals <{a, 4+oc0) and <{b, 4+ o), respectively;

() g(0) =R(0) =0, g(oo) = h(c0) = oo, k'(b) > ¢ (a)(*).

The shapes of functions g(x) and h(x) and the shapes of their deriv-
atives are illustrated in Figs. 4 and 5.

A ﬂ\
g’(x.‘/ h'(x)
gi{x)
h(x)
1 L > 1 ] -
0 a ¢ b x 0 a b X
Fig. 4 Fig. 5

For simplicity of notation let us put
(3.1) p(2) = Gz, ay(2)],
(3.2) p(x) = Gz, by(@)].

Let us define the sets

(3.3) B, = {x e I;: M,(x) < min(G [z, as(x)], G [z, bs(x)])},
(3.4) B, = {z eI: M,(x) <min(G[z, a,(x)], Gz, by(x)])},
(3.5) AL = {y e {a;(@), by(@)>: M) =G(x,9), Gy(x,y) =0}, i =3,4,
(3.6) B, ={xel,;: AL #0} (i =3,4).
Since AL # 0 for every z ¢ B; (i = 3, 4), we have
(3.7) B,c B, (i =3,4).
Let
(3.8) y(x) =infAl, Y,(2) = supdl, axeB; (i =3,4).

Since the functions g(x) and h(x) are of the class 1, it is casy to see
that

(3.9) ¥; (%), Y;(x) e AL for every x ¢« B, (i = 3, 4).

() The assumption A’(b) > ¢’(a) is not restrictive becausc a change of the
names of the functions g and h does not change the structure of function (1.1).
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3.1. The structure of the function M ,(x). Let us observe that in virtue
of definition (1.1) we have

M,(x) = min G(x,y) = min G(x,y) for z>0b,

a,(x) <y<by(r) max (b, r—a)<y<zx
where, obviously, G(z,y) = h(y)+g9(x—y).

The properties of the function M, (x) are in closed in the following
theorems:
) If B () = 9'( ), then M,(2) = ¢(®) for = b.
) If B (o)< g(a)la, then M,(x) = h(x) for x> b.
III If h'( < g’ (0) and h'(oc0) > g(a)/a, then there exists exactly
one root xy > b of equation h(z) = @(x) and
a) if M,(x}) = h(xy), then

hix) for b<x < xy,
) ={ ()  for x = x4,
I,(x) is a strictly concave function in the interval B;,
x) is decreasing and a right-hand continuwous function in By,
Y, (x) is decreasing and a left-hand continuous function in B,
8) y,(x) = Y,(x) almost everywhere in the interval Bi.

Lemwma 3.1. If M,(x,) = G(xo,Y,), where xy>b and max (b, x,—a)
S Yo < @y, then G(x, @ — o+ Yo) < G (2, y) for 2> zgand & —2y+y, < y<u.

Proof. From the assumption it follows that
{3.10) G(2oy Yo) < G(2o, y)  For yo <y < .

Suppose, on the contrary, that the lemma is not true. Then there
€Xist points o* > x, and y* € (z* — 2o+ Yo, #*) fro which we have

(3.11) G (7", " — o+ o) = G (2%, y").
Let us introduce the auxiliary function
U(z) = h(x—xo+Yo) +9(@o—Yo) —h(x— 2" +y*) — g(2* —y*)
for x, < ax <a*.

Transforming inequality z* —z,+ ¥y, < y* < 2*, we obtain

* *
b<ax—xy+Yo<ax—ux +y for x,<r<a".
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Hence and by the strict convexity of the function i (x) in the interval
(b, +o0) we have

U'(x) = b (2 —xo+Yo) — k' (z— 2" +y*) < 0;

thus the function U(x) is decreasing in the interval (uy, z*). It is easy
to see that

U(xy) = G(xy, Yo) — G (2, wo_a’*+?/*)
and
U(x*) = G(w*y m*_xo‘*‘?/o)_G(x*, ?/*)-

Hence from the monotonicity of the function U(x) and by (3.11) it
follows that G(x,, ¥o) > G(zy, Te—" +y*), contrary to (3.10), because
Yo < To— " + Y < @o.

Analogously, we may prove

LemMmA 3.2. If M,(x,) = G(xo, Yo), where xy > b and max (b, x,— a)
< Yo < Lo, then G(x, x— o+ Yo) < G(x, y) for b < x < xy and max (b, x — a)
LY<x—2Zy+ Y.

LEMMA 3.3. If ' (yo) = ¢’ (o — Yo), where b < g < a+band b < y,< o,
or Ty=a-+b and xy—a < Y, <z, then G[r, max(y,,r—a)] < G(z,y)
for x> x, and max(ye, x—a) <Y< x—To+Y,.

Proof. From the assumption and from the strict convexity of the
function A(x) in the interval (b, + o) and from the strict concavity
of the function ¢g(x) in the interval (0, a) it follows that h'(y) > h'(y,)
=0 (xg—Yo) =g (x—y) for b<yo <y, 0 <L xg—yo < —y < a. From this
inequality it follows that G, (x, y) > 0 if max(y,, r—a) <y < x—x,+¥,.
Hence, as it is easy to sece, the thesis of the lemma follows. Analogously,
one may prove

LEMMA 3.4. If b (y,) < ¢’ (xg— Yo), where b < xy < a+band b < y, < ,
or Ly > a+b and xyg—a < y, < x,, then

G [, min(y,, )] < G(z, y)
for b<x<w, and max (b, x—x,+y,) <y < min(y,, x).

COROLLARY 3.1. If M,(x,) = G(xg,Ye) and G, (zy,Yy,) =0, where
xy>b and max(b, r,—a) < y, < x,, then

Gz, max(yoy, z—a)] < G(x,y) for x>z, and Mmax(y,, x—a) < y < .

Proof. Let us observe that at the point (z,, ¥,) the assumptions of
lemma 3.3 hold. If y, = x,, then corollary 3.1 and lemma 3.3 are equi-
valent. If y, < z,, then at the point (z,, y,) the assumptions of lemma 3.1
also hold. In this case corollary 3.1 follows directly from lemmas (3.1)
and (3.3).
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COROLLARY 3.2. If M,(z,) = G(zo,Y,) and G, (x,,¥y,) = 0, where
Xy > b, yo> b, max(b, x,—a) < y, < x,, then

G [z, min(y,, 2)] < G(z; ¥)
for b <z <z, and max(b, z—a) <y < min(y,, ).

Corollary 3.2 follows from lemma 3.4 if ¥, = max(b, 2,—a) = z,—a
or from lemmas 3.4 and 3.2 if y, > max(b, z,— a).

LEMmA 3.5. The set B, is open.

Proof. Let us suppose the contrary, i.e. that the set B, is not open.
Then there exists a point z, ¢ B, and a sequence z, the terms of which
do not belong to the set B, and which is convergent to the point x,. Hence,
by (3.4) and in view of (3.1) and of the assumption that ¢(0) = 0, we have

IVI4(xn) = min [(P(wn)y h(wn)]

Since the functions M, (z) and min[¢(x), h(x)] are continuous, passing
to the limit when n — oo yields the equality

4114 (al?o) = min [(P (mo)y h(ajo)]’

contrary to the assumption X € By.

LEMMA 3.6. If h'(oc0) > g(a)/a and h'(b) < ¢g'(0), then the equation
h(x) —qo(w) has a wot w0> b such that h(x) < @(x) for b <x < x, and
h(z) > ¢(x) for > x, and

1. b<x,< a+b, when h(a+b) > h(b)+g(a);

2. xy = a+b, when h(a+b) = h(b)+g(a);

3. 2y> a+b, when h(a+b) < h(b)+g(a).

Proof. To prove this lemma it will be convenient to make the fol-
lowing notation (see def. (3.1)):

h(z)—h(b)—g(®x—b) for b<w<a-+b,
h(z)—h(x—a)—g(a) for x>a-+b.

The function U () has the following properties:

(a) U(b) = o,

(b) U(o0)> 0,

(¢) U(w) is increasing for > a-+b,

(d) U(x) is negative in some right-hand neighbourhood of the point b.

Property (a) immediately follows from the definition of function
U(z) and from the assumption g(0) = 0.

For the proof of property (b) let us present the function U(x) for
= a+b in the following form:

g(a)
a

Ux) =1'(&)a—g(a) = a[h'(f)— ], where x —a < & < .
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Passing to’ the limit when x — oo and, consequently, & — oo, we
obtain

Hence and by the assumption A’ (o0) > g(a)/a we obtain property (b).

From the strict convexity of the function h(z) in the interval (b, + o)
we get the inequality U’ (x) = A’ (x) —h'(x —a) > 0 for x> a+ b, because
x> x—a > b. This completes the proof of property (c).

From the continuity of the derivatives ¢’ and A’ and in view of the
assumption A’ (b) < ¢'(0) it follows that U’ (x) < 0 for x from some right-
-hand neighbourhood of the point b. Hence and in view of property (a) we
get property (d).

In the case h(a+b) > h(b)4+g(a) it is obvious that U(a+b) > 0.
Hence and from property (d) it follows the existence of the rootzy e (a, a +b)
of the equation U (x) = 0. Let us remark that the function ¢(z) is strictly
concave in the interval <b, a4 b>, and the function h(x) is there strictly
convex. Hence, in view of h(b) = ¢(b) and h(x,) = ¢(x,), it follows the
uniqueness of the root x, in the interval (b, a+b). Since U(a+b) > 0
and since the function U (x) is increasing for « > a4 b, we have U(x) > 0
for # > a+b. This completes the proof of the lemma in the first case.
The proof of the remaining two cases of this lemma is analogous.

LeMMA 3.7. The function
M(xr) = min [h(y)+g(z—y)],
b <y<by

where b < b, < b, and b, < ¢; << ¢, < by+a,

18 strictly concave in the interval {c,, ¢y).

Proof. Let x;, and x, be any two points fulfilling the inequality
¢1 < ¥y, < &y < ¢,. Let us denote by y* any arbitrary point fulfilling the
conditions

L1+ Xy
2

T+ Xy

H(*;ﬂ) — h(y )+J( b,

N

*)7 by <y

In view of the inequalities ¢, < x, < Ty < 02, b, <y* <byandc, < b, +a

it follows that 0 < ¢, —b, <z, and y* < x,—¥y" < ¢,—b; < a. Hence and

from the strict concavity of the function g(x) in the interval <0, a) we
obtain the inequality

x,+x * +m — 1 "
9( 12 2—?/):9( oy u[g(rl Y +ge—y")]
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By this inequality and by the definition of the function JI(z) it
follows that

r,+ 2, 1 % % 1 * *
M( . )> 5 @)+ 9@ —y)]+ 5 [h(y) +g(2:—y7)]

1
> 5 (M () + M (@2)]-

This completes the proof of the lemma.
LEMMA 3.8. If 2, € B, and lim &, = x,, then z, < B,.

n—o00

Proof. Since x, ¢ B, and B, c B,, we can attach the sequence Yu(2,)
to the sequence z,, (see (3.8)).

In view of (3.5) and (3.9) we have a,(x,) < y,(x,) < b,(r,). Then
from the continuity of the functions a,(x) and b,(x) it follows the bound-
edness of the sequence y,(x,). Thus, let y4(mnk) be a convergent subse-
quence of y,(x,) and let lim y,(2,, ) = ¥o. In virtue of (3.5) and in view .

k—o0

of (3.9) the sequences . and y4(wnk) are related by the conditions

ay (ivnk) < Y (xnk) < b4 (xnk)7 JI4 (‘xnk) = G [mnkd Y, (mnk)]a

@, (@0, Ys(@0)] = 0.

Hence, in view of the continuity of functions a,(x), b,(x), M,(z),
h(x), g(x), b’ (x) and ¢’ (z), passing to the limit when ¥ — oo we infer that
@y () < yo < b, (@), My(®o) = G (@0, Yo) a0 Gy(x,y,) = 0. From these
conditions it follows that the set Az is not empty, i.e. (see (3.6))
Ly € B;.

Leyva 3.9. If the function M,(x) has one-sided derivatives at the point
To> b, then M, (x,) < I (yo) < M,_(x,), where yo is any point fulfilling
the conditions M,(x,) = G(Zq, Yo), MAX (b, Tg—a) < y, < x,.

Proof. From the inequality max (b, z,—a) < y, < &, for a sufficiently
Small increment Az > 0 we obtain the inequalities

max (b, o+ dx—a) < y,+ v < xy+ Az,
max (b, xg— dr—a) < y,— dx < x,— Aw.

Hence, in accordance with the definition (1.1) of the function M,(x),
1t follow the inequalities

M2+ Aw) < G (0o + A, Yo+ Aw),

M, (% — Az) < G (xg— Az, Yo — AT).
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Using the last two inequalities and in view of the equality M, (z,)
= G (9, Y,) We have

M, (xy+ Ax) — M, (wo)_ < h(yo+ Ax) —h(y,)

Ax = Ax ’
M, (ry— Ax) — M, (x,) < h(yo— Ax) — h(y,)
— Az = — Ax )

Hence, passing to the limit when Adx — 0, we get the thesis of the
lemma.

Proof of (I,). Applying lemma 3.3 to the point (b, b) we have
Glx,max(b,r—a)] < G(x,y) for x>b and max(b,xr—a) < y<az.
Hence

M,(x) = min G(r,y) =Gz, max(b,x—a)].

max(b,z—a)<y<zc
This completes, in view of the proof of theorem (I,).
Proof of (II,). Let us introduce the auxiliary function
U() =h(g)—h(z—x+y)—g(r—y) for z2=b+zx—y.

Under the assumption y < o we have b<<z—a 4y <z2. Hence and
from the strict convexity of the function h(x) in the interval <b, + oo)
it follows that

U@ =hE)—h(Ez—2+y)>0 for 2>b+xr—y when y < x.

Then, under the additional assumption y < x, the function U(z) is
increasing for 2> b+2—y. Applying the mean-value theorem to the
function h we can write the function U(2) in the following form:

y(w—y)]’

r—y
where z —2x+y < £ < 2.

UR) =W (&) (@—y)—g@—y) = (z—y) [h'(S)—

Passing to the limit when z — oo and, consequently, & - oo, we
obtain

U(c0) = (w—y)-[h'(oo)——’u]-

r—=y

From the strict concavity of the function g(x) in the interval <0, a)
it follows the inequality

g(z—y) a
—>ﬂz for 0 <x—y<a.
x—y a
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Hence and by the assumption A'(o0) < g(a)/a we get the inequality
U (00) < 0. From this inequality and from the monotonicity of the function
U (2) we infer that U(z) <0 for z2>b+2—y, when 0 <z —y < a.

Under the additional assumption y > b, we have b+ox—y < y+x—7y
= 2. Finally, if y > b and 0 < z—y < a, then the point 2 = x belongs
to the interval (b-+x—y¥, +o0) in which the function U(z) is negative.
Hence

U(x) = h(z)—h(y)—g®z—y) <0 for max(b,z—a) <y < x.

This means that

M(z) = min (h(y)+g(x—y)] = h(x)+g(@x—2x) for > b.

max(b,r—a)<y<z

Since ¢(0) = 0, we have M,(») = h(x) for > b.

Proof of (IIL,)-point (a). Let us observe that the point xd > b
exists and is unique (see lemma 3.6). Moreover, let us observe that in
virtue of the assumption we have M, (#3) = G (2}, 23) = G [}, max (b, 2} —a)],
because G(z2, 20) = h(a?) and G [af, I.nax(b, rg—a)] = p(2}). Applying
lemma 3.3 to the point (%, x)) we obtain the inequality G (xz, ) < G(z, ¥)
for b < & < a? and max (b, z—a) <y < 2. Hence it follows that

M,(z) = G, ) = h(z) for b<a<a.

In the case where max(b, 2} —a) = b applying lemmas 3.1 and 3.3
to the point (a?,b) we have the inequalities G(x,z —ay+b) < G(w,y)
for # > 2% and v —al+b <y <z and G[r,max(b,r—a)] < G(z,y) for
# > a2 and max (b, z—a) <y < & —x;+b, respectively. Hence it follows
that

Gz, max(b,z—a)] < G(z,y) for x> rg and max(b,z—a) < y < 2.
From this inequality it follows that
M, () = G[x, max (b, z—a)] = h[max (b, z—a)]+g[zr—max (b, 2 —a)]

for z > ).
Thus, in accordance with (3.1), we have

M,(z) = ¢(x) for x> af.

If max (b, 20 —a) = 3 — a, applying lemma 3.1 to the point (23, 2} — a)
we have G(x,z—a) < G(z,y) for x> &} and v —a < y < z. Hence

M,(z) =Gx,z—a) = h(x—a)+g{a) for z> ).

Since in this case z)—a > b, we have a) > a4 b. Hence, according
to the definition (3.1),

h(z—a)+g(a) = g(x) for x> a.

5 — Zastosowania Matematyki XIII.1
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This completes the proof of the theorem.

Proof of (III,)-point (b). Since G[a), a,(x))] = ¢(2)) (see (3.1)),
¢(2)) = h(x}) (see lemma 3.6) and @[}, b,(a7)] = G(ay, 43) = h(x3)+¢(0)
= h(x)) (because ¢g(0) = 0), by the assumption M, (x?) < h(z}) we get
the inequality

(3.12) M, () < min(G [x}, a,(23)], G5, by(5)]).
It follows that there exists a point y, such that
(3.13) max(b,a{—a) <y, <, M, (}) =G}, 90), G5,y =0.

Applying corollaries (3.1) and (3.2) to the point (zf,y,) we have

(3.14) Glx, max(yy, x—a)] < G(x,y)
for # > z) and max(y,, z—a) < y < x,
(3.15) Gz, min(y,, ¥)] < G(x, ¥)

for b < x < x; and max (b, z—a) < y < min(y,, z),

respectively.
Since max(yq,,x—a) = r—a for x> y,+a and min(y,, ) = = for
b < x<y,, by (3.14) and (3.15), we have

(3.16) G(r,z—a)<G(r,y) for 2>y,+a and r—a<y<a,
(317 G(r,x)<G(x,y) for b<zxz<y,and max(b,r—a)<y<w,

respectively.
In view of (3.16) and (3.17), and according to the definition (1.1}

of the function M,(x), we have
Glz,a,(x)] for

x =
(3.18) M, () = Yot &,
Glx,b,(x)] for b<

<Y,

From (3.18) it follows (see (3.4)) that the set B, is bounded from above
by the number y,+a and it is bounded from be low by the number y,.
From (3.12), in view of (3.4), it follows that the set B, is not empty
(¢ € By). From the fact that B, is not empty, bounded and open (see
lemma 3.5), it follows the existence of the numbers

(3.19) z, =IinfB, and 7z, =supB,
fulfilling the conditions
(3'20) 1:4’ E‘; ; B4’

(3.21) b<yo< 1z, <y <Z<Yo+a.
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From (3.20) it follows the existence of the sequences z,, Z, ¢ B, such
that limz, = z, and lim¥, = %,, i.e. (see lemma 3.8)

n—oo n—>00
(3.22) z,, 7, ¢ B;.

Applying lemma 3.6 to the point z; we have the inequalities

@(x) > h(z) for b<x<al,
p(x) < h(z) for x> ai.

Hence, in view of the equalities ¢(x) = G [z, a,(x)] (see (3.1)) and
h(z) = G(zx, ) = Gz, by(x)] (9(0) = 0), and by inequality (3.21), we infer
that
Gz, a,(x)] > Gz, by(x)] for b<z<ua,

(3.23) S
Gz, a,(0)] < Gz, by(x)] for x> z,.

From the definition (3.4), of the set B, and from the definition (3.19)
of the numbers z,,z, and by (3.20) it follows that

M,(z) = min(G [z, a,(2)], G[z, b,(2)]) for x ¢ (z,,7,).

Hence, by (3.23), we have

G[x,b,(xr)] for b

<
3. =
(3.24) M,() Qlz, a,(x)] for x> 7,.

Now we show that
(3.25) z, = infB, and %, = supB,.

Let us suppose tha,t the first of inequalities (3.25) is not true. Then

there exists a point z* ¢ B, fulfilling the inequality b < o* < z,. Since
z* €B4, according to the definitions (3 6) and (3. o) there exists some
point y* fulfﬂhng the conditions a,(¢") <y* < b,(a*), M,(2*) = G(a*, y*)
and @, (z*, y*) = 0. Hence, by (3 24) and (3.23), it follows that y* must
be equal to b,(x*) and &, [#*, b,(«*)] = 0. Since G, [2*, b,(¢*)] = G, (", z*)
= k' (2*) —g¢'(0) = 0, we have ' (z*) = g'(0).
_ From the strict convexity of the function () in the mterval <b + 00)
1t follows the inequality &’ (x) > b’ (¢*) = ¢'(0) for & > 2*. Since 2* < Z,,
We have in particular the inequality h(z,) > ¢’(0), i.e. the inequality
Gy (24, by(2,)] > 0 (because b,(z,) = Z,), contrary to the equality M,(z,)
= G[w,, by(z,)] (see (3.24)).

Analogously, we can prove the equality Z, = sup B,. From (3.24),
(3.23) ana (3. 25) we infer, in particular (see (3.8), (3.9) and (3.5)), that

(3.26) a a(Z4) < Ya(zy) < Yo(2y) <by(2y), a,(Zy) <Yy(Ty) < Y, (%) < by(7,).
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Applying corollary 3.1 to the point (9_04, Y4(g4)) (see (3.9), (3.5) and (3.26))
we have

(3.27) Gz, max(Y,(2,), v —a)| < G(z,y)

for x> z, and max(Y,(z,), z—a) <y <w
or
(3.27") Gz, Yy(24)] < G(x,y)

for z, <2 < Y, (z)+a and Y, (z,) <y <w,
(3.27") GQ(z,z—a)<G(z,y) for x> Y, (2,)+a and z—a<y<.

Since a,(x) = x —a for x > Y,(z,) +a because Y,(z,)+a > a+b, by
(3.27"") we have the equality M,(x) = G [z, a,(2)] for x> Y,(z,)+a,
which means (see (3.4)) that « ¢ B, when « > Y,(z,) + a. Hence and from
the definition (3.19) we get the inequality

(3.28) Z, < Yy(z,)+a.
Putting in (3.27") # =1z, we obtain G[Z,, Y,(2,)] < G(7,,y) for

Y,(z,) <y <7=,. Hence, in view of

G[Zy, Yu(7,)] = min G (74, Y)

max (b, 54 —a) <Y<,
(see (3.9) and (3.5)) we have
(3.29) Ya(Zy) < Yy(z4).
Since Y,(z,) < z,, by (3.29) it follows

(3.30) Y, (%) < ..

Under the additional assumption y,(z,) > b, applying corollary 3.2
to the point (z,, ¥,(7,)) (see (3.9), (3.5) and (3.26)) we get the inequality
(3.31) G|z, min(y,(7,), «)| < G(z, )

for b < 2 < 7, and max (b, x —a) < a < min(y,(7,), ).

Since min(y,(Z,), ) = y,(,) for y,(Z,) <2 <z, in view of (3.31)
we have
(3.31") Glo, y,(7,)] < G(x, y)

for y,(%,) <2 < %, and max(b, x—a) <y < y,(T,).

Recapitulating, we state: if x, is an arbitrary fixed point in (,, 7,)

and if y, is an arbitrary point in which the funetion G (z,, y) attains its mi-

nimgm in the interval {max (b, x,—a), z,), then y,¢(Y,(x,), ,) (see ine-
qualities (3.27’) and (3.28)) and y, ¢ (max(b,x,—a), ¥,(z,)> when
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¥,(Z,) > b (see (3.31') and (3.30)). Hence, in account of (3.29) and in
virtue of the definition (1.1) of the function M,(x), we have

(3.32) M,(x) = _ min G(x,y) for z,<ax<Z,
Ua(Zg) <Y<Y 4(zy) B

and

(3.33)

M, (x) < min(6 (z, @), G[z, max (b, 2—a)]) = min (G [z, a,(2)], G [z, b,(2)])
for o, < » < 7.

From (3.4), (3.19), (3.20) and (3.33) it follows B, = (x,, z,). Hence,
and by (3.22), (3.25) and (3.7), we obtain the equality _B; = (&, T,D.

Point 3) of theorem follows from (3.21), and point 4) from—(3.24),

Since b < y,(7,) < Y, (%,) and Y, (x,) <z, < %, < y,(7,) +a (see (3.26),
(3.29) and (3.21)), in view of (3.32) and from lemma 3.7, it follows the
strict coneavity of the function M,(«) in the interval (z,, 7,), i.e. point
5) of the theorem. Let us observe that from the strict concavity of the
function M, (x) in the interval <{,,%,> it follows the existence of finite
derivatives M, (¢) and M, (») in the interval (z,, %,); further, from the
equality B, = (z,, 7,) (see (3.4)) it follows the inequality max (b, x — a)
< Ya(x) < Y4(w)_< x for o, <w <7,.

Applying lemma 3.9 to points (w1, ¥a(21)) and (s, y,(x,)), where
T, < @, < 2y < Ty, We have My, (#1) < W' [ya(@1)] and M,_ () = B’ [ya(22)]-
Thus, since the strict concavity of the function M,(x) and the inequality
& < @, imply M, (¢;) > M,_(2.), we have h'[y,(2,)]> ' [y,(x,)]. Hence
Ya(2y) > y,(x,) follows, because the function h(z) is strictly convex in
the interval (b, + o).
- Thus we have proved that the function y,(x) is decreasing in the
Interval B,.

Let x, be an arbitrary fixed point in the interval B,. The monotonicity
of the function y,(x) implies the existence of the limit

lim yq(®) < Ya(2,).

x—>To+

On the other hand, it is easy to see (see the end of proof of lemma 3.8)
that

lim ,(x) € A:O;
-zt
thus we have (see (3.8))
lim y,(2) = ¥4 (@)
T—>x0+
Finally, we get
Hm y4(2) = ya(2,).
x->To+
This proves the continuity from the right of the function y,(z) at
point x,.
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The proof of point 7) of this theorem is analogous. If there exists
the derivative of the function M,(x) at the point z, € (z,, Z,), then, by
lemma 3.9, we have h'[y,(x,)] = k' [ Y,(x,)]. Hence, the strict convexity
of the function % (z) in the interval <b, 4+ oo) implies the equality ¥,(x,)
= Y, ().

Since the function M,(x) is strictly concave in the interval {w,, Z,),
it has a derivative in this interval almost cverywhere. Thus equality
Ys(r) = Y,(x) holds for almost every x e (x4, Z,>. The theorem is thus
proved.

3.2. The structure of the function M,;(x). The full results on the
structure of the function Mg(x) are the following:

(I5) If g'(o0) < h(b)/b, then M;(x) = g(x) for = > a.

(IL;) If ¢’ (o00) > h(b)/b, then there exists the unique root zJ > a of
the equation ¢g(x) = w(x) and

(a) if My(x3) = g(x), then

x for a <o < a?
Mo (x) = g(x) ) 39

p(x) for x>

(b) if M,(ad) < g(«3), then
1) B; = (X3, Ty,

2) B; = (23, T3),

3) 0 < Ty—x, < b,

4) My(z) — g(x) for a <z <2,

p(x) for x>z,
5) 9s(x) is an increasing function and continuous from the left in B,
6) Y,(x) is a function increasing and continuous from the right in By,
7) ¥s(z) = Y,(x) almost everywhere in the interval Bj,
8) M,(z) is a strictly concave function in the interval B;.

We omit the proofs of theorems (I;) and (II;), because they follow
immediately from theorems (I1,) and (I11,) (see the remark before corollary
2.3).

3.3. The structure of the function M,(x). According to the definition
(1.1) of the function M,(x) we have
My(x) = min [h(y)+g(x—y)] for x>a+b.
by<r—a

In account of the inequality &'(b) > ¢'(a) the full results on the
structure of the function M,(x) are the following:

(I) If A'(b) = ¢’ (o), then M,(x) = h(b)+ g(x—Db) for x > a+b.
(IL,) If A'(b) < ¢'(o0), then
M, () — h(b)+g(z—Db) for a+b <o <2,,

hye(®)]+gle—y.(2)] for x> 2y,
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where b < y,(x) < x—a, Y5(Z;) = b and h'(b) = ¢'(z,—b). The above
given theorems and also the strict convexity of the function M,(z) in the
interval (a+b, + oo) follow from more general theorems from [4] and [5].

3.4. The structure of the function I, (x). According to the definition
(1.1) of the function M,(r) we have

min G (z, y) for 0<or<a,
o<y<z
M, (x) = z_rinylgG(w, y) for a<oz<b,
min G(x,y) for b<erx<a+tb.
z—a<y<b '

The strict concavity of the functions g(x) and h(x) in the intervals
<0, a> and <0, b), respectively, imply the strict concavity of the function
G(x,y) with respect to the variable y e {a,(x), b,(x)> for any arbitrary
fixed z ¢ (0, a-+b)>. Hence

min [G(z, 0), G(z, )] for 0 <2 <a,
M,(z) = | min[G(x,r—a), G(z,2)] for a<z<b,
min[G(z, r—a), G(z,b)] for b<z<a+b.

Since G (x, 0) = g(#) (because k(0) =0), G(x,x) = h(x) (because
g(0) = 0) and G(w,x—a)> min G(z,y) = My(x) for a<z<a-+b (see

<y<sz—a

definition (1.1) of the function M,(»)) and G(x, b) > min G(z, y) = M,(x)
by<z

for b<ax<a+b (see definition (1.1) of the function M,(z)), the full
results relating to the structure of the function M,(x) are the following:
M,(x) = min[g(x), h(x)] for 0 <
(L) M, (x) = min[ My(z), h(z)] for a <
M, (z) = (), My(x)] for b <

’

’

r<a
r<b
r<at+b.

min [ Mz (x)

Before discussing the structure of the function M o(2), we shall prove
five lemmas.
Lemma 3.10. If
h(oo) < int %)

y
=0 X

then
M, (x) = h(x) << My(x) for x> a-+b.

LemyaA 3.11. If
h(o0) > int L&)

=0 &

then M,(x) > M,(x) for sufficiently large x> a+b.

Y
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LeyMmaA 3.12. If
.o h(2)
g(o0) < inf ,

=0 X

then
My(x) = g(@) < My(x) for x> a-+b.

LenmMA 3.13. If

g(o0) > mt

r=0 xr

then Mg(x) > x) for sufficiently large x > a-+b.
Proof of lemma 3.10. Let us introduce the auxiliary function

U() =h(z)=h(z—z+y)—gx—y) for z=>bt+x—y,

where £ >a+b and b<y <ax—a. U(2) is an increasing function and
(see the proof of (I1,))

(3.34) U(oco) = (z—7v) [hr(oo)_ _,fl(f’f__y?_].

From the assumption and from (3.34) it follows that U(z) < 0 for
z2=z2btx—y,whenax>a+band b<y<r—a.Sincebt+or—y<y+r—y
=z, for z = x we have U(x) = h(x)—h(y)—g(r—y) < 0 for z>a-+b
and b <y < x—a. Hence, in particular,

h(r) < min [h(y)+g(x—y)] for x>=a-+Dd
h<y<xr—a
and this, in conformity with definition (1.1) of the function M,(x), leads
to the inequality h(x) < M,y(z) for x > a+b.

Since from the assumption it follows, in particular, that 2’ ( o0) < g(a)/a,
by (II,) we infer that M,(z) = h(x) for # > b, which completes the proof
of the lemma.

Proof of lemma 3.11. Let us introduce the auxiliary function
U(x) = h(x) —h(r—a,)—g(a,) for x>b+a,, where a, > a.

Applying the mean value theorem to the function i, we can write

U(2) = a ' (£)—g(ar) — al[h'w)— "’(“1)],

a,

where © —a; < £ < x. Passing to the limit as # — oo and, consequently,
& —» oo, we obtain

(3.35) U(o0) = a, [h’(oo) _ g(“l)].

a,
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It is easy to see that either there exists a number a, > a such that

ACUSIC)
a, z=0 &
or
inf 9(2) = lim 9(@) = ¢'(o0).
=0 r T—>00 HA

In the first case the inequality U (oo) > 0 follows from the assumption
and from (3.35) for a, = a’. Hence and by the continuity of the function
U(x), we have U(x) = h(x)—h(z—a))—g(a)) > 0 for sufficiently large
*>b+a;. Since b <r—a, <x—a for x> b+a,, we have

h(z) > h(x—ay)+g(a;) > b<m<in [h(y)+g(x—Yy)] = My (x)
K[KYST—a
for sufficiently large > b+a,.

In the second case the inequality h'(oco) > g'(oo) follows from the
assumptions. Passing in (3.35) to the limit as a; - o we obtain the
e.quality V(o0) = oco. The continuity of the function U(x) for some
fixed a, > q implies that h(zx) > h(z—a,;)+g(a,) for sufficiently large
T=>b+a,. Hence, analogously as above, we have h(x)> M,(x) for
suficiently large > b+ a,.

On the other hand (see (I,), (II,) and (3.1))

My (x) = i min [k(y)+g@—y)] < h(x—a)+g(a) =¢p(x) for &> a+b.
Sy<z—a

Since, for sufficiently large x, (see (I,), (IL,) and (IIL,)) M,(x) = h(x)
or M,(x) = g(x) the proof is completed.

It is obvious that lemmas (3.12) and (3.13) also are true.

Levya 3.14. If there exists the number z,, defined in (I1,), and if

. M,(xy) = min[ My(x,), My(xy)], where xy> z,,
then

My(x) > min[My(x), My(x)] for a+b< 2 < x,.
Proof. We prove this lemma in the case
My(2y) = min[My(w,), My(x0)] = My(a,),

because the proof is analogous in the contrary case.

Let y, be a point fulfilling the conditions M,(x,) = G (%, ¥o), To— &
< Yo < @,. Since

My (xg) = G [0, Yo(we)] < G(,, To—a) < My(2) = G(@g, Yo),
equality M,(x,) = M,(x,) implies that x,—a < y, < z,. Hence

(3.36) r—a<r—xyt+yYyosax for x>=a+bd.
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Let us introduce the ausciliary function
U(z) = My(x)—h(x—2o+Yo) —9(2o—Yy,) for z>a-+b.

Obviously, U(x,) = My(xy) —M,(z,) = 0.
In virtue of (II,), the function U (x) may be written in the following
form:

h(b)+g(x—b) —h(x—zo+Yo) — g(Zo—Yo) for a+b <o <x,,
hlys(@)]+g[2—yo(2)] — k(2 — 2o +Yo) — 9 (%o — Yo) for x> z,.

Since

(Rlys(@)]+g[2—yo(#)]) = 2’ [¥2(2)1y5 () + [1 —yo (@) 19" [® — Y, ()]
= (B [y2(2)]1— 9" [# — Yo (2) ) 92 () + 9" [ — Yo (@) ] = B’ [yo()]

because of h'[y,(x)] = ¢'[x—y.(x)], by differentiation of the function
U(x) we obtain

g(@—b)—h(r—xy+y, for a-tdb<wr<z,,

U'(x) =
@ B[y (2)]—h' (x—2y+y,) for o> z,.

From the strict convexity of the function ¢ (z) in the interval <{a, + o0)
and from the equality ¢'(z,—b) = h'(d) (see (II,)) it follows that ¢’ (x —b)
< g (Zo—b) =R (D) for a+b< e <2,

On the other hand, from the strict convexity of the function h(x)
in the interval (b, 4 o0) and in view of b < z —x,+y, (see (3.36)) we get
(b)) < W (x—2xy+1vy,) for x> a-+b.

Finally, we have U’ (x) < 0 for a+b < @ < z,.

From the strict convexity of the func’mon h(x) in the interval (b, + oo)
we infer that b’ [y,(2)] < B’ (x —zy -+ y,) for > 2,, because y,(x) <  —x,+
+ Yo (see (3.36) and (II,)). Thus the function U(x) is decreasing and
U(x,) = 0. Therefore

My(x) > h(x—xo+yo) +g(xo—1y,) for a+b <o < a,.

Since

h(# — 2+ Yo) +9 (00— Yo) = G(, *—xy-+Yo) = Zn<in( G(2yy) = My(w)
N for » > a+b
(definition (1.1) of the function M,(z) and (3.36)), we have
My(x) > My(x) > min[ My(x), M,(z)] for a+b<a<a,.

Thus, the lemma is proved.
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3.5. The structure of the function M,(z). Under the assumption
a < b, we prove the following theorems:

(V) If W (o) < int 2% then

x=0 &
i B min{g(x), h(z)] for 0 <x<a,
o®) = min[ M;(x), h(z)] for x> a.

, then

(Vo) If 1'(00) > inf 2% and ¢ (00) > inf ““) then

z=0 < =0 &
min[g(x), h(z)] for 0 <z <a,
My () min[ M,(x), h(z)] for a<xz<b,
Xr) =
’ min [ M,(z), M,(z)] for b < o< w,,
My(x) < min[ Mg(x), My(x)] for x > w,,

where w, is the unique root of equation M,(x) = min[M,(x), M,(x)] in
the interval {Zy, +00) and , is the number defined in (IL,).

The proot of (V,) follows from (1.2), (I,) and from lemma 3.10; the
Proof of (V,) follows from (1.2), (I,) and from lemma 3.12.

Proof of (V3). Let us observe that either there exists a number
b, > b such that

h(z) _ h(by) _

inf = h'(b;)
r=0 & (by) '
or
: I
it MO i M9,
=0 X x>0 L
Hence, and by the assumption
I
g’ (o0) > Inf —L(w)
z=0 &

and from the strict convexity of function h(z) in the interval (b, 4 o),
Wwe get the inequality g’'(oco) > &'(b). In account of the above-said there
exists the number 2, defined in (IL;). In view of lemmas (3.11) and (3.13),
we infer that M,(x) < min[M,(x), M,(x)] for sufficiently large x> z,.
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On the other hand, we have (see (II,) and definition (1.1) of the function
M, (x))

My (25) = G(25,0) = min G(2,, y) = Ms(2,) > min[My(2,), My(2,)].

0<y<<h

From this it follows that the equation M,(x) = min[M;(x), M,(x)]
has a root w, in the interval (z,, + o). It is easy to see that the uniqueness
of this root follows from lemma 3.14. The continuation of the proof of
theorem (V,;) follows from (1.2) and (I,).

Before giving the results on the structure of the function J/,(x),
let us define the set

B, ={x>=0: My(r) <min[g(x), h(x)]}.

Referring to the economic problem discussed in the introduction
of this paper, we shall say that factories F, and F, cooperate in the pro-
duction of r units of some good if m,(x) < min[f,(x), fo(x)]. Thus in
this case B, is the set of cooperations of factories F, and F,.

To give full results on the structure of the set B, and, consequently,
on the structure of the function M (x), we should consider about one
hundred different cases. In connection with this we shall make some
additional assumptions which, on one hand, will have no essential influence
upon the change of the structure of the set B, and which, on the other
hand, are very natural if one takes the cconomic interpretation of the
set B,.

Let g(xr) be the variable costs of the smaller factory and let h(x)
be the variable costs of the greater factory. The consequence of the
assumption about the sizes of the factories F, and F, are the conditions

0<a<hb,
(N) g(x) < h(x) for 0 <x < e,
g(xr) > h(x) for «>c,

where ¢ is a number in the interval (a, b). Taking into account assumptions
(N) we can write theorems (V,), (V,) and (V,), respectively, as follows:

g(x)

(V1) If I (oo) < inf "=~ then
r>0 &
g(x) for 0 <z < a,
My(x) = M;(x) for a <z <e,

min[M(x), h(xz)] for x> c.
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. . h(z)
) If ¢'(o0) < inf——, then

>0 X
g(x) for 0 <x<ec,
My (x) = h(x) for e<ax<b,
1M4($) for x>=b
h:
) If h'(o0) > 1nfg—({)— and ¢’ (o0) > inf—b(i), then
=0 & z=0 &
g(x) for 0 <z < a,
Mgy(x) for a <x<ec,
My(z) = s min[My(x), h(x)] < g(x) for e<x <D,
min[ My(x), M, ()] < g() for b < x < w,,
My(x) < min[ Mz(x), My(x)] for x > w,.

’

Using (V3), (V3), (V,) and theorems on the structure of functions
M;(x) and M,(x), it is casy to prove the following theorems:

) If h’(oo)ginf-g-(—w—)-, then
=0 X
(a) the set B, is non-empty if and only if By # 0 and z; < c;
(b) if the set B, is non-empty, then B, = (23, ws), where wy is the unique
700t of equation h(x) = Ms(x) in the interval {c, ).

1y) If ¢’ (o0) < inf Jz_(a:_), then the set B, is non-empty.
x

x=0
From theorem (V,) it follows that under the assumptions

h'(oo) > inf {JE)_ and ¢'(o0) > inf h@)

=0 X =0 X

the necessary condition for B, N {a, w,) being non-empty is either

(@): [(ay): (By # 0, 2, <wy << T,) Or (a3): (By #0, T, < w,)]
or

(B): [(B1): (Bs # 0, 2 <w, < ¥) or (By): (By # 0, T < wy)].

It is easy to show that if B, is a non-empty set, then (B) follows, i.e.
condition () is equivalent to B, being non-empty. Hence, denoting by
(a') the contradiction of (a) and by (B’) the contradiction of (), we can
write

(a'): [(a1): (B, = 0) or (ay): (By # 0, 2, > w,)],

(8): (Bs = 0).
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The sense of an alternative implies the mnecessity of considering the
following possibilities: [(a), ()] or [(a), (B)] or [(a'), (B)].

Writing the above possibilities in detall we obtain the following
cases:

(31): [(ar), (B1)],  (32): [(ad)y (Ba)],  (8s): [(a1), ()],
(84): [(as); (B1)]y  (3): [(az); (B2)], (8) [(@s), (8],
(3): [(B) (@], (39): [(Br)y (@), (35): [(Ba)y (aD)],

(810 [(B2)y ()], (Bm): [(ar)y (B)], 12)1 [(a), (8]

h
9(2) and ¢’ (o0) > inf—(fv—), then:

( z=0 & =0 &

(T,) The cases (3;) and (3;) are contradictory.

(T2) In cases (3y), (310); (8311) and (31,) we have By, = (w,, + oo).
(T3) In cases (3,) and (33) we have

By = (24, wy) U {w,, + 00).

III,) If h'(oo) > inf

(T,) In cases (3;) and (3;) the following theorems hold:
a) if 23=c¢ and h(w,) < My(w,), then By = (wy, + 0);
b) if ;= ¢ and h(w,) > Ms(w,), then

By = (w3, wp) U {w,, 4+ 00),

where wy is the unique root of equation h(x) = M(x) in the interval (Z5, w,);
e) if 2, < ¢ and the equation h(x) = My(x) has no roots in the interval
{cywy>, then

By = (23, w5) U (wy, + 0);
d) if 23 < c¢ and the equation h(x) = Mz(x) has a unique root w; in
the interval (¢, w,>, then
By, = (23, ws) Y (W, + 0);

(e) if w3 <c¢ and the equation h(x) = Ms(x) has exacily two roots
wy < wy n the interval {c, w,), then

By = (3, 23) U (w3, wy) U (W, +00).
Remark. If z; < ¢, then one can prove that the equation h(x) = M,(x)

cannot have more than two roots in the interval {c, w,).
(Ts) In the case (3,) the following theorems hold:
a) If z,<z;, then B, = (2,,w,) U Wy, + 00).
b) If e < zy <z, and h(z,) < M,(z,), then
By = (24, wy) U (w,, + 00).
¢) If e<zy <z, and h(z,) > My(z,), then

B, = (w3, wy) U {Wyy + 00),
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where w, is the unique root of the equation h(x) = My(x) in the interval
(@-37 @4)
(A) If xz, < ¢ and the equation h(x) = Mz(x) has no roots in the interval
(&.3’ @4), then
By = (23, wp) U {Wyy + 00).
(e) If 2, < ¢ and the equation h(x) = M (x) has a unique root w, in
the interval (z,,z,), then
By = (23, W3) Y (24, wp) U Wy, + 00).
o (D) If @y<c and the equation h(z) = My(x) has exactly two roots
Wy < w, in the interval (z,,2,), then
B, = (23, w;) Y (w;', Wy) U {wW,y, + 00).

Remark. If 2, < ¢, then one can prove that the equation h(z) = My(x)
Cannot have more than two roots in the interval (z,, z,).

(T) In the case (3,) the following theorems are ture:
(@) If 23> ¢ and h(w,) < Ms(w,), then By = (w,, + o).
(b) If 3> ¢ and h(w,) > My(w,), then

By = (w3, wy) U {wy, + 00),

where w, is the unique root of the equation h(x) = My (x) in the interval (23, w,).
(¢) If x, < ¢ and the equation h(x) = M,(x) has no roots in the interval
(¢, w,), then

By = (%3, wy) Y {W,, + o0).

(@) If 2, < ¢ and the equation h(x) = My(x) has a unique root wy in
the imterval (¢, wy), then

B, = (25, w3) Y (wy, + ).
, (G)"If z, < ¢ and the equation h(z) = My(x) has exactly two roots
Wy <wy in the interval (c, w,), then
By = (23, w;) v (w;’, Wy) U {Wy, -+ o)
(see remark below (T,)).
Example. Let

__2_+2x for 0 <2 <1,
) =
g(x) 13 4
?x2—12m+7 for > 1;
h(z) =
14
x2—2x+§— for > 2.
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It is easy to verify that the functions g and & satisfy the general

assumptions of section 3 and also assumption (N). In this example we
have

. g(@) 14 ’
inf—— =37/ = —12 < h'(o0) = o0,

=0 & 13

. h(x) 14 )

nf—— —oly/1* —1 ' o) —

:90 x ( 3 <9 () >

Thus, in account of (V,;), we have

min[g(x), h(x) for 0 < <1,
M) — min [ M;(z), h(x)] for 1 < <2,

min[ M,(x), M,(x)] for 2 < x < w,,

M,y(x) for z > w,.

Using theorem (II,), we calculate the number x, = 40/13 and the
function

E(x—2)2—2(w—2)+§§ for 3<w<ﬂ7

| 2 3 13
Ma(@) =1 14 , 10 25 40
Y T3 for v 75

In virtue of (I,), we obtain

I

—2)2 14
M@ +ge—2) = — T Lopog 1t 2<a <3,
2 3
M,(r) = 37
lh(w—l)—{—g(l) :(x_1)2—2(x—1)+-6~ for x> 3.

According to theorem (IT,), after calculating z, = 44/39 and 7, = 40/13
we get

13 44
— 2 =120 L7 for 1 <o < —
2 39
13 174 85 44 40

My(x) =) —— g2 bl for —<or<—,
76 57 57 39 13
13 35 40
—(r—2)?2-2(x—2)+ — for x>—.
5 (r—2)—2(@—2)+ = 5
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Obviously, in our case ys(x) = Yy(x) = Lo —3 and B; = ¢, 3.

It is easily seen that

min[g(x), k()] =g(x) for 0 <z <1,
min[ Mg(x), h(x)] = Mz(x) for 1< <2,
40
min[ M,(z), M,(x)] = Ms(2) for 2< < 13’
and w, = 40/13, because M,;(40/13) = M,(40/13).
Finally, we obtain
x2
_?_1_23; for 0 <2 <1,
13 44
— 2122+ 7 for 1< << —,
2 39
JMO(.’B) = -
13 174 85 44 40
——— 2+ —2r—— for —<or < —,
76 57 57 39 13
13 . 10 +25 fora:>40
R — —_ = —
B 3773 13

References

(1] Z. Galas, Wyznaczanie optymalnego planu produkcji materialéw substytucyjnych,
Przegl. Statyst. 7 (1960), p. 27-42.

(2] J. D. Kettelle, Least-cost allocations of reliability investment, Opecrat. Res. 10
(1962), p. 249-262.

(3] M. Klein, Some production planning problems, Naval Res. Log. Quart. 4 (1957),

P. 269-286.
(4] W. Sobieszek, O pewnej klasie warunkowych zagadnien ekstremalnych, Zastosow.

Matem. 8 (1965), p. 169-177.
[5] — O zagadnieniu alokacji, Przcgl. Statyst. 4 (1966), p. 353-365.
(6] A. Vazsonyi, Scientific programming in business and industry. New York 1956.

CHAIR OF APPLIED MATHEMATICS
SILESIAN TECHNICAL UNIVERSITY, GLIWICE

Received on 20. 6. 1968:
revised version on 10. 7. 1970

6 — Zastosowania Matematyki XIII.1



82 W. Sobieszek

W. SOBIESZEK (Gliwice)

0 STRUKTURZE ROZWIAZANIA ZAGADNIENIA ALOKACJ

STRESZCZENIE

Tematyka pracy wyrosla z nastepujacego problemu ckonomicznego. W fabry-
kach F| i F, produkuje sie & jednostek pewnego dobra materialnego. Zmienne koszty
produkeji sa: f, (z) w F|, fo(x) w F,. Pytamy o strukture funkeji

My(x) = min [f; (@) + 5 (@,)],

T)+x9=2

Z],29=>0
przy zalozeniu, ze f,(x) i f,(x) sa funkejami cigglymi, rosngecymi i majg po jednym
punkecie przegiecia oraz f;(0) = f,(0) = 0. Niech a, b > 0 beda punktami przegigcia
odpowiednio dla funkeji f, () i f,(x). Praca sklada si¢ z dwéch zasadniczych czesci.
W pierwszej z nich bada sig strukture funkeji M, (x) przy zalozeniu silnej wypuklosci
funkeji f; (%) i f,(x) odpowiednio w przedziatach <0, a> i <0, b)> oraz silnej wklestosei
odpowiednio w przedzialach {a, + o) i <b, + o), w drugiej za$ przy zalozeniu silnej
wkleslosei w przedzialach <0,a) i <0,b) oraz silnej wypukloici w przedzialach
{a, + o) 1 <b, 4+ 00). W pierwsze] cze$ci pracy udowodniono, ze funkcja My (x) jest
réwniez tego samego typu co funkeje f; (x) i f, (x), tzn. jest ona silnie wypukla w prze-
dziale <0, x,> i silnie wklesta w przedziale <{x,, + o0); punkt przegiecia x, wyznacza
sie jako jednoznaczny pierwiastek pewnego réwnania.

Dla zwiezlego ujecia wynikéw drugiej czeSci pracy wprowadzono nastepujace

dodatkowe zalozenia

0< a< b,

(N) fi@)< fox) dla 0< < ¢,
filx) > fo(x)y dla x>,

gdziec a< ¢< b. Zalozenia te mozna uzasadnié ckonomicznie, ze fabryka F, ma
rozmiary produkeji mniejsze niz fabryka F,.

Dla sprecyzowania wnioskéw, o charakterze ckonomicznym, wynikajgcych
z rezultatéw uzyskanych w drugiej czeéci pracy nicch

By = {x: My(x) < min [fi(z), f2(x)]}.

1.311nk'ty zbioru B; nazywaé bedziemy punktami kooperacji fabryk F, i F,, przy
czym jezeli w pewnym przedziale zawartym w B, funkcja M, (x) jest silnie wklesta,
to nazywaé go bedziemy przedzialem kooperacji wkleslej. Analogicznic okreéla sig
przedzial kooperacji wypuklej.

Gléwne wyniki drugiej czesci pracy sa nastepujace:

1. Jezeli

x
inf M,

x>0 L

fa(o0) <

to z.biér BQ jest pusty albo jest przedzialem kooperacji wkleslej. (Podano warunek
konieczny i wystarczajacy na to, aby zbiér B, byl niepusty.)
2. Jezeli

f{(o0) < inf 22
>0 T

to zbior B, jest pusty.



On the allocalion problem 83

3. Jezeli

f{(°°)>inf§@ fo(0) > inf f1(11?)’

r=0 & z=0 &

to gencralnie mozliwe sg trzy przypadki:

(a) B, redukuje si¢ do przedzialu kooperacji wypukicj;

(b) B, jest sumg przedziatu kooperacji wkleslej i przedzialu kooperacji wypuklej;

(¢) B, jest suma dwéch przedzialéw kooperacji wkleslej i przedziatu kooperacji
wypuklej.

W tych trzech przypadkach przedzial koperacji wypuklej jest nicograniczony.
Podkregli¢ nalezy, ze jesli jedna z fabryk kooperujacych, np. F;, ma wklesle koszty
catkowite, druga za$, w tym wypadku F,, wypukle, to lacznc koszty M, (z) sa zawsze
Wklesle, przy czym udzial w kooperacji fabryki I, jest rosnacy wraz z z-em. Dlugosé
Przedzialu kooperacji nie przekracza w tym przypadku liczby a.



