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TWO CONSTRUCTIONAL PROBLEMS IN ALIGNED SPACES

Abstract. In this note, aligned spaces are constructed in order to solve two problems posed
&t the 2nd Oklahoma Conference on Convexity and Related Combinatorial Geometry (1980).
The first one is on the sharpness of the inequality ¢ < max {h, e—1} with ¢ the Carathéodory
Dumber, 4 the Helly number, and e the exchange number. The second problem deals with the
.l'elationship between the generalized Radon number and the generalized Helly number, and
indicates that a proof of Eckhoffs comjecture is still far away.

1. Convexity spaces. A convexity space is a pair (X, ¥), where X is a
Donempty set and ¥ is a family of subsets of X such that

(A-1) @, Xe¢,
(A-2) intersections of sets in ¢ are again in .

The family % is called a convexity structure for X and the members of ¢
are called %-convex sets. The é-hull of any set S in X, denoted by %(S), is
the intersection of all %-convex sets containing S.

A convexity space (X, %) satisfying the additional axiom

(A-3) unions of upward directed families of sets in ¥ are again in €
18 called an aligned space (see [3] and [4]). It is well known that any aligned
Space has the property that for each S = X
€)= {€(T): TcS, |T| <wo}.

(Throughout the note, [S| denotes the cardinality of the set S.) The classical
®Xample of an aligned space is (R”", conv), where conv denotes the family of
Ordinary convex sets in R".

Let (X,, 4,) and (X,, %,), X; "X, =0, be two convexity (aligned)
SPaces. The pair (X, U X,, %,), where

(gu = {A UB: Ae(gl, BE%Z}?

18 also g convexity (aligned) space and is called the convex (aligned) sum
SPace. Thus the %,-hull of any § in X 1 U X, is given by
€u(S) =€, (SN X)L, (SN X,).

The notion was introduced in [8].
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Let (X, ) be a convexity (aligned) space. In [3] it is shown that any
subspace (Y, €y) with Y c X and €y, ={ANY: Ac¥)} is also a convexity
(aligned) space.

2. Problem 1. We begin with recalling the following definitions.

The Helly number of a convexity space (X, ¥) is the smallest integer 7
such that, for any finite family # of convex sets, if each h sets have
nonempty intersection, then all the sets in &# have nonempty intersection.
The Helly number may be also defined (cf. [7]) to be the smallest integer k
such that for any  set A with h+1 elements the intersection
N{€(A\a): ac A} is nonempty.

The Carathéodory number of a convexity space (X %) is the smallest
integer ¢ such that for any S in X the following holds:

€(S) = U{€(T): T<s, T <c}.

The exchange number of a convexity space (X, €) is defined as the
smallest integer e such that for each p and 4 in X with e < |4] < oo the
following holds: :

€A <V {€¢(pu(4\a): ac A}.

The well-known relationship between the numbers A, ¢, and e in aligned
spaces is the following inequality due to Sierksma [7]:

¢ < max {h, e—1}.

Combining the so-called aligned products and sums Sierksma has shown
in [8] the sharpness of this inequality in the case k < e—1. There he noted
(and repeated in [9]) that the sharpness in the case h > e—1 is an open
problem,

In this note we close the problem.

First we remark that it suffices only to consider the case e > 1, since €
=1 holds if and only if € = {(®, X}. We must show that for any e > 2 and
h>e—1 there exists an aligned space with Carathéodory number c = h
= max {h, e—1}. To this end we now partition the set N of positive integers
into the following subsets:

D,={1}, D,=1{2,3}, D3=1{4,5,6}, D,= {7, 8,9, 10},
Then we take the sequence of aligned spaces (N, €'), t > 1, where
={Q,D;, N}u{d: 3i,i#1, AS D},
and |
¢=¢"u{B=D,UE: EED} fort>1.
ProprosITION 1. The exchange number of (N, 6*) is equal to t+1.
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Proof. The exchange number of (N, ¥) was determined in [7] and is
equal to 2. To prove that e =t+1 in the remaining cases we now show that
¢ > t. Indeed, for p=1 and D, we have

€(D)=N
but
U{¢(puD\g): qeD,} =D, UD,.

. Thus, in fact, e > t+1. The argument similar to that in [7] gives e = t+1
and completes the proof.

ProposiTioN 2. Let
s—1
N,={neN: 1<n< } |Dj+s}.
i=1

The subspace (N, %N"") with 2<t<s has the Helly number h=s, the
exchange number e =t, and the Carathéodory number c = s.

An easy proof is left to the reader.

Theorem 4 in [8] and Proposition 2 lead to the following

TuEOREM. The inequality ¢ < max {h, e~1} is sharp.

3. Problem 2. A Radon t-partition of a set S — X is a partition
| S§=8,v...uS,;
into 7 pairwise disjoint subsets such that
N{€E):i=1,..,11#0.

By D.(S) we denote the set of all points p in X for which there exists a
Radon t-partition S,, ..., S, of S with '

peN{%(S). i=1,...,1}.

Celebrated results of Radon and Tverberg (see [11]) imply that
D,(S)#® and D,(S)# @ for any set S <R" of cardinality n+2 and
(t—1)(n+1)+1, respectively. Note that D,(S) is not a convex set in general.

Following [1] we denote the t-core of a set S = X by

core (S) = {€ES\M): McS, M| <1}.

It is easy to show that D (S) = core,_ (S). The converse is true in special
cases only (see [4]). However, the equality

(1) conv (D, (S)) = core,_; (S)

holds for (R2, conv), as shown in [5). Reay [6], Sierksma [9] and others
conjectured that (1) holds for every set S in R" of cardinality (t — l)(n+ l)+1
Thls con_]ecture is not solved yet.
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The following problemn was posed by Sierksma ([9], Problem 7):

ProsLeM. Find a convexity space (X, %) such that for some n, > 0 and
each n > n, there 15 a set S in X with |S] =n and

@ §(D.(8)) # core, 4 (5).
We shall show that the answer to Sierksma’s problem is positive. We

need the following

ProrosiTION 3. Let (X,, ¥,) and (X,, 4,) be conmvexity spaces with
X,nX,=0Q. Then for any S < X, UX, we have '

(a) D.(S) =D, (SN X,) uD,(SNXy) A

(b) core,(S) = core (S N X ;) ucore, (S N X,).

Proof. To show (a), take peD,(S). Then there exists a Radon t-

partition §,, ..., S; of § such that |
peN{%(8): i=1,..., 1.
Further, according to the definition _of €., we obtain
peN{€, (S;nXy):i=1,..,1}uN{€ESinXy): i=1,...,1}.
Assume that
peN{%(SinX,): i=1,..., 1}

Hence §, n X;, ..., §, n X, is a Radon t-partition of § N X; and, obviously,
peD. (SN X,). To prove the converse inclusion take pe D (S n X,). There
exists a Radon t-partition §,,..., S, of SN X,. Obmus]y S, @ nX,)
Sz, ..., S, is a Radon t-partition of S with

PE€,(S; VS N X)) NG, (8) ... A, (S).

This means that pe D, (S), which completes the proof of (a). The proof of (b)
1s left to the reader.
Now we construct a suitable convexity (ahgned) space. Take

= {(x, yeR?*: y > x?,

For every integer ke Z let p, denote the point (k, k*)e R? and let 4, be the
closed subset of A lying above the segment joining p,_, and p,,,. On the
upper closed half-plane X, = {(x, y): y > 0} consider the family % of sets
consisting of @, X,, all singletons and all passible intersections of the sets
Ags. Clearly, (X;, %) is a convexity (aligned) space. We give the following
examples of #-hulls to make subsequent -considerations much more clear:

€ =ms  €(A) =Xy,
for k#0
%({pi’ (ks kz_l)}) = Xl;
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if I=2Z |1l 2 then
€(U i iel})) =N\ {A: keZ\1}.

Futhermore, take the convex sum space of (X,, ¥) and (R%\ X,, conv).
We show that (R?, %,) is the desired space. Indeed, for a fixed 7 > 2 we put
no = 21—1. Now for each n > n, we consider a set S of R? such that

Sle = {p—r+la ey Dog, pOa pl’ tees pt—'l}
and

IS (R*\X)| =n—2t+1.
It is easy to verify that
D.(S"X)=@ and core,_(SnX,) % ].
Using Proposition 3 we obtain
%u(D.(S)) # core,_{ (S).

This shows that the answer to Sierksma’s problem is in the affirmative.

The t-Radon number of a convexity space (X, ¢) 1s the smallest integer
r(t) such that each set § — X of cardinality at least r(r) admits a Radon z-
partition. The well-known conjecture of Eckhoff [2] says that

r() <(r@2—-1)z—-1+1.

There are at least two comments in order.

First, from our considerations it follows that even if (1} is shown to be
true for n, =(t—1)(n+1)+1 in the case of (R", conv), there are general
convexity spaces (X, %) for which such an n, and equality (2) do not exist.

Second, if (1) were true, then in fact there would be a new and nice
proof of Tverberg’s Theorem ([11], [12]). As Eckhoff’s conjecture is the
“pendant” of Tverberg’s Theorem in the general setting of convexity spaces, a
similar proof, via %(D.(S)) = core,_,(S), cannot exist. So the fact that
Problem 2 is solved now makes Eckhoff’s conjecture not less challenging (see
also [10]).
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