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Propagation of weak singularities
on characteristic surfaces
of non-constant multiplicity

by Piotr RyBka (Warszawa)

Abstract. We discuss the propagation of weak singularities of quasi-linear non-elliptic first-
order systems along focal curves on characteristic surfaces with non-constant multiplicity.
Appropriate system of transport equations is constructed.

1. Introduction. Weak singularities of solutions of hyperbolic systems
were investigated in [2], [9] and other papers, but only for characteristic
surfaces of constant multiplicity. In the present paper, we propose a method
of the construction of transpert equations for an arbitrary non-elliptic quasi-
linear partial differential system of first order, with which we treat the
following question:

Given a solution with a non-zero singularity, does the singularity vanish
at a point of multiplicity change of a characteristic surface if this takes place
along a focal curve?

Prelimimnary results are contained in [10].

Related problems were considered for pseudodifferential operators (cf.
[3], [5], [7)). In particular, it was shown that the intersection of bicharacter-
istics does not generate singularity of a solution. In this note we establish the
analogical result for quasi-linear systems.

2. Transport equations. Consider a system

. m (Qu
(1) Lx, Ju= Y Ai(x,u)z-+Bx,u)=0, m2=3,
Cx;

i=1
where u: D = R', D is a region in R™, A;(x, u), i =1, ..., m, are real-valued

matrices, B(x, u), A;(x, u) arc C? functions. We assume that u(x) has a weak
discontinuity. i.e.,

(2) ueC(D)NnC¥D*)nC* (D),

where C is a characteristic surface, D, D*, D~ are regions in R™ such that
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D=D*uCuD, Cis of class C*, n(x)is a normal vector to C at x. and
¢u/fn has a jump across C.
Let

”m

Alx, O = Y Ai(x,u() . =G, ... 5. CeRY

i=1
A(x, n(x)) is called a characteristic matrix. Lel
Alx,u) = EeQ™: det A(x, &) =01,
and assume A(x, u) # {0}; let
M:(x)=ker AT(x, &), T.(x) =kerA(x, ).

¢

u : o :
,’(x)J the jump of normal derivative of u on C. It is known that
in

Denote by

‘u
‘ -~ (\-) € rn(.\') (Y)
n i

Suppose that n(x) belongs to A, (x), a subset of A(x, u), that is a submaniflold
of R™ of codimension 1 given by

A (x) = & @(x,u(x), &) =0

Here ®(x,u,d) is a twice continously differentiable function and
grad: @ (x, u(x), &) # 0 on A, (x). Qur characteristic surface C is folated by
focal curves defined by

I..
‘T: = grad ®(x, u(x). n(x);
[{

obviously, the right-hand side is continously differentiable.

We define the multiplicity of the characteristic surface C at x as a
number dim M, (x) =dim ', (x) = k(x).

Let U be an open set of C such that in U the multiplicity of C is
constant and equal to k. It is easy to construct functions i, *: U = R' so
that 4/, v"eC" (U, RY), i=1,...,k, M, ,(x) is the span of i/(x), I, (x)
is the span of ;*(x) (under an additional condition we shall construct ¢, -

i

CL
with a special property later on). F-l(x) belongs to I, (x). so
n
‘u k ,
(3) \ﬂx) =Y a,(x)7"(x).
‘n P
We have

La

. . I .
Qi (x), L(x, uy =) &;p-—k G (x), B(x, u(x)),
r=1
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where vif = (i, @™, a™ is the p-th column of the matrix 4;,, p=1,..., L
The vectors /7 are tangent to C.

We extend £ (x), 3*(x). i =1, ..., k. in a neighbourhood V = R™ of U so
that they are differentiable. After having computed the jump of the normal
derivative of (s, L(x, O u), and taking into account formula (3) and the fact
that for we T, C if ||n(x)|| = 1. then

CCu
F‘anJ’

¢ Cu
w | én

we obtain the following system of transport equations

N o K
. J o —
(4 Z P —Z S,j(.\()O'A, "—],...,k,
IER R i=1
where w =% o owd)L W = Q. A0 and

ni

(51 S0 = Y Gl Dy A, (M) s >+
i1

mo . a + ‘ m / c'?u‘ .
_IL.-Zl <~“'- D, 4;(x. “(-’C))( ;l;)]>_ Z <ﬂrs D, A;(x, u(x) (—(’57)",> +

i=1

o

! ol
L _ .
£ Y S G DB, u() .
ro 1

=010, n(x) =y, ..., n,.

D,. D, denote the partial derivatives with respect to x and u, respectively.
Under our assumption on A,(x) we obtain (cf. [2]) that w” and
grad: @ (x. u(x), n(x)) are parallel:

i ,rj.ﬂdﬁ?__‘
lligrad; &
henee (4) takes the form
(6) Hé = —So,

where H = (h,). S =(S,;), and the dot denotes the derivative with respect to
arc length. We sce that singularities propagate in the bicharacteristic direc-
ton along focal curves.

3. Weak discontinuity and change of multiplicity. We are interested in the
characternistic surface on which multiplicity changes in the following way.
There cxists a submanifold X of C, of codimension > 1. such that [or
x e C* X the multiplicity k(x) is constant and equal to 4, and for xe X. k(x)
1s greater than k. If B is focal curve, then B X = |x,!, ie. the multiplicity
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changes along B. A simple example of a system for which focal curves have
this property will be given in Section 4. Conversely, [or some solutions of the
system as below, the multiplicity may be constant along focal curves and X
contains focal curves. In this case, transport equations do not give any

information aboul propagation of a weak singularity. The system in question
reads

) (x ‘v

¢ 9 ¢ . u Cu Cu
—p-k(Tcos2.'}+~;-31n2( )—g(-; tuc e =0,
X e

~e

- all 2 IS - Ny
cp o3 . ) r r v
7——1\'(-%—---sm2.’}—ﬂ—cos29 —g)(:»»+u—-+v— =0.
cy (x oy ‘ Cy

cu Cr . cu Cv i
<—+— sm29+(-—'i—-fi cos29=0, M, &
oy ex ox Oy v

It describes the perfectly plastic flow (von Mises model; cf. [8]).

Let x(1), telty, t,], be a C?* parametrization of B, x, = x(/,). Set T(x)
= A(x, n(x)). Assume that for xe C the matrix T(x) is normal. We will use
the theory of perturbations of linear operators (cf. [6]) applied to T'(x)
regarded as an operator in C'. Let P(r) denote the orthogonal projection
onto Iy X{1) = ker T(x(r)). Then

—1
P(0) = 5 [R(1, O L,

where 7 < C is a closed positively oriented curve, say a circle, in the
resolvent set enclosing O but no other eigenvalue of T(x(1)), R(t, )
=(T(x(0))=¢)~". It is known that P(r) is continously differentiable in
(1, 1)\ o) (cf. [6]).

THEOREM. Suppose the following conditions:

(1) the characteristic matrix T(x) is normal;

(1) there exists a submanifold X of C so that, for xe C\ X, the multiplicity
k(x) is constant and equal to k, and for xe€X, k(x) is greater thun k;

{
(11) -(I—IP(I) is integrable over (t,, t,):
(

(1v) there exists iy, 1 <io < m, such that the operator /4;0(-\‘(’% u{x (1))
restricted to Im P (1) is not singular, and, moreover, there exists ¢ > 0 such that
(0. a(PA; P)) = ¢ for te(ty, 1)\ ty), where o (PA;, P) denotes the spectrum
of PA;, P considered in 1m P:

(V) BAX = \x(to)], X(to)¢ Ty X.

(1p)
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yu KLY
=)
we have:

If, for some t*e(t,, ty), j(t*) =0, then j(t) =0 for all te(t,, t,).

Then for the jump

Remark. Observe that condition (iii) imply that P(¢) is continous in
(ty. 1) j(1) is eigenvector of T(x(i)) corresponding to the eigenvalue 0. We
require the continuity of P(r) to ensure the existence of continous eigenvector
of T(x(r)) corresponding to the eigenvalue 0, which should be non-zero at ¢,.

Proof. Suppose for a moment that we have showed that H is invertible,
H ! has bounded norm, and S has integrable entries. Then (6) takes the
form

d=—H'Sao

and has a unique solution by well-known result on ordinary differential
equations (see [4]). The theorem [ollows.

The invertibility will be shown using a special construction of ' (see
Lemma I).

Now we construct an orthonormal basis '(x), i = 1, ..., k, of I',(x) such
that y'e C'(C\ X, R'). Without loss of generality one may assume codim X
= 1. It is known (cf. [6]) that if T is a normal operator in Hilbert space C',
ie., T*T = TT*, then P defined as

-1,
P=— ) de,
2ni :!R(g) ¢

where 7 is a positively-oriented circle small radius r such that zeC: ||
<r!rno(T)= 0], is an orthogonal projection onto the kernel of T. We
define an operator S, called the reduced resolvent of T at 0,

1 ‘R(C) v

S =—1-
! iy, (

LX)

where 7 is as described above. Since none of the eigenvalues of T'(x) coalesce
to 0 for xe C\ X, P(x) and S,{x) are continuously dilferentiable in C\ X. We
recall that T(x) belongs to class C2. Note that

-~

o 0 0
KP(.\’) = _P(X)a—’q— T(X)Sl(x)_sl(x)aT(X)P(X),

4

N2

which shows that -:(—;‘— P(x) exist tn C\ X (cf. [6]).

CX; OX;
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For xe C, we may write
X=nlt,y), teliy,t,), yekX,
where #{t, y) 1s a solution of the equation

. grad P(n, u(n), n(n)
1 lgrad, @ (n. u(n). n(m)|

Obviously, n(r, y) is continuously differentiable and

and  q(ry) =y.

2 2
¥ ([a V ) -~ A ¥ (Iq ’)
A A

G Cy; Vi
exist and are equal.

If P(r) 1s an orthogonal projection continuously depending on 1 €(a, b),
then dimIm P (1) = const = k. If ¢, ..., ¢, form a basis of Im P(t*) for some
t*e(a, b), then @, (1) =U)@;, i =1, ..., k, form a basis of Im P(t), te(a, b),
where U (t) 1s a solution of the equation

(7) Y=0()Y, Y(*)=Id;
(1) = oo, Pa —iP(z)P(z —P(t)iP(r)
Q"dr(‘”‘m ) de 7

For each re(a, b), U (1) is a unitary operator, and if ¢,, ..., ¢, are orthonor-
mal, then ¢, (1), ..., ¢, (t) are orthonormal too (see [6]). We shall employ (7)
and the parametrization x = n(t, y) to construct 7.

Let (a, b) = (t,, to); we modify equation (7) introducing dependence of
Q(t) on yeX:

. ¢
@) Y=0@,»Y, Y@*=1d, 0,y :[57 P(n(r. y), P(nlt. y))J:
obviously, Q(r, y) is continuously differentiable. The solution U (t, y) of this
equation is a C' function. We sel

“I’i(ra ,V) = U([q ,V)(P.'a

where ¢; form an orthonormal basis of Im P(r¥) = ker T(x (%)), t* (1, ty).
The case of interval (tg, t,) is considered in the same way.

It is important that )'(r, y) are solutions of equation (8).

In the following lemma we establish the existence of u with a useful
property.

Lemma 1. Given y'(t, y), i = 1, ..., k, there exist p'(t, y), i=1, ..., k, and
6 >0 so that 1ty y) form a basis of M(t, y) = Mg (1t ) and |[1]] = 1,
G, AV = €0, ¢;2 0 >0 for y=yo, where x(to) = n{to. yo)-
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Proof. Under assumption (iv) the vectors \PA; 9121, are linearly
independent. We set I';(t, y) = span |P(n(t, y)) 4;, (n(¢, )P,y If u be-

j#i ;
longs to I~ Mo v) and g # 0, then <, P4,0, 'S # 0. Let (1, v) be such
that [l/l”—l pite e Iy e M v and s P 07y > 00 clearly. gf, v)
are continuously dllTerennabIe and form a basis of M(t, y). Q(PA,O,, r)

‘denotes the distance between the vector PA; ' and the set [;.

J()l
We have ¢; = (i, N = o(PA; . “. T,): hence
¢ = / (](PAI()I )'= ..... k G(PA,O, j= I....,k.
NV GPA )y e [T11PA4;, I

J#i

If ¢; converged to O for 1, — t,, then G(PA io ,*’) = |det PA; P;JI would tend
to 0, contrary to (iv). The proof of the lemma is complete.

The special construction of ' allows us to show that H is inverltible.
Indeed. observe that

w' = h;b, b =grad; ®(x, u(x), n(x))/||grads @ (x, u(x), n(x)|.

Thus u" =¢;0;. ¢; # 0, and therefore H 1s diagonal. Since h; are equal to

g |lwill, & = + 1, we have |det H| > &* and ||[H !|| <& ' Now the transport
equation takes the form

¢ =H 'So.

We start investigating the integrability of S over (1,, 1,). We observe that
all terms in the expression defining S,; are integrable, except possibly for

9) /e
We fix j, p, r. We observe that
UP =P bbb+ (P =P, by b) = a(t, ¥)b(t, y)+ult, y);
if v # 0 then the vectors v and b are linearly independent. We rewrite (9) as

e &
m a(r, V)P, v+ &

where clearly «(1, v) is bounded, and
w7 (t, y) = a(t, )1, Y)Y, y).

By assumption (iii) it follows that Q(r, y) is integrable over (¢, t,), thus
x(t, y)¥(r, y) is integrable too. We have to investigate ¢/c. Consider the
vector field v(r, y) in C\ X, and the equation

dn

—=uvyy) and g(0,1) =x(1).

10
(10 ds
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According to (v), for each rel(t,,ty) there exists a neighbourhood
U, < (ty, tg), te U,, and ¢, > 0 such that if 'e U,, then (s, t') is defined over
(—¢, &). Moreover, (?n/dsCt and @ 5/Ci s exist and are equal. Now it is easy
to find ¢ >0 and

(p: ('l& (0) X(—E, {;)—' C

such that ¢ is continuously differentiable, ¢(s, 1)¢ X, and

o0 0 =0(x0), So00=x0)=bx@), o=
— = — =Xx(t) =h(x ———Q==¢.
5 P00 =vix) 500, Caas” T aa?
We see that
t
67 ( J’o —*f( 1),
ﬁv(t Yo)  Cs

where f (s, 1) = /(o (s, 1)).
The 1dea of the solution 1s quite simple: we want to replace f (s, 1) by an
analytic function F (s, t) of s such that

F(0,1) = f(0,1), —(? F(O ) ff(O 1)

and F (s, t) is integrable over (¢,, t,). We would like to know if ;’)F(s, 1)dt is
analytic and. !

& 0 o P

a,‘EF(s’ 1)dt = 'jle F(s, t)dr.
For this purpose we replace T(¢(s, t)) by an operator analytically depending
on s. We set

Tols, ) = T(e(s. ), Ty (5. 1) = Ty 0, t)-l—sg; T, (0, 1).

T,, T, are continuously differentiable, T, (0, t) = T, (0, 1),

“

—TO(O 1) =

(s

o? &2

I“J

T,(0,t) and (s, t) =

s CsCt CtCs

T (s, 1).

)

We denote by P, (s, 1) the eigenprojection for the eigenvalue O of Ty(s, t) and
by P, (s, t) the total projection for 0-group of T,(s, t). One can prove that
P, (s, t) depends analytically on s (cf. [6]). We have

0

¢ :
Po(0.1)=P,(0,1) and —Po(0,1) = - P, (0, 1).
s (s
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Lemma 2. There exist functions 3: ljz) <&! x(t,, 1) =Q —>C. i=
1, ..., k, such that 7' eC"(Q, C"), (s, 1) for euch t€lt,, ty) is analytic at s,
740, 0) = (0, 1), 7 are bhounded, and

q

70, _-A_ (0, 1),

'\)' ~y

Proof 7 are the solution of equation (7) and P(t) = P,(0, t),
. ¢
Pi)= P—[ P,(0,1).

Consider the equation
(1 ¥Y=0,(,0Y. Y(s, t*)=1d,
¢
where Q, (s, 1) = [5 Py(s, 1), P,(s. t)J

is continuous at s, ¢ and analytic at s. It is known that the solution U (s, f) of
(11) analytically depends on s; Ul(s, 1) 1s a unitary operator. We set (s, 1)
= U(s. 1) p,. Equality U(0, t) = U(¢(0, t)) is obvious. Since

00,0 =5 00,0,
() [6\)

we have

-
C
R

>| -~

00,1 =—=U(e(0,1).

6\

-~
)

The proof of the lemma is complete.
We will prove now that there exists the integral

10 Agi
\F(S Y

h
that 1s, that

o

]

L5

) I

-‘(—- (x ()] de

is finite. We use the following known fact (cf. [1]).

LemMma 3. Let V be an open subset of C and let Vx[0, 11™(z, 1)
— F(z, t) €C be a bounded function which is holomorphic at z for each t and is
Riemann integrable at t for each ze'V.
1

Then G(z) = _{F(:, t)dr is holomorphic in V, and, for each positive integer
0
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i DY'F(z.1) is Riemann integrable for eV and we have
l .
GY(z) = | DY F(z.ndr.
0

We apply this lemma to F(z, 1) = 7,(z, 1). The proof of the theorem is
now complete.

4. Example. We now exhibit a simple example of a muluplicity change
along a focal curve for which all assumptions of our theorem hold. Consider

3 Cu
Y Ai(x,uy— =0,
i=1 (X,

where
0 S a(x) 1 [ .0 S 1
Ay, u)y=| fa(x) afx) 0}  Ay(x,u)= fw 1 0}
1 0 0 i 1 0 0

0 fuya®(x) 1]
Ay(x, u) =| fwa*(x) da*(x) 0O
1 0 0

f. a are real valued non-constant C? functions. Moreover,

0 f(we &
A, )= fwd™ @ 0 |
¢ 0 0

where @ (x, u, &) = a(x)¢, +§:2+(‘2+az(-‘<)és, ' (x,u, )= ¢ +E&r+8y,
detA(x, &)= —@* 2 (x, u, )P~ (x, u, &); we have A(x, u) = A" (x)u A7 (x),

AT ()= {EeR: @' (x,u, 3) =0, A (X)=1CeR & (x,u, i) =0
One computes
A () NAT(x) = 1eR: & =1(l+ual(x), a(x), —1), reR].

Let u satisfy L(x, u =0. We will prove that there exist a characteristic
surface C and its submanifold X such that condition (v) of our theorem is
fulfilled. The normal vector n(x) will belong to A* (x). C is constructed from

the solution of the following system

-

dx ¢ dé c
—:_¢+-a '- ’*- —=__¢+ X, - 7:~
dt ¢S (e, u(x). ¢) dt ox (x, u(x), <)

x(0,5) =1(s),  <(0, ) =So(s),
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and
dl .
e (8) X g is)e T ().
ds

We will compule a normal vector to C at x{i. s):

[ ( Lt ( o
n{xtie. s)) = o X{r. 8) x N X(!. S)/'f(:\: N(.s) < N1, 8):

clearly,

dy 2 o
2 = ¢+ . e ¢ + ,
ar e YA
dn a* o, &,
m— = —T = - P,
a el TG
dl d
_}’(0) = d—q(s)» ’1(0) = (TS ;0(5‘)1
but D*®* =0; hence
il
yl) = 5 (s).
ds

Therefore, n(x (1, s)) is equal to n(x(0, s)). Let us compute multiplicity of C: if
t =0 then n(x(r,s))eA* n A" (I(s)) and k(x(0, s)) =3:if 1 # 0 then

S

n(x(t, s))eA”(Is)) if da (:—JD*) #£ 0,
pE

and k(x(r, s)) = 1. Therefore, X is a curve /(s) and assumption (v) holds. Let
B be any bicharacteristic x(r, sq) (in the sense used in {2]); we set t, = O: for
Ze A" (x) we have ker A(x, &) = R(0, 0, 1), eigenprojection is equal to P(r)r
= (0, 0, r3) and (i) holds. We set i, =2 and see that

PA2P'.~=(0,0,U3)7 dClPA2P=].
therefore (iv) holds too.
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