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Some qualitative problems in the theory
of second order partial differential equations

by A. PELczARr (Krakow)

Abstract, There are presented some results on asymptotic behaviour of solutions of certain
second order partial dilferentinl equations when the time ¢ is growing up. These results are of the
two types: theorems extending the classical Wazewski's rctract theorem and stability like
stalements.

Introduction. We shall consider partial differential equations of the type
(0) du/dt = f(t, x,u, du/dx, 0*u/ox?),

where t 2 0, x belongs to some (depending on t) interval in R, with initial
conditions of the type

u(0,x) = p(x)

and — possibly — some further boundary conditions.

The purpose of the paper is to present some results on the asymptotic
behaviour of solutions when the time ¢ is growing up. These results will be of
two kinds: theorems extending the classical Wazewski’s retract theorem and
statements of stability type. The idea, however, is the same in both cases; it is
based on the topological method taken from papers [8] and [9]; the same
approach has been applied in papers [1]-[3].

The main results of the present paper were presented during the VIIth
International Conference on Nonlinear Analysis and Applications (August
1986) in Arlington (Texas, USA) and, in a short form, during ICM 86 (Berkeley)
(see [0]).

Equations of type (0) have been investigated by several authors (see for
instance Smoller [4] and papers and books quoted there).

We do not examine the existence and uniqueness of solutions of
initial-boundary problems under investigation. We do not even discuss the
question whether boundary conditions adjoined to the initial ones are
necessary for uniqueness (or, on the contrary, are superfluous; this is the case,
for instance, when the right-hand side of (0) does not depend on the last
variable, which means that we have simply a first order equation). We shall
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simply assume that the solutions exist and are uniquely determined by
the initial (and, possibly, boundary) conditions. In the case of a direct
application of the Wazewski’s topological method we shall also need the
continuous dependence of solutions on the initial data. In this case, the
solutions.are assumed to be defined in sets depending on the initial data lower
semicontinuously.

1. Let « and f be two real-valued functions defined and continuous on
[0, ) and such that

a(t) < p(¢) for ¢t 20.
Let us put

(1) Q:={(t,x): t=0, a(t) < x < p(t)

and assume that there is given an open subset 2, of R? such that Q < Q.
Suppose that

(2) fl: QoxRan—’R’ i= 1;-",n)

are continuous functions. We shall consider the system of second order partial
differential equations

(3) uf=f‘(t,x.ul,...,u",u},...,uﬁ,u}‘x,...,ug',,), = 1,...,71,

with initial-boundary conditions

(4) u'(0,x) = @'(x) forxe[a(0),f(0)], i=1,...,n,
and
®) u'(t,a(t)) = Yolt),  u'(t, B(t)) = Yi(t) fort =0,

where ¢, Y4, ¥ are given functions, sufficiently regular, satisfying obvious
compatibility conditions

(6) @' (2(0) = 60, @' (BO) =yi(0), i=1,..,n

Some additional conditions imposed on f*, ¢!, ¥} and ! will be formulated in
the sequel.

In order to exclude any misunderstanding we wish to establish precisely
the definition of solution: we say that a vector function u = (u?!,...,u") is

a saturated solution of problem (3}-(4)-(5) (with given functions a, ff and ¢', Y/},
y4) if and only if:

u',...,u" are defined (or shortly: u is defined) in a set of the form
(7 2, N ([0,b)x R),
where b is either a positive number or infinity (in symbols: he(0, o0]);

u',...,u" are of the class C! in the set (7) (clearly, ui(0,x) denotes the
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right-hand derivative: lim[u'(¢, x)—u'(0,x)]/t as t—0, t > 0) and moreover,
ul,...,u" have their second order derivatives ul,...,u", in the set

(8) {t,x)y: 0<t<b, alt) < x < B(2)},
for every (t,x) belonging to the set (8), the equalities
au' ; ) . ou' ou"
9) E(t,x) =f (t,x,u t,x),...,u (t,x),a(t,x),...,a(t,x),
*u

1 2
W(t’x)""’ﬁ(t’x))’ i= l,...,n,

are satisfied, conditions (4) are fulfilled and we have
(10)  w(ha@) =yb(), w(HAW®)=Vi() forte[0,b), i=1,...1;

b is maximal in the sense that if b < oo, then it is impossible to find ¢ > b
and v = (v!,...,0") defined in (8) with b replaced by c, satisfying all conditions
required above with respect to u (with b replaced by c), such that

Vi, x) = ui(t,x) for i=1,...,n te[0,b), xe[a(t),Bt)]
(in other words: it is impossible to extend u over a set essentially larger than (8)).

If u is a saturated solution of (3}(4)-(5), then we shall denote by b[u] the
number b which appears in the definition of the set (8), or we put b[u]:= o
when the domain of existence of u covers the real half line [0, o) x {0}.

Observe that we do not exclude here a case where the boundary
conditions (5) are superfluous in the sense that the values of solutions of (3) on
the curves x = a(t) and x = B(t) are uniquely determined by the initial values
for t = 0. Such a situation occurs if /* do not depend on the last variables, that
is if we in fact consider partial differential equations of the first order assuming
conditions sufficient for the uniqueness of solutions of suitable Cauchy
problems. There are well-known examples of such conditions in that special
case of (3) which can be reduced to

(11) ul =g\, x,ut,.  uuh), i=1,...,n,

considered together with suitable initial conditions of type (4).
We refer to fundamental papers by Szarski [S] and Wazewski [6], [7].

2. Now assume that there are given differentiable functions
Ayt [0,00)»R, i=1,...,n,
(by derivatives at zero we mean right-hand derivatives) such that
(12) Ay < ple)y fort=0,i=1,...,n

We shall admit the following assumption.
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AssuMPTION H. There are two sets N, and N, of positive integers such
that
(13) N,nN,=9@ and N,UN,={l,..,n}

(we do not exclude the cases N, = or N, = @) and, moreover,
(a) there are continuous functions
&L e nh: [0,00)»R, i=1,...n,
and
r: [0, 00)—(0, c0)
such that
for every t >0 and every se(0,r(t)) we have:
(t+sa(@)+&()s)eQ  for ieN,, k=1,2,
(t+sB(t)+ni(t)s)eQ  for ieN,, k=1,2;
for every ¢ >0 and every se(0,r(r)):
(t—s,a(t)=&()s)eQ  for ieN,, k=1,2,
(t—s,B(t)—ni(t)s)e for ieN,, k=1,2.
(b) For jeN,:

if (6%t 0,W) = (6,X, Uy, .y Upy Uy, Dy Wy, oo, W) EQ X R and u, = (1),

(14) i, x,u,v,w) < (Y (t);

if (¢, x,u,0,w)e2xR* and u; = p/(t), v; =0, w; <0, then
(15) S x, u,0,w) > (WY (2);

if (6, x,u,0,w)e2xR> and x = a(t), u;= A(t), v; >0, then
(16) St x,u,0,w) < (A9 ()~ v, EL(0);

if (t,x,u,0,w)eQxR* and x = B(t), u; = A/(t), v, <0, then
(17) St x, u,0,w) < (VY (£)~ v, (1);

if (¢, x,u,0,w)e Q% R*® and x = «(t), u, = W(t), v; <0, then
(18) St x, w0, w) > (W) (1) — v, &4 (¢);

if (tox’uav- W)EQXR:‘" and x = B(t)a uj= j(t), UJ- = 0, then

(19) St %, u,0,w) > (WY (6) ~ v, nh ().
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(c) Forje N,, there are assumed analogous conditions with all inequalities
reversed; e.g. instead of (14) we demand

£ x,u,0,w) > (VY (t)
for jeN,, u;= A(t), v;=0, w, > 0; instead of (16) we assume
fj(t: X, U, 0, W) ? (Aj),(t)_vj éi(t)

for jeN,, x =a(t), u; = A(t), v, 2 0, etc.
If N, # @, we may assume without loss of generality that N, = {1,...,k},
N, ={k+1,...,n} (or N, =@ if k=n).

3. Suppose that there are families ®' of real-valued functions defined and
differentiable in [«(0), B(0)] (by derivatives at «(0) and S(0) we mean
corresponding one-side derivatives). We assume that for ¢'e &'

(20) A0) < ¢'(x) < p'(0) forxe[a(0),p(0)], ieN,,
and
(21) 21(0) < ¢'(x) < ¢'(0) for xe[a(0), B(0)], ieN,

and, moreover, for every i the family &' is connected with. respect to the usual
topology induced in the space C([«(0), f(0)], R) of real continuous functions on
[(0), #(0)] by the classical maximum norm

llp’ll:= max {le’(x)): 2(0) < x < B(0)}.

Suppose also that there are families ¥}, ¥ of real-valued functions such that,
for yheW, and ¢he ¥,

(22) PO < o0 <0, FO<yi0) <0 if ieNy,

(23) A0) < ¥p(0) < ¢(0), A(0) <yi(0) <pi(0) if ieN,,

and, moreover,

(24) if PHO)=yh(0) for i=1,...,n
or V' (0) =y*(0) fori=1,...,n,
then
i) =wh(t) and JL@)=vyi() fori=1,...,n t>0,

(25) forevery ¢ = (p,...,p"\ed:= B! x  x P" there exists a pair (Y4, ¥,)
= (W s WD (P U%)) belonging to Wox ¥, i= (Phx  x P
x(Pix  x¥7) such that

P (0) = Uh(O)  @(BO) = YA, i=L..un

Remark 1. In view of (24), for every @& ® there exists exactly one pair
(Wo,10,) such that the equalities required in (25) are satisfied.
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4. Consider a fixed positive number b. Let z be a real-valued function
defined and continuous in the set (7) and let 5° be a number belonging to the
interval [0, b). We say that the function z satisfies the condition C,[b°%b] if and
only if
(26) A) <z(t,x) < pit) for (t,x)e2n([0,b°) xR)
and there are two connected subsets E, and E, of the set (7) such that for every
te[b%b) there exist x, £e[a(t), A(t)] for which

(t,x)eE;, and (t,X)€eE,,
and, moreover,
27)  z(s,w) < A(s) for (s,w)eE, and z(s,y) = y'(s) for (s,y) € E,.

5. THEOREM 1. Suppose that f°, 2:‘, w (i=1,...,n), « and B are functions
satisfying the conditions from Sections 1 and 2, and that &', ¥}, ¥ are the
function families introduced in Section 3.

Assume that for every ¢ =(¢',...,0"ed =0'x xP" there exists
exactly one saturated solution u[¢] = (u'[¢],...,u"[@]) of problem (3)-(4)5),
with Y}, and W' uniquely determined by @' (see (25) and Remark 1). Assume that
the mapping

(28) p—-ule]

is continuous in the sense that for every ¢ € ®, every £ > 0 and every c€[0, b(¢)),
where

(29) b(p):= b[ule]],
there exists ¢ > 0 such that:

heifcb =(@%,...,¢"€d and |¢'()—p'(x)| < for xe[@(0),B0)), i = 1,...,n,
tnen

(30) ¢ < b(®)
and the inequalities
(31) W [p](t,x)—w[F1(x) <& i=1,...,n,

are satisfied for (t,x)eQ2n([0,c]xR).
Finally assume the following condition:

(E) for _every ieN, there exist o,pe® such that there are
te[0,b(¢)), t€[0,b(p)) for which

(32) M) < W[0l(s,x) < pi(s) forse[0,t), je N, xe[a(s) B(s)],
(33) M) < [pls,x) < wi(s) forse[0,t), je N, xe[a(s), fls)],
and

(34) A@) =u'lelt,x), w'[F]E %) =p't)

Jor some xe(a(t),f(t)] and some %e[a(r),B(t)]
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Then the following alternative holds true:

(J) there exists @€ @ such that
(35) Aty < W]t x) < gi(t), i=1,...,n,
for te[0,b(e)), xela(t),f(t)] or

(JJ) there is a non-empty subset M, of N, such that for every je M there
exists ¢ = (61,..., ") € P for which the j-th coordinate function @ of the saturated
solution ii:= u[ @] of problem (3}H4)5) (with ¢ = ¢ and suitable functions ¥,
and y, given by ) satisfies the condition C, [b°, 5] with some by e[0,5), where
b = b[it], and for every ke N\\M, there exists ¢ = (¢*,..., ¢") e P for which the
k-th coordinate function i* of the saturated solution 1i:= u[¢] of (3)H4)~(5) (with
@ = ¢ and suitable Y, and , given by ¢) satisfies the condition

(36) AR(t) < d*(t,x) < uk(t)
for te[0,b[u]), xe[a(t),B(t)].
Moreover, the following condition (JJJ) holds true:
(J1)) for every meN,, we have
(37) A™(e) < um[@](t, x) < um (1)
for every pe @, every te[0,b(¢)) and xe[af(t), f(t)].

Proof (outline). We first prove (J1J). Suppose the contrary. Then for every
¢e® and every meN,, the set

(38) {te[0,b(9): A™(s) < u™[](s,x) < p™(s) for se[0,¢t), xe[a(s), B(s]}

(which is obviously not empty because of (23)) is bounded from above. Denote
by t° its least upper bound (for fixed ¢ and meN,).
We have t° >0 and

(39) (%) < um[@1(t% x) < pm(t®)  for xe[x(t®), B(t°)]
and for some x,&[a(t%), B(t°)]

(40) u"[0](¢% x0) = A"(t°)

or for some x°%e[x(t?),B(t)]

(41) " [p](e%,x°) = u"(t°).

We have the following six possible cases:

1. xo =a(t%, 2. x,e(x(t, B(t?), 3. xo = B(t?), 4. x° = a(t?),
5. x%e(a(t°), B(t%), 6. x° = B(t°).
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In case (40) the function
(42) x—u"[p](t° x)

attains its local minimum at the point x,, whereas in case (41) the function (42)
has a local maximum at x° So we have for instance

um[@] (% xo) = A"(t°), uT[@1(t%x,) =0 in case I,

u"[p](t° xg) = A"(t%),  uz[pl(t%xg) =0

and
un[1(t% xo) =0 il case 2 occurs,

etc., and finally
w0 (2%, x%) = u"(t%), urle] (t%x°) =0 in case 6

(here uT[¢] denotes, of course, the derivative %u"’ [¢]; the same for uy,[@]).

Now we apply Assumption H in order to get a contradiction in every case.
If, for instance, case 1 occurs, then we get

S(£0 %0, UL (£, Xo) 8, 191 (£% X0), 1 [ 01 (0, X))
> (A7) (¢°) - uZ (91 (% xo), (€7¢°)
(where, of course, u,[¢] = (u}[¢],...,ul[¢]), because of condition (C).
This gives
up (@1 (£°, xo) + Ul [0] (¢°, %) ET(t°) > (A7) (7).

So the left-hand derivative of the function g defined in the interval (—r(t°),0]
(see condition (a) of Assumption H) by the formula

g(s):=u"[@](t°+s5,a(t°)+£7(t°)s)

at the point s = 0 is strictly greater than the derivative of the function h defined
by

h(s):= A"(t° +5)

at the same point s = 0. Thus, by virtue of the fact that g(0) = h(0), we obtain
the inequality

(43) g(s) < h(s)
for s belonging to some interval (—4,0) (with some de(0,#(¢%)). This gives
(44) u"[o](t,x) < A™(t)

for t =t%+s, x = a(t%)+&7(t%s, se(—4,0), which contradicts the definition
of t° (cf. (38)).

We can apply similar arguments in all cases (in cases 2 and 5 the situation
is even simpler since we get inequalities between ul"[¢] and (A™)' or (4™)). In all
cases we are led to a contradiction. The proof of (JJJ) is finished.
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In order to prove the alternative (J) or (JJ), let us first assume that the set
M, defined in condition (JJ) is empty. We claim that condition (J) holds true in
that case. Suppose the contrary. So for every ¢ e & there is a point (¢, x) with
te[0,b(e), xe[a(t), B(t)] for which

(45) u'L@](t, x) < A'(t)
for some ie{1,...,n}, or for some ie{l,...,n}:
(46) W]t x) = p'(t)

for some te[0, b(p)), x e [a(t), B(t)).

Observe that for given i we can have either (45) or (46). This follows from
the assumption that M, = @. By virtue of (JJJ) we may assume that such an
index i for which one of conditions (45) or (46) is satisfied belongs to N,.

We now put for pe@

(47)  t%(p):=inf{t > O: there is ie N, such that (45) or (46)
holds true for some xe[oa(t)z B()1}.
Obviously, for every @e® there is ie N, such that |
(48) u'[@1(t°(p),y) = X(t°(9))
for some ye[o(t°(e)), B(t°(e))] or
(49) u'Lpl(t°(e) 2) = p'(°())
for some ze[a(t°(¢)), B(t°(¢))] and, moreover, for every j,
(50) M) <[], x) < (1)
for 0 <t < %), xe[a(t),B(H)].

LeMMA 1. If for some @pe®, some ieN; and a certain t = 0 we have

(51) W], x) =) for some xe[wx(),ft)]

(resp.

(52) u'(p](t,x) = p'(f) for some xe[u(t), f(¢)])

and for every ye[a(t), f(t)]

(53) Aty < W' Lol (e, y) < (),

then there exists a pair (s*, &) of real numbers such that s* >0, the segment
(54) {(t+5,x+E&s): se[0,5%)}

is contained in Qn ([O, b(p)) x R) and

(55) Wlpl(t+s,x+Es) < At+s) for se(0,s%)

(resp.

(56) Wlol(t+s,x+Es) > y'(t+s) for se(0,s%).
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In order to prove this lemma we use Assumption H (condition (b)). We
discuss six cases, as in the proof of (JJJ), but with opposite inequalities. If, for
instance, (48) occurs with xe(«(t), B(t)), we apply inequality (14) and get
(57 ulled(t,x) =11t x, ulo](t, x), u[o](t x), u [@1(E X)) < (Y (¢)

since ut.[¢](t,x) = 0 and ul[¢](z,x) = 0 (the function w'[¢](z, ") attains its
local minimum at the point x). From (57) we obtain (55) with { = 0. We omit
further details.

Let us come back to the main line of our proof. We shall define a mapping
which associates with every ¢e® a finite sequence of integers.

Let pe® be fixed. We put
(58) 2(0):= (q1(e)-- 2 (@)),

where
g(p) = —1 iff (48) occurs;
2(¢)=0 iff for every ye[a(t°(¢)), B(t°(9))):

() < wp1(°(0) y) < K(t°(@));
qlp)=1 iff (49) occurs.
LEMMA 2, The mapping
q. - R
is continuous.

Proof. It is enough to observe that the continuity of the mapping (28)
implies the following statement: if, for some ¢ and some i€ N,, condition (48)
(resp. (49)) is satisfied, then there exists & > 0 such that for every @ € P satis(ying
the condition

lo'0)—¢' <é for i=1,..,n ye[x(),B(0)],
we have
u'[F1(t° (@), x) = A (:°(¢))
(resp.
W [G1(°(), x) = ' (L°(@),
for some x e [«(t°(¢)), B(t°(#))].
We get this from Lemma 1 (by virtue of the fact that M, = @). This ends

the proof of Lemma 2.
Observe that g(¢) belongs (for every pe®) to the set

(59) Q:={(i,...0): ije{~1,0,1}, j=1,..,k}.

Clearly if P is a subset of Q having at least two distinct elements, then P cannot
be the image of a connected set under a continuous mapping. Assumption (E)
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of the theorem implies that P:= g(¢p) has more than one element. So we get
a contradiction by virtue of Lemma 2, since ¢ was supposed to be connected.

This contradiction finishes the proof of (J) if M, = @.

Now suppose that M, # @. We first prove that for every je M, the
condition Cj[b°,b(<o)] is satisfied for w/{ ] with some @ ®. We omit details;
they are presented in a similar situation in paper [3].

It is also not difficult to prove that for every ke N,\M, there is ¢ € § such
that (36) is fulfilled. Indeed, if we suppose the contrary, then we can define
a mapping

¢qu(¢)a

where Gy (@) = —1 if
(8 (9) = u*[@] (82 (@), )
and g,(¢) =1 if
w[](82 (), x) = (£ (@)
for some xe[a(tf (@), B(t2(9))}, where
tS(p):= inf{t = 0: u*[p](t, x) < A*(t) for some x e [a(t), B(1)]
or u*[p](t,x) = p*(t) for some xe[a(t), B(t)]}.

The mapping § is continuous and we obtain a contradiction similarly to
the proof of (J) in the case M, = Q. The proof of Theorem 1 is complete.

Remark 2. If « and f are constant functions, a(t) = ¢ < d = f(t), then we
can consider solutions defined in the set

(60) [0,b)x[c,d] (b < o0)

and assume that they are of class C! in

(61) [0,5) x(c,d),

continuous in (60), and have the first order continuous derivatives with respect
to t in (60), right-hand (left-hand) derivatives with respect to x at the points of
the form (z, c) (resp. (t,d)), t = 0, and have second order continuous derivatives
with respect to x in the set (61). In that case a natural assumption is that the
functions & and 5} from condition (a) of Assumption H vanish identically.

EXAMPLE. Let n =1, a(t) =c < d = (), A(t) = A° < u® = u(t) (A% u® be-
ing constants),

St x,u,v,w) = g(t,x,u)+h(t, x, w)v+k(t,x,u, v) w,

where g,h,k are continuous functions such that
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g(t,x,2% <0 for t >0, xe[e,d],

g(t,x,u®)>0 for t >0, xe[c,d],

hit,c,A%) <0 for t >0,

hit,c,u®)<0 for t =0,

h(t,d, 2% >0 for t >0,

h(t,d, =0 for t=0,
k(tx,A%,0)>0 for ¢ >0, xe(cd),
k(t,x,z°,0)=0 for t >0, xe(cd),

k(t,c, A%, v)= k(t,d, A, v) = k(t,c, u%, v) = k(t,d, u° v) = 0.

In this case, Assumption H is satisfied with N, = {1}, N, =@ and &,,%, =0,
k=1,2 (cf. Remark 2).

Remark 3. If we know that for every ¢ e the inequality
(62) ue[o](t, x) < p'(0)=2'()

holds for every te[0, b(p)), xe[a(t), f(2)], then under the assumptions of
Theorem 1 we have only condition (J). Estimates of type (62) are possible if we
reduce (3) to a system of form (11); conditions sufficient for estimates of ul[¢]
can be found for instance in [S], [6], [7].

6. In the present section we shall use the method applied in [1] and [2] in
the theory of first order partial differential equations.
Assume that there are two sets N, and N, of integers such that

N,AN,=0, N,uN,={1,...,n}.

They will play roles similar to those played by N, and N, in Assumption H.
Without loss of generality we may assume that

N,={1,...,k}, and N,={k+1,..,n}

(or N, =0 and so k=n).
Now we assume that there are positive constants L, i=1,...,k and
continuous functions:

Bos NoyMb: [0,00)=(0,00), i=1,...,k,
such that
(63) 0(0)=p'0), i=1,..,k

where y' (i = 1,...,n) are functions introduced in Section 2.
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Write for brevity

(64) Ki:=4'0), i=1,...,n y:= B,(0)
Let us also put

(65) Bi(t):=y Q) (No@®)™, i=1,..k

and

(66) Bi(t):= min (Bi(t), fo(t) 20, i=1,..,k
Finally we define

(67) Q= {(,2): 20, X < F )},

(68) Q= {(t,2): £ 20, x| < B},

(69) B(t):= max (B(t),..., B*(t). Bo(t)), 20,

and

(70) a(t):=—B(), t=0.

Suppose all the conditions imposed on f* (i = 1,...,n) in Section 1 are
satisfied; now Q, contains the set Q defined by (1) with & and f given by (69)
and (70).

We suppose that the following assumption, a modification of Assumption
H from Section 2, is satisfied:

AssumpTiON H.
(d) There are continuous functions
5.15512’”‘1:"‘2. [Os CD)—PR, i= l,...,n,

and
r: [0, 00)—(0, o)

such that:
For every t > 0 and every se(0,r(f)) we have
(t+s, —p(6)+E@)s)eQ, for ie N, k=12,
(t+s, B () +ni(t)s)eQ, for ieN,, k=1,2.
For every t >0 and every se(0,r(t)
(t—s, —Bo()+EL(B)s)eQ, for ieN,, k=12,
(t—s,Bo(t)+ni(t)s)eQ, for ieN,, k=12

Conditions (b) and () are the same as (b) and (c) in Assumption H with
only one change:  has to be replaced by @, for je N, and by Q, if jeN,.
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Let
d=dB'x xP

be the class of all vector valued C! functions ¢ = (¢?,...,¢") defined in [—y,y]
such that

(71) 10X <Ky, Y<K, forieN,, x| <9,
(72) (6" ()= (Y RN < Llx—% for je Ny, x,%e[—9,7].
We now assume that

(73) K, () Mb(t) S L(NY@)?  for t20, i=1,..,k,

LeEMMA 3. Let t > O be fixed and let functions
2 [—-B(), B ()]-R, i=1,...,k,

be given. Assume that they are of class C* (here, as elsewhere, by derivatives at
the endpoints we mean the corresponding one-sided derivatives) and satisfy:
(74) |2 (o)l < w'(0) Jor i=1,....k |x| < B'(0),
(75) I(2'Y (x) < Nb(®) Jor i=1,...k |x| < B't),
(76) 1Y ()— (Y (R < Mb())|x—x  for i=1,....k Ix|, || < B'().

Let functions w"*' be defined by the formulae

(77 what(x): = K,-(u‘(t))“z(@-x), xe[—y,7], i=1,...,k

Then
wz.r L (wl.z,z, .. "wk,z,x) € d5.

The proof of this Lemma consists in an elementary computation and
simple estimations; details are given in [1], [2]. It is clear that the set & is
compact in the Banach space C([—7,7],RY of all continuous functions from
[—7,7] into R¥ provided with the usual (maximum) norm inducing the
topology of uniform convergence, as well as in the space C!([—y,7],R¥) of
C!-functions provided with the topology of uniform convergence together with
first order derivatives. It is also convex. So, it has the fiked point property by
virtue of the classical Schauder fixed point theorem.

Let us now put

(78) &*:= {ped: there are xe[—v,y] and ie N, such that |p'(x)| = K }.
LEMMA 4. It is impossible to find a retraction &— &* either in
C([—?s '))]s Rk): or in Cl([_y: TJ,Rk)-

Proof. We repeat the classical reasoning (compare for instance [1] or
[2]). Suppose that there is a retraction

0. &b+

Then for any fixed point z of the mapping —g we must have: ze $* and so
z = —g(z) = —z which gives z = 0; however, this is impossible since 0¢ $*.
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THEOREM 2. Suppose that f*,y' (i=1,...,n), B (i = 1,...,k), Bo-are functions
satisfying conditions introduced above. Assume that & = & x &, where & is as
above and & = "1 x ... x " is a family of systems ¢ = (¢**1,...,¢") of
C!-functions defined in [ v,v] such that

(79) [0 < W(0), j=k+1,...m x| <y
Assume that ¥o = Vi x ... x Y3 and ¥, = Wi x...x V] are families of systems

Vo= (Wb, VB Wy = (W1,..., ) of continuous functions defined in [0, co) such
that

ol < £'(0), WION <K @), i=1...n

b0 =¥h0), i=1,...,n (f1(0) = i(0), i = 1,...,n), then yh = for
i=1,,..n W=y, i=1,..,n)

For every @€ ® there exists exactly one pair (Yo, )€ Wy x ¥, such that

(=) =¥,0), @) =y,

(cf. Section ‘3).

Assume that for every ¢ € @ there exists exactly one saturated solution u[¢]
of problem (3)~4)~(5) with Yo and ' uniquely determined by @' and that the
mapping (28) is continuous in the sense as in the assumption of Theorem 1.

Then, for every ged there exists ped such that, for ¢ = (¢,...,¢%
@**1,...,¢", the solution u[¢@] satisfies the conditions

(80) u' L@l (t, %) < w'(e)
for i=1,...,n, te[0,b(p)), [x| < B'() if ieN, and |x| < (1) if ieN,.

Proof Let ¢ = (¢**,...,@") be given. We have to show that there exists

pe® such that the solution u[¢] for ¢ = (¢; @) satisfies (80). Suppose the
contrary.
So we can define t°(¢) similarly to the proof of Theorem 1:

(81)  t°(¢):=inf{t > 0: there is i such that
W Le](t, x)| = p'(t) for some |x| < B'(1)}.
Observe that for every ie N, we have
Ju' Lp] (8, x)| < w'(t)

for each t > 0, [x| < f,(t); the proof of this statement is practically the same as
the proof of (JJJ) in Theorem 1. So we can put in the definition of t°(¢): ie N It
Using the arguments presented in [1] and [2] (and applied implicitly in
a simple situation in the proof of the statement (J) of Theorem | when M, = @)
we prove that the mapping

(82) o Wi,

where z:=u[¢] (¢ = ¢; @), t° =1°(¢), is for every jeN, continuous in
C!'-topology (and in C°-topology as well). We omit details since it is enough to
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modify very slightly the reasoning given in [1], [2]. Now it is easy to observe
that the mapping

1,z,00

Q
yoe oy WEEE)

¢—(w
(see (82)) is a retraction of & onto &* however, the existence of such
a retraction is impossible (see Lemma 4). This contradiction finishes the proof.

Remark 4. We have considered above the C°- and C!-topologies. It
would suflice to consider only one of them, yet we wished to underline that
both of them are useful; the C'-topology is of interest in the theory of first
order equations since the estimates usually assumed to ensure existence and
uniqueness theorem involve Lipschitz conditions for derivatives.

Remark 5. Theorem 1 generalizes a result presented in [1], [2].

7. The methods used above, especially in the proof of the statement (JJJ)
of Theorem 1, can be also applied with respect to some stability questions,

Let us again consider problem (3)-(4){(5) under the assumptions in-
troduced in Section 1. Let &, ¥,, ¥, be as in Section 3. Suppose that {1} and
{1}, @ >0, are families of differentiable vector-valued functions: A, =
(A, AR) p, = (g, ..., 43) defined in [0, 0) and such that

(83) M) <Aty <ps<pb®) for 0<g<é

and for t =20, i=1,.

Assume, moreover that for every e > 0 there exists d € (0, ) such that for
A'= 23 and p' = yj the conditions of Assumption H are satisfied with N, = @.
This means, in. particular, that for any ¢> 0 there is & > 0 such that: if
& x,u,0,w)eRxR*>" and u; = (1), v;=0, w; 2 0, then

S x,u,0,w) > (43 (2);
If u, = uj(r), v;=0, w; <0, then
S >, u,0,w) < (uf) (2);
If x = a(t), u; = A4§(z), v, 20, then
St x,u,0,w) < (A (0)— v, E44(0),
with &} being a suitable function such that
(t—s,a(t)=¢%()-s)eQ  forse(0,r(h),

etc.
Let us now propose a definition of a stability-like condition. Suppose that
¥ = (a',...,) is a saturated solution of (3}-{4)}«5) with some ¢", b, /!, such that

(84) 2() < (e, %) < i (1)
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forevery g > 0,i=1,...,n, t 20, and xe[a(t), #()]. We say that the solution
u is ({A,}, {1, })-stable with respect to @ if and only if for every ¢ > 0 there exists
5 > 0 such that if ¢ =(p',...,0")ed = &' x...x §" satisfies the conditions

@0, x)—@'(x)] <& fori=1,...,n, xe[a(0), B0)],
then
@) < u'lolt,x) < m@), i=1,..,n xela()p@)]

It is clear that the idea of the proof of (JJJ) in Theorem 1 gives almost
immediately the following

THEOREM 3. Assume that f', p, ®, ¥,, ¥, are as in Sections 1-3, and {4},
{u,} are as above. Then every saturated solution i of (3H4)5) satisfying for
every ¢ condition (84) (i=1,...,n) is ({4}, {u,})-stable.
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