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1. Preliminaries. In 1953, Marczewski [6] introduced a purely set-
theoretical notion of compact paving and showed how it can be used to
produce non-trivial measures. Recall that a paving J on the set X is said to
be compact if for every sequence (K, < A such that

ﬂ Kn = @
n=1
there exists m such that
ﬂ Kn = Q)
n=1

It 1s well known that if a paving %" is compact, then its closure under finite
unions is also compact (cf. [6] and [10]).

A slight but useful variation of Marczewski’s definition was recently
suggested by Mallory [5]. We say that a paving ¢ on the set X is

[e o]
monocompact if for every decreasing sequence (K,)>, < X such that () K,
n=1
= (@) there exists m such that K, = @. Obviously, a compact paving is
monocompact, but the converse is not true. Contrary to compact pavings,

monocompact ones are not closed under finite unions (cf. [14)]).

2. Projective cones. Let H be a complex Hilbert space and let .&/ be a
semi-algebra of subsets of the set X. Denote by L(H) the algebra of all
bounded linear operators on H, and by o(/) the smallest g-algebra contain-
ing /. By a semi-spectral measure in H on &/ we mean a positive operator-
valued, weakly o-additive set function F: o/ — L(H). A semi-spectral mea-
sure F: o/ — L(H) is said to be spectral if

F(AnB)=F(A)F(B) and F(A)=F(A)* for all A, Be./.

Notice that every semi-spectral (spectral) measure F: o — L(H) extends in a
unique way to a semi-spectral (spectral) measure °F: o (%) — L(H) (cf. [1]).
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Let us denote by C and R, the complex number field and the set of all
non-negative real numbers, respectively. Identifying C with L(C), one can
treat a positive measure on & (i.e., positive, finite, o-additive set function
u: o — R,) as a semi-spectral measure in C. A triplet (X, o, p), u being a
positive measure on a semi-algebra o/, will be called a measure space. We say
that a paving ) on X approximates a positive measure u on & if for each
Ae o/ and for each ¢ > 0 there exist Ke )" and Be .o/ such that Bc K = A4
and u(A\B) <e.

For the purpose of this paper, we call

X= (Xi’ 'di’ Fi’fl:ja X’jl:’ I)

a projective cone of semi-spectral measures in H (in short, a projective cone
over H) if the following conditions hold true:

() (I, <) is an upward directed set;

(2)- for each iel, F; is a semi-spectral measure in H on a semi-algebra .</,
of subsets of the set X;;

(3) for each i€l, f; is the identity map on X;;

(4) foralli<j, f;: X;— X; is a measurable measure-preserving surjective
map (ie., f;; ' (o) < .«/; and F; = F;of;;’");

() fijfix=Ja for all i <j<k;
(6) fi: X— X; is a map such that f;f; = f; for all i{j.

The projective cone X over H is said to be convergent if there exists a
unique semi-spectral measure F in H defined on the g-algebra o (| f;™! ()
iel

such that
(7) F,=Fof~! for each iel.

The measure F will be called the limit measure of X.
Notice that if X = (X;, o, F,, f;;, X, f;, I) is a projective cone over H,
then

’X= (Xl'-s a(di)s aFiafl:ja X’.fl:’ I)
is also a projective cone ever H. Moreover, in virtue of the equality

o(U S (1) = o (U 7 o (40),

’X is convergent if and only if X is convergent. In the sequel we will say
“projective cone of measure spaces” instead of “projective cone over C.
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By a projective system over H we mean a projective cone
(Xi, &, Fy, fijs X1, fir, 1)
over H, where X; and f;; are defined as follows:
X; = {(x)ier: xi€X; and f;(x;) = x; for all i <j},
fulx)=x; for xe X;, x =(x)jes, i€l.

Consider a projective. cone X over H. Let i; <i, < ... be an increasing
sequence on I and let A4,, 4,, ... be sets with 4, < X;, n> 1. Following
Topsge [14] we sdy that (A,) is subconsistent if f; ; (Am) < A, for all n<m
or, equivalently, if f; . (An+1) = A, for all n2> 1. If all maps f;, iel, are
surjective, then (4,) is subconsistent if and only if (f; ! (4,)) is decreasing. We
call (B,) subordinated to (A,) if B, = A,, n > 1. The sequence (4,) is consistent
if fi; (Am) =A, for all n<m.

The following notion is due to Bochner [3]. We say that a projective
cone X over H satisfies the condition of sequential maximality if for each
sequence i; < i, < ... from I and for each consistent sequence (x,);>; with
x,€ X;, n > 1, there exists xe X such that f (x) = x, for all n. It is easy to

see that if X satisfies the condition of sequential maximality, then all maps
fi, iel, are surjective.

The notion of sequential maximality condition can be weakened to
almost sequential maximality (cf. [9], Definition 4.5). We say that a projec-
tive cone (X;, .o/, u;, fij, X, f;, I) of measure spaces satisfies the sequential
almost maximality condition if for every ¢ > 0 and every sequence i; <i, < ...
from I there exists a subconsistent sequence A,e &;, n =1, such that

®) (X \A4) <¢ for each n> 1;

(9) for any consistent sequence (x,) subordinated to (A4,), there exists xe X
such that f; (x) = x, for every n> 1.

Let X =(X;, o, w, f;;, X, fi, I) be a projective cone of measure spaces
and let J = (i,) , be an increasing sequence on I. Denote by X, the set of all
consistent sequences (x,) with x,e X ip 21, and by f,, the map on X; into
X, defined as follows:

fn.l(x)=xn for XGX_,, x=(xn):i—-l'

Following Musial (cf. [9]) we say that X is sequentially convergent if, for
every increasing sequence J = (i,);%, from I, the projective cone

XJ = (Xl',,’ ﬂi”’ uinaja:"i"p X.Isfn.la N)

is convergent (N = |1, 2, ...}). It is obvious that X is sequentially convergent if
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and only if ?X is sequentially convergent. Thus (cf. [9], Theorem 4.3) every
sequentially convergent projective cone X over C such that °X satisfies the
sequential almost maximality condition is convergent.

3. Operator properties of the projective limit. Our first result shows how.
some operator properties of a given convergent projective cone X over H
affect those of the limit measure of X.

ProrosiTiON 1. Let F: # — L(H) be the limit of a convergent projective
cone

X= (Xi» "di» Fi,ﬁja X’f;" I)

over H. Then
(i) if all measures F;, icl, are spectral, then F is also a spectral measure;
(1) if an operator Te L(H) commutes with every one from \) F;(&;), then
iel
it commutes with every operator from F(%).

Proof. Denote by F, the restriction of F to the algebra .o/, generated

by the semi-algebra

o = Ulf.-_ ()
(-«/, consists of all finite disjoint unions of sets from .o/). Observe that if all
measures F;, iel, are spectral, then F, is also a spectral measure. Similarly, if
an operator Te L(H) commutes with every operator from () F;(%;), then it
iel

commutes with every operator from F,(<,). Since # =6 (<,) and F = °F,,
Proposition 1 follows from the well-known results of Berberian (cf. [1],
Theorem 7, p. 15, and Theorem 12, p. 31).

CoroLLARY 1. Let X =(X;, ;, F;, f;;, X, fi, I) be a convergent projec-
tive cone over H with the limit measure F: % — L(H). Denote by ¥"; and ¥ the
von Neumann algebras generated by F;(s/;) and F (%), respectively. Then ¥
=lmv,ie, ¥, <¥ ;¥ foralli<j, and ¥ is the von Neumann algebra

generated by () ¥ (or, equivalently, ¥ is the closure of U ¥, in the strong
iel iel
operator topology).
Proof. Since

Fi (o) = Ejﬁj—l(‘di) cFi() = Ffj_l(ﬂj) < F (%),

we have ¥, c ¥ i< ¥ for all i <j. Thus we have only to show that ¥ is
the von Neumann algebra generated by () ¥;. The key idea of the proof is

iel
to use the von Neumann double commutant theorem.
Let & be an arbitrary family in L(H), closed under the operation of

taking adjoints. The commutant &’ of # is the totality of all operators from
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L(H) which commute with every one from 4. The null space ker # of % is
the set of all he H such that Th =0 for every Te #. Denote by Pj; the
orthogonal projection of H onto HOker #, the orthogonal complement of
ker # in H. Recall that the von Neumann double commutant theorem states
that the von Neumann algebra W* (%) generated by # equals

(TeF': TPy =P, T=T).

Moreover, ker # = ker W*(%).
Consider now an arbitrary semi-spectral measure E in H on a semi-
algebra /. Then ker E () = ker E(X). Indeed, if E(X)h =0, then

LE(A) | < LE(A)Y2]| |[E(A)Y/2 hi| = ||E(A)Y| (E(A) h, h)"*
<E(A)Y|(E(X)h, h)'"* =0  for all Aeo.
The second part of Proposition 1 states that
{U Fi("di)}l = F(%)'.

iel
Thus we can write

F@#)'=>y">(U¥) = ( Y Fi(o)) = F(®)

and, consequently,
F(#)" = (_U’ )"
Since F(X) = Ff;'(X;) = F;(X;), we have
kerF(.@) = kCI‘F(X) = ker FJ(XJ) = ker Fj(=ﬂj) = ker »Vj = n ker ¥
iel
= ker (| 77)
iel

for each jel. This means that

PF(J) = PU v
iel

Summing up,
v = W*(F(®) = W*(U 7).
iel
This completes the proof.

Notice that the conclusion of Corollary 1 remains still true if we take
into consideration the von Neumann algebras W*(F () u {idy}), iel, and
W*(F(#B)u {idy}) instead of ¥; = W*(F(«)), iel, and ¥ = W*(F(£)),
respectively (idy stands for the identity operator on H).

To state the second corollary we need the notion of minimal dilation.
Let F be a semi-spectral measure in H defined on a semi-algebra &/ on X. A
triplet (H, R, F) is a minimal dilation of F if H is a Hilbert space, R: H — H
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~

is a boundecl linear operator, and F is a normalized spectral measure in H
on &/ (i.e, F(X) =idg) such that

(100 F=R*FR,

(11) H= \/{f(A)RH: Ae o} = the smallest subspage of H
containing the union J{F(A)RH: Ae .«/].

Recall that the Naimark dilation theorem (cf. [8], Theorem 4, p. 30) states
that every semi-spectral measure in H defined on «/ has a minimal dilation.
Moreover, its minimal dilations are determined up to unitary equivalence,
ie, if (H, R, F) and (H,, R,, F,) are minimal dilations of F, then there exists

—~

a unitary isomorphism U: H — H, such that
(12) UF=F, U,
(13) UR =R;.

CoROLLARY 2. Let X be a convergent projective cone over H with the
limit measure F. Let (H, R, F) be a minimal dilation of F. Then for each
Te () F;(.«/,) there exists a unique operator Te F(#) such that TR = RT and

iel
TN < IIT]|.

Notice that Corollary 2 is a simple consequence of the second part of
Proposition 1 and the lifting theorem (cf. [8], Theorem 1, p. 40).

Let now (H, R, F) be a minimal dilation of a semi-spectral measure F
in H defined on a semi-algebra ./ on X. Since °F is a spectral measure and
°F = R*°FR on /, we have

(14) °F = R*°FR,
(15 H=\/{°F(ARH: Ae o).

In other words, (H, R, °F) is a minimal dilation of °F, which satisfies
condition (15). Since minimal dilations are determined up to unitary equiva-
lence, we infer that for any minimal dilation (H,, R, E) of °F the space H,
equals \/ {E(A)R, H: Ae o/}. Using the notion of dilation extension (cf.
[12], Proposition 3), one can say that °F is a dilation extension of F (for
another proof of this fact see [13], Appendix). Summing up we have proved
the following

ProrosiTION 2. Let X be a convergent projective cone over H with the
limit measure F: # — L(H). Define the maps

gij: i~ A, i<j, and g; A, - B, iel,
by .
gij =./|:j_l and g;=fi"'.
Then the function F is the limit of the inductive cone (F;, g;j, g, I) of dilatable
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functions (i.e., g;; is the identity map on o/; for each icl, g, = gy g;; for all
ISj<k, gi=gjgi for all i <j, F,=F;g,;; for all i <j, F; = Fg; for each
iel and F is a dilation extension of the restriction of F to o = ) g;())).
iel
The connections between minimal dilations of F;, iel, and minimal
dilations of F are described in [12]. In particular, the first part of Proposi-
tion 1 follows from Proposition 4 of [12].

4. Convergence of projective cones over C. The following lemma gives
necessary and sufficient conditions for a projective cone of measure spaces to
be convergent. This is essentially due to Topsge (cf. [14], Lemmas 1 and 2).
A similar result was obtained by the author in his doctoral thesis written
under the supervision of Professor W. Mlak in 1978.

LemMma 1. Let X =(X;, o4, w, f;;, X, f;, I) be a projective cone of mea-
sure spaces such that

(i) for each icl, o, is an algebra,

(ii) for each iel, f; is a surjective map.

Assume that, for each i€l, a paving X; on X; approximates p;. Then X is
convergent if and only if for each ¢ > 0, for any sequence i, <i, <...on I, for
any sequence (K,) with K,e X', , and for any sequence (B,) with B,e o; such
that

fiy 1K) o fi;1(By) = fi; 1 (K2) o fi; 1 (B)) >
and ’
Wi, (By) =€  for each n> 1,

we have
N ' (B)#0.

If, additionally, I has a countable cofinal set (j,)%, such that j, <j, <..., then
we can take into consideration only one sequence i, =j,, n> 1.

In this section we give sufficient conditions for a projective cone of
measure spaces to be convergent. The first result within this general frame
was obtained by Choksi [4] and Métivier [7] (see also [11]). Our result is
related to Theorem 3 of [14].

ProrosiTioN 3. Let X =(X;, &, w, f;;, X, fi, I) be a projective cone of
measure spaces such that °X satisfies the sequential almost maximality condi-
tion. Let X, iel, be a family of pavings such that

W) f;(X;) = A, for all i <j;

(ii) for all i <j and for each xe X;, the paving f;j'(x) N X'; is compact;

(iii) for each iel, X'; approximates p;;

(iv) for each icl, X, is contained in the °w-completion of ().
Then X is convergent.



90 J. STOCHEL

Proof. Notice that without loss of generality we may assume that

(ii,) each ./; is an algebra and each paving f;; !(x) N X; is monocom-
pact.

If not, then one can take into consideration a new projective cone

X. = (Xi, JJ;" ﬁl’f;]’ X’ﬁ’ I)

and a new family J;, iel, where [i; is a unique extension of 4 to a measure
on the algebra <7 generated by «;, and £, is the closure of ¢ under finite
unions. Then X and Jf;, iel, satisfy the assumptions of Proposition 3 and
condition (ii,). Moreover, X is convergent if and only if X is convergent.

Assume that (i1,) holds. First we show that X is sequentially convergent.
To begin with let we choose an arbitrary increasing sequence J = (i,),~, and
consider the projective cone

x.l = (Xi,,s '-Q/i,,’ #i,,’ﬁ,,im’ X.lafn.h M

Since each f;; is surjective, so is each f,;. Thus we can apply the second
part of Lemma 1 to the cone X;. Let (K,) be a sequence with K,e X’ i, and
let (B,) be a sequence with B,e &; such that

fi7 (Ky) 2 fi71(By) 2 f2,1(K)) szs.l(Bz) o...

and y; (B,) = ¢ for each n > 1, where ¢ is a positive real number. Since each
Ju is a surjective map, the sequence (K,) is subconsistent and the sequence

(/i (Km))m=n is decreasing. Let us denote by K,, n>1,the set () f; im (Km)-
* Since conditions (i) and (ii,) hold, the sequence (K,) is consistent (cf. [4]).

Now we show that, for each n > 1, K, is a non-empty set. Denote by
(Xi, %, v;) the °y;-completion of (X;, a()), °w;), iel. It is easy to see that
fii 1(#;) < B; and vjof;; ! =v; for all i <j. Since each f,, is a surjective
map, we obtain

fig(fii(Km)) > K> B, for all n<m.
Moreover, by (i) and (iv), K, and K, belong to #;, for each n> 1. Thus
iy (R) = im v, (£, (K)) = lim vi, (£ (i (Ko)

> lim v; (B,) = lim 4 _(B,)>¢>0.
This means that K, # Q.

Summing up, (K,) is a consistent sequence of non-empty sets subordinated
to (K,). It is easy to construct a consistent sequence x = (x,) subordinated to
(K,), hence also to (K,). This means that xe X, and f,;(x) = x,€ K, for every
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n>1. Thus
xe le.J‘(K,.)= Ql Jur 1 (By).

In virtue of Lemma 1, X; is convergent. Since the sequence J was chosen to
be arbitrary, X is sequentially convergent. By the sequential almost maxi-
mality condition, X is convergent. This completes the proof.

ProrosiTioN 4. If I has a countable cofinal subset, X is a projective
system of measure spaces and X;, i€l, is a family of pavings which fulfil
conditions (i)Hiv) of Proposition 3, then X is convergent.

Proof. First observe that if I has a countable cofinal subset, then it has
a countable cofinal subset J = (i,);~, such that i, <i, <... It is an observa-
tion of Musial (cf. [9], Proposition 2.3 (ii)) that X is convergent if and only if
X, is convergent. But the last statement can be proved in the same way as it
was done in the proof of Proposition 3.

Remark. Notice that condition (ii) of Proposition 3 is automatically
satisfied if each map f;; is injective.

CoOROLLARY 3. Let I be an upward directed set and let ;, icl, be a
family of semi-algebras on the set X such that </; < of; for all i <j. Let y,
iel, be a consistent family of measures (i.e., y;: &/; — R, and y; = yjl,o,j for
all i <j). If A, iel, is a family of pavings such that each X'; approximates
Wi, Xj< A for all i <j and A'; is contained in the °y-completion of o ()
for each iel, then there exists a unique measure p on o(|) ;) such that y

iel

= Y, for every icl.

5. Convergence of projective cones over H. This section deals with
projective cones over a complex Hilbert space H. First we find out the
connection between convergence of such cones and suitable families of
projective cones of measure spaces.

Given a projective cone X = (X;, <, F;, f;;, X, f;, I) over H and an
arbitrary vector he H, we define the projective cone X, of measure spaces as
follows: '

Xi = (Xi, o, (Fi(")h, h), £, X, £, 1)
The following simple lemma enables us to reduce the problem of convergence
of projective cones over H to the case where H is one-dimensional.

LEMMA 2. A projective cone X over H is convergent if and only if X, is
convergent for every he H such that ||h|| = 1.

Proof. Suppose that X, is convergent for each he H such that ||| = 1.
Denote by u,, [|Al| = 1, the limit measure of X, and define an operator-valued
set-function F on the semi-algebra

o =Uf ! (<))

iel
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by the formula F(f;”'(A)) = F;(A), where Ae «; and iel. To prove correct-
ness of the definition, suppose that f;~'(4) = f;”'(B), where Ae «;, Be .
and i, jel. Then for each he H such that ||h| =1 we have

(Fi(A) h, B) = up (i~ (4) = (51 (B)) = (F;(B) b, h).

This means that F;(A) = F;(B). Since (F(:)h, h)= . |Ihll =1, the set
function (F () h, h) is o-additive for each he H. In other words, F is a weakly
g-additive set function. Thus °F is the limit measure of X. The converse is
obvious. This completes the proof.

Proposition 3, Proposition 4, and Lemma 2 can be used to produce
some sufficient conditions for projective cones over H to be convergent. In
particular, we obtain the following

CoROLLARY 4. Let X be a projective cone over H which fulfils the
sequential maximality condition. Let X, icl, be a family of pavings which
satisfies conditions (i) and (ii) of Proposition 3. If additionally, for each iel,
X < o; and, for all iel and he H, #; approximates (F;(-)h, h), then X is
convergent.

Notice that if all the sets X, ie I, are Polish spaces and all maps f;; and
f; are continuous, then every projective cone (X;, #(X)), F,, fij, X, f;, I) over
H is convergent (#(X;) stands for the family of all Borel subsets of X))

The next result is an operator version of the Jessen theorem. Let
(X,, ,), weQ, be a family of measurable spaces (i.e., &/, is a g-algebra of
subsets of the set X, we Q) indexed by the set 2. Denote by I() the set of
all finite subsets of €, directed by inclusion. If i = Q, then X; stands for the
Cartesian product [] X,,, ; stands for the semi-algebra of all cylinder sets

wei

on X; (ie., .¥; consists of all sets of the form (J] 4,) x X;\;, where A,e </,

wej
for each wej and jel(Q), j <i), and &, stands for the g-algebra o(%,).
Given a family X, we £, of sets, we define the maps f;: X;— X;, i ¢,
and f;: X,— X;, iel(Q), by

(16) f;'j ((xw)wej) = (xw)wei H
(17) f; ((xw)weﬂ) = (xw)wej’

where x,e X,,, wej, and i .

CoROLLARY 5. Let (X, &), wef2, be a family of measurable spaces
and let F,: of,— L(H), weQ, be a family of normalized semi-spectral
measures satisfying the following condition:

(i) F,(A)F,(B) = Fo(B)F,(A) for all w, geQ such that w # ¢ and for
all Ae o/, and Be o,.

Assume that for each we $2 there exists a compact paving X', < ./, such that

(ii) for each weQ and for each he H, X', approximates (F,(-)h, h).
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Then

1° There exists one and only one semi-spectral measure F: o/, — L(H)
such that

(18) F((IT 4a) x Xqu) = [ Fu(4.)
for all A, e o,, wei, and iel(9).

2 If all the measures F,, we$2, are spectral, then F is also a spectral
measure.

3 () Fu () = F(ly).

mef

The measure F is called a product of semi-spectral measures F,, we Q.
Proof. 1° For ieI(Q) we define the paving .¥; on X; as follows:
H; =[] Ko: Ko X, for weil.

wei

It is easy to see that ", is a compact subpaving of the semi-algebra .#;. Let
us define the function F;: .¥; — L(H), ie (), by the formula

F(J14.) =]l Fo(4n), A,e A, wei.

wei wei

Using the same arguments as in [1] (Lemma 2, p. 90), one can show that F;
is finitely-additive and that, for each he H, ¥; approximates (F;(-)h, h),
ieI(Q). Thus, for each he H, (F;(*)h, h) is g-additive and, consequently,
F; is a semi-spectral measure. Summing up, the projective cone X
=(Xi, & Fi, fiy, Xo, fi» 1(Q)), where the maps f; and f; are defined by
(16) and (17), respectively, satisfies all the assumptions of Corollary 4.
Therefore, X is convergent. Denote by F the limit measure of X. Since

o( U (L) =0(FLa) =,

iel()
and

F((IT Ax) x Xau) = F (£ ([1 4u)) = Fi(I 40) = I] Fo (40)
for all A e o/, wei and iel(£2), the measure F satisfies (18).
2° and 3°. If all the measures F,, we £2, are spectral, then the measure F;
is spectral for each ieI(R). If

Te (\ F,(A,),

wefd
then Te F;(¥;) for each ieI(Q). Thus we can apply Proposition 1 to the
cone X. This completes the proof.
It follows from Corollary S that if X,, weQ, is a family of Polish
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spaces, then there always exists a product of commuting normalized semi-
spectral measures F,,: #(X,) — L(H) (cf. [2]). Notice that the assumption (ii)
of Corollary 5 cannot be omitted even if € is a two-point set and F,, we Q,
are spectral measures. Namely, one can construct two commuting normalized
spectral measures without product measure.
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