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BREAKDOWN PROCESSES OF SYSTEMS IN PARALLEL

1. This paper deals with system of facilities composed of n iden-
tical facilities, each with independent breakdown processes having expo-
nentially distributed working and breakdown times. The facilities are
connected in such a manner that the whole system is in working order
if and only if at least 4+ of the component facilities are in working order.
Generally, breakdown time may be understood either as the repair time
of a failed facility or as the replacement time of a failed facility or as
the time necessary for automatic regeneration, etc. In the case 2 =1
the facilities are connected in parallel in the usual way, as e.g. commu-
nication lines in telefony. Then for the system to be in working order
a working order of any of the facilities is necessary and sufficient. If
in a system in parallel a reserve of several facilities being in working
order is necessary for the whole system to be in working order then we
have the above defined breakdown system. In the extreme case 7 = n
the facilities are said to be connected in series.

We are interested in working and breakdown time distributions
of the system under stationary conditions i.e. in the working time distri-
bution from the end of one breakdown period to the beginning of the
next breakdown period and in the breakdown time distribution from
the end of the working period to the beginning of the next working
period.

The expected values of those distributions have been given by Sedyakin
in [7] in a general case of facilities each of them having an arbitrary
working time distribution and breakdown time distribution. For the
unnecessarily identical facilities having exponentially distributed working
and breakdown times Kozlov and Ushakov in [5] have given the Laplace
transform of the density of the working time distribution in the form
of a quotient of two determinants (which is quite sufficient for numerical
investigation of the facility system by the use of computers) and the
expected value of this distribution. A similar result is known for new
systems beginning work from the working order state of all facilities
(see also [1], [2], [6]).
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Assuming that the facilities in the system are the same we can find
in a different manner the Laplace transforms of the density and the
distribution function of the working and breakdown times of the system,
and present them in a form convenient for calculating the higher moments
of the distributions in question. This paper is a continuation of [3] and
[4] where special cases ¢ = 1 and ¢ = n» have been analyzed.

2. Let us consider n identical facilities with independent breakdown
processes a”)(t) for j =1,2,...,n, —oco <1< oo, defined in [3] in
the following way

for Zz'
(

. k
(1) (1) = ;
®) 0 for Z¥ ,<t<Z{),

where the intervals Z§Q+1—Z§’}Z = X, called the working times of the
j-th facility, are independent random variables having an exponential
distribution with parameter 1, the intervals Z{)—Z$) , = Y9, called
the breakdown times of the j-th facility, are independent random variables
having an exponential distribution with parameter u; and the working
and breakdown times are independent.

Let us form a new process

n

(2) Ba(t) = D' a?(1),

j=1

which denotes a number of facilities in working order at the moment ¢.
If a)(t) represents also the rate of production of the facility at the mo-
ment ¢ then the process f,(f) is the rate of production of the system.
Due to the former assumptions the process §,(t) is a stationary Markov
process having the states 0,1,...,n and the transition probabilities

a1 (1) = P(Ba(t+7) =1 Bu(t) = k) = o(r) for [k—1 >1,
Oxx—1(7) = kir+o(7),
arpy1(7) = (n—k)pr+-o(7),
a1 (7) = 1— [kA+ (n—F) plt+o(z),
where 0 < k < n.

We shall make a symbolic recording of these probabilities in the
form of the matrix of transition rates

—nu ny 0 0 0 0

A —(m-1)p-2 (n-1)k .. 0 [1] 0
A=08:--«cccii e e e e s e e e e e e e
0 0 o (P=1)2 —p—(n-1)2 o
0 0 0 0 ni —na
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The probabilities of the states of the proces f,(t) are as follows

(3) pe = Pga(t) = ) = () o0

where p = u/(A+u), ¢ =1—p, and the time of the process f,(f) to be
in state k is a random variable of exponential distribution with parameter
KA+ (n—k)u.

As an interesting point let us consider a chain N (r) defined as the
sequence of states {f,(t.+ 0)}, where ?, are the discontinuity points of
the process f,(t). The chain N (r) is a stationary Markov chain with the
transition probabilities

_ ‘ B o (n—=ku

Qpp = P(N(r+1) = k+1|N(r) = k) = it (n—R)p
A

ars = PN (r+1) = k—11N0) =) = =

for 0 <k < n.
The probabilities of the states of the chain p, = P(N(r) = k) fulfill
the system of equations

Pr = Pr_10k_1%+ Pri10kr1x for 0 << k<.

The solutions of this system of equations are probabilities

n, — 1 (n _ k-1 n_k—1
pk—%(k)[kqﬂn k)yplp™q :

We shall define the breakdown process for the system as follows

1 for  Ba.(t) =4,
0 for p.0)<rt,

A n (1) =

which means that the system is in working order if and only if at least
¢ facilities of the n are in working order. It is easy to check that the
process a;,(t) is well defined which means that the sequence of conse-
cutive intervals of working periods is a sequence of independent random
variables with the same distribution, that the sequence of consecutive
intervals of breakdown periods is a sequence of independent random
variables with the same distribution, and that the working and breakdown
periods of the system are independent. It is due to the fact, that the
process fB,(t) is a Markov process, therefore if, for example, at a parti-
cular moment the system passes from working order to breakdown order
the continuation of the process «;,(t) does not depend on its run up to
this moment.
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3. We shall investigate the working time distributions of the system.
We shall mak euse of the well known method of differential equations appl-
ied, for instance, in Sandler’s book [6]. We are considering the process £,(1)
on the states ¢—1,4¢,...,n assuming that the state ¢—1 is absorbing
and the matrix of transition rates for this process is of the form

-------

where A®*~) denotes the matrix of elements in matrix 4 in the rows
t,t+1,...,n and in columns ¢—1,14,...,n.
It is known that the probabilities of the states for the Markov process

P(t) = [Pi_1(t), Pi(t), ..., Pu(t)]
= [P(Bn(t) = i—1), P(Bn(t) = 1), ..., P(Ba(t) = n)]
fulfill the system of differential equations
(4) P'(t) = P(1) B,

which should be solved with some initial condition P(0). Passing to the
Laplace transforms Z(P(t)) = P*(s) and applying the known formula
$(P’(t)) = sP*(s)— P(0) the system becomes a system of linear equations

(5) P*(s)[sI— B] = P(0).

We are interested in the probability P;_,(f) which is the probability
for the system to be in breakdown order from the moment ¢ = 0 until
the moment ¢. This probability is usually calculated for the following
initial condition:

A. P,(0) =1 which means that at the starting point all facilities
are in working order, for example, when the system is a new one. Proba-
bility P;_,(t) is then the distribution function of the working time for
a new system. The solution of the system (5) for P ,(s) is (see [5] p. 90,
[6] p. 195)

(6) P} 1(s) = det Uy (s)/s det W{(s),

where
0 —1A 0 0 0 0
0 S+idf(m—1)pu —(+1)2 ] 0 0
0 —(n—7)u S+ A4 (n—i-1) 8 —(++2)2 .. 0 0

(1) Oy = .. T T T

0 0 0 e SH(M—1)2+p —nd
1 0 0 0 . - s4ni
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and
s+idy(n—1)n —(i+1)2 0 1] 0
, m—t) e  SHE+D)A+m-T-1)p —(i+2)2 .. 0 0
(8) w (8) = |« - o
0 0 0 . 84m=1)24+n —n2
0 0 0 —u s+ni

It is easy to see that
(9) det UD(s) = 4(i+1) ... nA" "1,
The denominator in the formula (6) will be dealt with later.

B. In this paper attension is paid to the following initial condition:
P?'(‘O) :pi/(pi+pi+l+'--+_'pn) for .7 ':/':’7;"'17-'-7’”'

which means that the moment ¢ = 0 has been chosen at random in the
working period of the system. To be more exact we reject from the process
Bn(t) the time intervals where f, () < %, so receiving a stationary process
with state probabilities P;(0). Probability P; ,(t), the Laplace trans-
form of which fulfills the system (5), is the distribution function of the
system working time which has still remained after the moment ¢ = 0.
The complete working time of the system is then a random variable X;,
with the distribution F;,(x) involved in the formula

1
EXi,n

[ (1= Fin(w)du = P;_,(x).

Therefrom we calculate

F'i,n(w’) =1-— EX’i,nP'IIZ—l(x)7
where
EX;, = 1/P;_,(0).

The first equation of the system (4) is of the form P;_,(t) = iAP;(t),
thus
Pi(x)
P;(0)

Fi,n(m) =1—
The last formula may be written using Laplace transforms. If we
denote Z(F;,(z)) = fin(s)/s then

1—fin(s) _ Pi(s)
8 P;(0)

(10)

The solution of the system (5) with respect to P;(s) is
(11) PX(s) = Py(0)det VI (s)/det W (s)
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where
1 —{i+1)4 0 0 0
. Pi1/D; S+E+1) AL (n—i-1)p —(I+2)4 .. 0 0
(12) VO@G@) = -
Pp—1/P4 o 0 ve 8+ (M=1)A+p —nid
PulP; 0 0 —u S4+nA

and W{)(s) is given in (8).
We shall now prove that

(13) det V@ (s) = detW) ,(s+a), a = Ai+pu.

Proof. Developing det V¥ (s) with respect to the first row we obtain

det V) (s) = det WD (s)+ (i+1) 4 2L qet V{+9 (s)

= det WD (s)+ (n— i) udet VG (s).

Repeating this procedure we obtain

det VO (s) = detWEHY (s)+ (n— ¢) pdet W§+ (s) +
+(n—i—1)(n—1)u2det W§+3 (s)+
4. 23 (=) p" T det W () + (n—4) L "
= det W+ (s)+ (n—i) u{det Wi+ (s)+
+ ... +3p[det WS (s)+ 2u(det WS (s)+ u)] ...}

$+(i+1)A+(m—i-1) pt(n—i)p  (n—1) K- (i+2)4 (n—1)u e (R=t)
—(n—i-1)p S4(t+2) A+ (n—i-2) 1 —(i43)2 0
— 0 —(n—i-2)n S+(i43)A4(n—i-3)p» .. 0
e e e e .0 .............. R A ._n;
0 0 0 . S

Adding to every row in this determinant, starting with the first
one, all following rows and then subtracting from every column the
preceding column, starting with the last one, we get

det VP (s) = detW ,(s+ a).

This ends the proof of formula (13).
Making use of formulae (10), (11) and (13) we obtain

—f¥ (%)
‘(14) 1 fz,n(s) _ detW’Ib—lgs‘*’af)
s detW;:)(s)
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It is easy to prove that

(13) det WS (s)— sdet WS) (s + a) = iAdet WSV (s)
hence
(16) Frals) — St Wa t0(6)

i,n -

det W (s)

This is a particular case of the formula (4.1.32) from [5]. It has
been obtained from the system of equations (5) with the initial condition
P;(t) =1 which means that at the moment { = 0 the minimum number
of facilities is at work required for the system to be in working order.
This may be the case if at ¢ = 0 there is a transition from the breakdown
order into the working order. Probability P;_,(¢) is a distribution funec-
tion of the working time for the system, although the initial condition
mentioned above does not guarantee that the system is in the state ¢ for
the first time in the actual working time of the system.

Proof of formula (15). Let O(W) denote the matrix W transformed
in the following way. To every row, starting with the first one, we add
all following rows, and them from each column, starting with the last
one, we subtract the preceding column. In the reverse transformation,
which we denote by O~!'(W), all preceding columns have been added
first to each column, starting with the second one, and then the previous
row has been substracted from every row, starting with the last one.
Of course det O(W) = det O~ (W) = detW.

Developing det O(W$)(s)) with respect to the first row (or the first
column) we obtain

(17)  detW¥(s) = (s+i4)det W ,(s+a)—i(n—13) Audet Wit (s 4 a).
Thus
det W (s)—sdet W) ,(s+ a)
— iAdet WD (st a) — i(n—3i) ludet WD (s + a)

i i—ik 0 0

— detO-! _("O—Z)” — i2det WG+ (s).
Wi (s +a)
0

This ends the proof of formula (15).
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Developing det W (s) with respect to the first line and using (17)
we obtain two recurrent formulae

(18) detWyV(s) = [s+ ({—1)A+(n—3+1)uldet WY (s)—
—i(n—i+1)Audet Wit (s),

(19) det W) (s) = (s+iA)det VP (s) — i (n— 1) Audet VIV (s),
moreover, from the definition we get
(20 detW(s) = s+ni,

)
) det W= (s)= s24((2n—1) A+ pu)s+n(n—1) 22,
(22) det V=D(s) = s+nit u,
) det V§(s) = s>+ [(2n—1)A+3uls+n(n—1) A2+ 2niu+ 2ut.

Let us express det W (s) and det V{(s) in the form of polynomials
of variable s:

det W (s) = wly+wihs+...
det VP (s) = o+ o s+...
It is easy to calculate
wd) = det W (0) = i(s+1) ... nA"*1
(24) . : " :
oy = det V(0) = ( X' p)) (14+1)(i+2) ... n2""*ps,
j=t

since the matrices W (0) and V{(0), after having added to each row
(starting with the first one) all the following rows, have zeros above the
diagonal. To calculate wﬁ?l and vﬁf}l it is enough to compare the coef-
ficients in formulae (18) and (19). We obtain then recurrent formulae

(25)  wiiY = W+ [(E—1) A (n—i+1) plwi —i(n—i+1) Auw§iY,

(26) w = v+ iAo —i(n—1) ApelY,
where

(27) wi) =1, wir? =2n—1)A+u,
(28) o) =1, 7Y = (2n—1)A+3u.

As we have found the transform

%k
1=Jin®) _ gt Vi (s)/det W) (s)
S
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it is now easy to find

1—f; N
(29) BX,, = 1fm® ] e
’ $ s=0 ’w%,’o
1_f:,n(8)
EXin— (1) 1) () ()
$ /vn)own 1— WnoVn1
(30) EX:, =2 = B
$ |8=0 (wn,o)z
Thus
n
\ | .
(31) EXip = (D, p;) lip;.-
i=t

4. In [3] a different method has been used to find the working and
the breakdown time distributions for the system of facilities in parallel
and for 4 = 1 (in this case we say that the facilities are arranged in series).
It has been then proved that

s+nu(11—fi'in (5) 2 (?) e sjja ’

=0
thus
1—fla(s) _ m,(s+a)
(32) s - mg) (8) ’
where
(o) — - n\ j njS(8+a)...(s+na)
(33) mP (s) go:(j)p q —r '

We shall prove now that
(34) mP(s) = det W) (s).

Developing O(WY)(s)) with respect to the first row we shall indeed,
obtain the recurrent formula

det W (s) = sdetW{ (s +a),
thus

(35) detW(s) = s(s+a) ... (s+na).
From (13) and (19) we obtain
det WP (s) = (s+ 1) det WP ,(s+a)— (n—1) \udet WP ,(s+a),
from (18), however, we have

detWQ (s) = (s+ nu)det WS (s) —niudet W (s).
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From the last three formulae we obtain equation
(36) det WP (s) = (s+a)...( 8+ na)—nudet W ,(s+a),
the solution of which is detW{’(s) = m{(s) which is easy to check by

substitution.

9. Formula (34) is a particular case of the formula

n—1+41

7 () (o) — n—i+1\ j n_it1-j s(s+a)...(s+na)
(3‘) deth (8) = Z ( ,7 )p q + (s+ja) — (3—{—(3—{—’&'—1)0/) ’

j=0
or

n—it1 ;(%—l—l)...(f—l—l—n)
Jp 0] _ \V (p—i+1)\ jon—iy1-f
(37') deth(s)_i;,( ; ),ul T |
(;-H)(;'FJ-F )---(;‘H-l-%— )

This formula, in the form of (37’), comes from (18). It fulfills (18)
identically which can easily be checked by transforming all terms on
one side and by ordering the expressions according to powers of u’
(¢=1,2,...,n—i+1, making no use of the fact that @ = A+u).

From the formula (37’) we easily obtain

n

(38) wg’)l _ 1 (2 &4—1.) e P

At w =i J
n—t+1 n!
n—i+1) jan—it1-j :
+;( i j<j+1>...<j+z'—1>)’
~ 1 N (i)
(39 wl)y = ( — My
= 2 2
k#j
n-1+1 ) n—141 n!
n—t+1) jon_iy1-j :
. A — — .
+Z ("5 ,,Z a<a+1)...(a+e—1>k)

k#7,3+1,...,5+i—1
From the formulae (37’) and (13) we, however, obtain

n In_-i _{_

(40) vg}l:-l_( 1 AHD(E42) ..
l+“ j=1+1 J

n—-1

= R—i\ fon i n! )
+;( jJwa 2 (j+1><j+2>...(j+i)k)

k#j41,...,5+1
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From this we obtain moments of the random variables X;, in an
explicit form without the necessity of using recurrent formulae (25)-(28).
They may be more convenient of we are studying one distribution. It
will be easy now to find the moment of the working time of the new
system. As from formulae (9) and (24) we have det Uﬁf’(s) = wg’o S0,
denoting by X;, the working time of the new system, from formula (6)
we have
wg,)l

(41) EXi,n =

i)
wi»,)o

(42) DX,y =

6. To give an example the mean values EX;, and the variances
D2X;, for the case A = u = 1 are presented in Tables 1 and 2. The var-
iances for the random wvariables X’i,n = X;,/EX;, are presented in
Table 3. The values of the first column in Table 3 can be found in the second
column of table 1 in [4]. It has been proved in [3] that if » is growing
to infinity the distributions of the random variables X,, tend to an
exponential distribution with parameter 1. We may expect that this
convergence is taking place also in the case ¢ > 1. This is based on the

TABLE 1. Expected values of the working time X;, for 1 = u =1

.
NN 1 2 3 4 5 6 7 8 9 10
n o~
1 1.0000
2 1.5000 0.5000
3 2.3333 0.6667 0.3333
4 3.7500 0.9167 0.4167 0.2500
5 6.2000 1.3000 0.5333 0.3000 0.2000
6 10.5000 1.9000 0.7000 0.3667 0.2333 0.1667
n 18.1429 2.8571 0.9429 0.4571 0.2762 0.1905 0.1429
8 31.8750 4.4107 1.3036 0.5821 0.3321 0.2202 0.1607 0.1250
9 56.77718 6.9722 °© 1.8492 0.7579 0.4063 0.2579 0.1825 0,1389 0.1111
10 102.3000 11.2556 2.6889 1.0095 0.5063 0.3063 0.2095 0.1556 0.1222 0.1000

TABLE 2. The variances of the working time X;n for 1 = u =1

I 1 2 3 4 5 6 7 8 9 10
1 1.0000
2 2.7500 0.2500
3 1.4444 6.5556 0.1111
4 20.2708 1.2292 0.2153  0.0625
5 56.1733 2.7433 0.4178 0.1100 0.0400
6 159.439 6.2278 0.8189 0.1944  0.0656 0.0278
7 464.916 14,4621 1.6306 0.3472 0.1080 0.0431 0.0204
8 1393.62 34.4894 3.3124  0.6290  0.1797 0.0672 0.0303 0.0156
9 4290.41 84.6873 6.8877 1.1596 0.3030 0.1058 0.0452 0.0224 0.0123
10 13535.1 214.404 14,6991 2.1818  0.5187 0.1685 0.0681 0.0322 0.0172 0.0100:
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hehaviour of the values in the second column of the Table 3 where the
variances are decreasing for n = 9 and n = 10. However, the appro-
ximation of the distributions of random variables X;, by the exponential
distribution does not seem good for practically important values of =
and .

TABLE 3. The variances of the reduced working time X;,/EX;n for 4 =u

] 1 2 3 4 5 6 7 8 9
1 1.0000
2 1.2222  1.0000
3 1.3673  1.2500 1.0000
4 1.4415 1.4628 1.2400 1.0000
5 1.4613 1.6233  1.4687  1.2222  1.0000
6 1.4462  1.7251 1.6712  1.4463 1.2041  1.0000
7 1.4124 1.7716 1.8342 1.6615 1.4162 1.1875 1.0000
8 1.3717  1.7728  1.9493 1.8559 1.6294  1.3857 1.1728  1.0000
9 1.3308 1.7421  2.0142 2.0186 1.8350 1.5903 1.3573 1.1600 1.0000
10 1.2933  1.6924 2.0330 2.1409 2.0233 1.7955 1.5508 1.3316  1.1488

7. To find the breakdown time distributions in process a;,(t) it is
enough to notice that they are equivalent to the working time distribu-
tions in a system of » identical facilities arranged in parallel, with inde-
pendent breakdown processes a)(t),j = 1,2,...,n where the working
time for each facility is an exponential random variable with parameter
4 = u, the breakdown time for each facility is also exponential with
parameter u = A, and the breakdown process of the system is defined by

1 for
an_i-f-l,n (t) =

aN(t)=>n—i+1,
0 for (1)

aD(t) < n—i+1.

n

n

The breakdown time distribution of the system, therefore, may

be found by applying the same methods as those used in finding the

working time distribution in the previous parts of the paper. In particular
the expected value of the breakdown time is

n
(-
EYi.n = f=notid

(n—z'+1)u(n_ﬁ+1)4”‘i+‘pi‘l

From this as well as from the formulae (3) and (31) we obtain the
obvious conclusion

EX,, . ,
Plan) =1) = g v, ZZ (?)qu P =P(put)>1).
bl b 7’
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B. KOPOCINSKI (Wroclaw)

PROCESY AWARII SYSTEMOW URZADZEN 0 UKLADZIE ROWNOLEGLYM

STRESZCZENIE

W pracy rozpatruje sie systemy urzadzen zlozone z n jednakowych urzadzen
o niezaleznych procesach awarii z wykladniczymi rozkladami czasu pracy i czasu
awarii dla kazdego urzadzenia, polaczonych w ten sposéb, ze system znajduje sie
w stanie pracy wtedy i tylko wtedy, gdy co najmniej ¢ urzadzen jest w stanie pracy.
Symbolicznie proces awarii urzadzenia defininjemy w nastepujacy sposéb:

a () = {
natomiast proces awarii systemu definiujemy przez

1 jesli Ba(t) > <,
0 jesli fn(t) < i,

1  jesli urzadzenie znajduje si¢ w stanie pracy w chwili ¢,

0 jeSli urzadzenie znajduje si¢ w stanie awarii w chwili ¢,

ain(t) ={
gdzie

n
Ba(t) = ) af)(t)
i=1
jest iloScia urzadzen znajdujacych si¢ w stanie pracy w chwili ¢.
W niniejszej pracy znaleziono rozklady czasu pracy i czasu awarii systemu
w stacjonarnym procesie dzialania systemu, tzn. rozklady czasu pracy systemu od
zakonczenia awarii do poczatku nastepnej awarii i rozklady czasu awarii systemu
od zakonczenia pracy do rozpoczecia nastepnej pracy.

Zastosowania Matematyki. Tom IX, z. 3 4
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Do obliczenia srednich i wariancji tyeh rozkladéw znaleziono proste réwnania
rekurencyjne i efektywne wzory. Parametry te obliczone przykladowo dla systemu
urzgdzen o jednakowych (jednostkowych) §rednich czasach pracy i awarii urzadzen
wskazuja, ze narzucajjca sie aproksymacja rozkladéw czasu pracy i awarii systemu
przez rozklad wykladniczy nie jest doskonala.

B. KOIIOONMNHBCKMU (Bpounas)

IIPOLIECCHI ABAPUII CHCTEM YCTPONCTB COEJUHEHHLIX ITAPAJUIEJIBHO

PE3IOME

B paloTe paccMaTpMBAIOTCA CHCTEMH COCTOANIME M3 7 OXMHAKOBHX YCTPOUCTB
UMEINUX He33BUCHMHE IIPOIECCH aBapUM C MOKAa3aTEIbHHIMU pAaclpeeIeHNAMU
BpeMeHM padOTH M BpeMEHH aBapuUHM [AJA KAKAOro ycTpoiicTBa. ITH ycrpo#cTBa
COeMHEHH TAKUM 006pa3oM, YTO CHCTeMa MCIpPAaBHA TOI'JA M TOJIHLKO TOTAA, KOTAA IO
KpaliHeit Mepe i ycTpoficTB ucnpaBHHX. CGuMOoaHMYeCcKH, IMPOHeCC aBapuu ycTpoiicTBa
ompefenfAeTcA CleAylIIUM 06pasoM:

. 1, ecam ycrpoiicTBO MCIpABHO B MOMEHT ,
a(”(t) =

0, ecaum ycTpoHCTBO HEUCIPABHO B MOMEHT f.
ITporecc aBapum CHCTEMH OHmpefelieH, KAK CIe[yer:

1, ecau fat)>1,

in(l) =
ai.nlf) {0, ecan Bn(t) <1,

rue
n

Ba(t) = D) a¥)(t)
i=1
€CTh YMCJO YCTPOHCTB MCHPABHEIX B MOMEHT f.

B Hacroameit paGore HalieHH pacHpefieleHUA BpeMeHu paboTH U BpPEeMeHH
aBapMM CUCTEMH B CTALMOHAPHOM mpollecce PalOTH CHCTeMH], T.e. HalifeHBl pacImpe-
HeleHUA BpeMeHHM paloTH CHCTEMH C KOHIIA aBapuM [0 HAvYaja cleAypoueill aBapuu
M pacmpepjeiieHNs BPeMeHM aBAPUM CHUCTEMH ¢ KOHIIa PAbOTH [0 Havaixa CaeRylomiei
pabOTH CHUCTEMH.

JaHst mpOCTHE peKyppeHTHHE ypaBHeHMA ¥ 3(@@ekTnBHEE QOpPMYJIH AJIA Ompe-
AelleHNA MaTeMaTMYeCKUX OKUAaHMIl M Aucmepcuit 3TMX pacnpefenenuii. B kauecrse
OpHMepa 3TH NMapaMeTPH BHYMCJIEHH AJIA CHCTEMH YCTPOWCTB ¢ OAMHAKOBEIMU (egu-
HWYHHIMH) CpeJHUMH BpeMeHaMu paGoTH ¥ aBapuu. BHUYMCIeHHA YKasHBAOT HAa TO,
4T0 HATYpaJbHAA AaNIPOKCHMALUA pacupefelieHNA BPeMeHH pPaGOTH M aBapMM MHO-
Ka3aTeJbHHIM pacnpefeieHHeM He OUYeHb TOYHA, flaxe JJIA CPABHUTENbHO GOJBIIUX 7.



