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Continuous extensions of multifunctions

by H. A. AxTosiewicz* and A. CELLINA ** (Los Angeles)

Abstract. Let X be a metric space, let Z be a normed space, and denote by
F(Z) the metric space of non-empty bounded closed subsets of Z with Hausdorff
distance. The authors prove the following generalization of Tietze’s extension theorem.
Given any non-empty closed set 4 < X and any continuous mapping F: 4 ¢ (%),
there exists a continuous mapping G: X ¢(Z) such that G(a) = F(a) for every
acA and G(x) < col| ) F(a) for every zelX.

aed

In 1951 Dugundji proved that every continuous mapping of a closed
subset of a metric space into a locally convex topological linear space
admits a continuous extension to the entire space, and that such an ex-
tension can be so constructed that its range lies in the convex hull of the
range of the original mapping [1] (cf. also [2] p. 188).

In the present note we shall prove the following analogous asser-
tion for a Hausdorff continuous multifunction.

THEOREM. Let X be a metric space with distance d, let Z be a normed
space, and let F(Z) be the metric space of non-empty bounded closed subsets
of Z with Hausdorff distance h.

Given any mon-empty closed set A < X and any continuous mapping
F: A—>F(Z), there exists a continuous mapping G: X—F(Z) such that
G(a) = F(a) for every aedA and G(x) < colJ F(a) for every zeX.

aed
Throughout the sequel we will denote by ¢ the distance in Z induced
by the given norm and define, for any Ce« #(Z) and any r > 0,

V(C;r) = {zeZ: o(2,0) <7},
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where as usual
e(z, C) = inf{p(z, w): weC}.
Thus V(C,r)e# (Z) for any Ce#(Z) and any r > 0 and, in particular,
V(C;0) =C.
The Hausdorff distance between any two sets B, Cin % (Z) is defined as

k(B, C) = IIla-X{Q*(B, 0), o*(C, B)}’

where
0*(B, 0) = sup{o(z, C): zeB}.

As aresult, (B, C) < e holds for some ¢ > 0 if and only if both B « V(C; &)
and C = V(Bj;e¢). Moreover, if B;,C;, 1 = 1,2 are any sets in #(Z)
and h(B,VB,, C,) <&, then p*(C,, B,UB,) < ¢ implies k(B,UB,, C,UC,)
< ¢, as is readily verified. '

For notational convenience, let us put

H =co | F(a)
acd

and write Y for the subspace ¥4 of X.

LEMMA 1. Let F;e F(Z), © = 1,2, be subsets of H and let r,> 0,
i =1,2, be given constants. If h(F,, F,) < & and |ri—7,| < &5, then

h(V(Fl;Tl)nHy V(F2§Tz)nH)<€1+€z-
For the proof we need only show that
Q(ya V(Fz;rz)nH) < &t g

for every y e V (Fy; r,) N H, because of symmetry. Given any ye V (Fy; r,) N H
and any n > 0, there exist a point 2,¢#, with o(y, 2,) < r,+7/2, a point
zoeFy, with o(2y,2,) <& +7/2, and a point ¥ eco{y, z,} with o(¥’, 2,)
= min{r,, 0(¥, 2,)}. Clearly, y’ e V(Fy; r))NH. If o(y, 2,) <75, then y’ =y
and o(y,y’) = 0; if o(y,2.) >r,, then

(¥, ¥') = ey, 2) —e(yY, 22) < &1+ 62+ 7.

/
Thus, in either case, g(y, V(Fy; r;)NH) < & -+&,+n, which implies the
assertion.

LeMMA 2. For any function A: YR, and any open covering (U,),.y
of X, there ewist a continous function A: Y—>R_ and a mapping z: Y—>Y
such that ye U, and A(y) > A(z(y)) for every ye¥.

Indeed, let (U,),.r be a precise locally finite open refinement of

(Upyers let (I),,y be a continuous partition of unity subordinate to
(Uy)yer> and define for every ye¥

Aly) = D) ,(y) A(w).
welY
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Since (Supp(I1,))yy is a locally finite closed covering of ¥, it follows
that 4 is continuous in Y, and that to each y ¢ Y there corresponds a point
2(y)e Y such that

A(2(y)) = min{4(w): yeintSupp(/1,,)}.

Thus, yeU,, and A(y)> A(z(y)) for every yeY.

Let us now turn to the proof of the theorem.

Let W, for every yeY, be the open ball (in Y) with center ¥ and
radius 4d(y, A); let (V,),.» be a precise locally finite open refinement
of the covering (W,),.y of ¥; and let (p,),.r Pe a continuous partition
of unity subordinate to (V,),.r. Hence (Supp(p,))yr is a locally finite
closed refinement such that Supp(p,) < V, for every ye<X. Indeed the
local finiteness implies that, for every ye¢ Y, there is an open neighborhood
U,< Y and a finite set L(y) < ¥ such that

U,NSupp(p,) # @
if and only if weL(y). In particular, the set

Ly(y) = {weY: yeintSupp(p,,)}
is non-empty and finite and we may assume that

Uy () intSupp(py).
weL(¥)
Hence L,(y) = L(y) for every yeY and L,(y) < Ly(2) for any zeU,.
Moreover, (U,),.» is an open covering of Y.
Next, for every ye Y, select a point g(y) e A with d(g(y), y) < 2d(y, 4),
put

A(y) = sup{h(Fog(w,), Fog(w,)): w;eL(y), ¢ = 1,2}
and use Lemma 2 to define, relative to the covering (U,),.r, the con-
tinuous function A: Y—>R, and the mapping z: Y—Y. Let
p(y) = sup{p,(y): we¥}
for every ye¢Y, which implies that p is continuous in ¥ and p(y)> 0
for every yeX, and introduce
To(Y) = A(Y)pw(Y) /P (¥)

for every weY and every yeY, which implies that the family (7,),z 1S
equicontinuous in Y.
We assert that the multifunction G: X—>2% defined by setting G(a)
= I'(a) for every aeA and
Gy) = U TV(Fog(w);n,(y)nH
wel, (y)
for every yeY, is the desired extension of F to X.



110 H. A. Antosiewicz and A. Cellina

Clearly, for each y¢Y, G(y) is a non-empty bounded closed subset
of H because Ly(y) is finite. Thus G maps X into &#(Z) such that G(») <« H
for every zeX.

Let us show that G is continuous at any y,eY,.

Given ¢ > 0 there is an open neighbourhood N(y,) < ¥ of ¥y, such
that |r,(y) —7,(Ye) < ¢ for any yeN(y,) whatever weL(y,). Since,®by
construction, yoe U, NU,,, we may assume that N(y,) < U, n Uiy -
This implies, in particular, that L,(y) < L(z(y,)) for every yeN (y,).

We claim that k(G(y),G(y,)) < e for every yeN(y,).

Since y ¢ N (y,) implies Ly(y) > Lo(Y,) and hence Ly(y) = Ly(y,) VK o(¥)
with Ko(y) = Lo(y)NELe(Yo), we may write G(y) = G,(y)UG,(y), where

Gi(y) = U V(Fog(w); r,(y)nH,

weLg(vg)

Gy(y) = U V(Fog(w); ry(y))nH.

weKy(v)

Thus, by the remarks above, & (G(y), G(¥,)) < & will hold for every y N (y,)
if both h(G,(y), G(¥,)) <e¢ and o*(G2(y), G(¥,)) <& hold for every
Y e N (Y,).

Since Lemma 2 implies, for each weLy(y,),

WV (Fog(w); ro()nH, V(Fog(w); ru(¥)) NH) < e

we deduce at once that h(G,(y), G(y,)) < e for every yeN(y,).

To show that o*(G.(y), G(y,)) < e for every y N (y,), choose weLy(y,)

such that pg(y,) = p(y,) and hence rg(y,) = A(y,), and observe that
L(2(yo)) > Lo(y) for every yeN(y,) implies, for every weKy(y),

h(Fog(w), Fog(w)) < sup{h{Fog(w,), Fog(w,)): w;eL(2(y,)), © =1,2}
=4 (z(?!o)) < A(y,)-
Therefore Fog(w) = V(Fog(w); r5(y,)), and so Fog(w) = G(y,) and
o"(Fog(w), G(y,)) =0
for every weKy(y). It follows that, for every yeN(y,),
o (V(Fog(w); ry(v)) nH,G(ye) <&

whatever we Ky(y), because weK,y(y) implies 7,,(y,) = 0 and hence |r,(¥y)]
< & and consequently
" (G:(9), G(y,) < e

for every yeXN (y,).

Let us now show that @ is also continuous at any y,¢34, which will
complete the proof.

Given &> 0, there exists a 6> 0 such that h(F(y,), F(y,)) < ¢e/4
for any points y;e A with d(y;, y,) < 6, © =1, 2. We assert that

(G (), G(yo) <&
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for any ye¢Y with d(y, ¥,) < 6/5. Clearly, this will be true if, for any
yeY with d(y, y,) < 8/5, both h(Fog(w), F(y,)) < ¢/2 and |r,(y)| < &/2
hold whatever weLy(y).

Suppose ye¥ and weLy(y). Then d(g(w),w)<2d(w,A) and
d(y, w)< ;lad('w,A) by construction so that d(w, A) <’9—°‘d(y,yo) and
d{g(w), yo) <34(y,¥,) <8 and hence h(Fog(w), F(y,)) < /4.

Evidently, for any ye¢Y with d(y, y,) < 6/5, |7,(¥)] < £/2 will hold
whatever weL,(y) provided

A(y) < sup{4(2): yeU,} < ¢/2.
Thus we need only show that, whatever ye¢Y with d(y, ¥,) < /5,
A(z) =sup{h(Fog(w,), Fog(wy)): w;eL(z), i =1,2} < ¢/2

for every z such that yeU,.
Suppose ye¢Y and d(y,y,) < /5. Then yeU, implies d(y,z) <
54(2, A) and d(z, A) < 3$d(y, A), and weL(2) implies

d(w,2) < 5d(w, A)+35d(z, A)
and
d(w, A) < d(w, y5) < d(w, 2)+d(2, ¥)+d(Y, Yo) < 15d(w, 4)+3A(Y, Yo)
so that d(w, A)<iPd(y,y,) and d(w,y,) <% 4(¥,Y,). Thus yeU,
implies
d(g(w), yo) < d(g(w), w)+d(w, yo) < ()5 &(Y, Yo)
whatever weL(z), and hence

h(Fog(wy), Fog(wy)) < ef4+e/t = ¢/2

whatever w;eL(2), ¢ = 1,2. As a result, for every ye¢Y with d(y,y.,)
< 6/5, A(2) < ¢/2 holds for any 2 such that yeU,.

This completes the proof.

An extension theorem for upper semi-continuous multifunctions with
compact convex values may be found in [3].
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