INSTYTUT MATEMATYCZNY POLSKIE] AKADEMII NAUK

ROZPRAWY
MATEMATYCZNE

KEOMITHT REDAKCYJNY

KAROL BORSUK redaklor
ANDRZE] MOSTOWSKI, MARCELI STARK
STANISELAW TURSKI

XXXVII

R. DUDA

On biconnected sets with dispersion points

WARSZAWA (964
PANSTWOWLE WYDAWNICTWO NAUKOWE



57133

COPYRIGHT 1064

by
PANSTWOWE WYDAWNICTWO NAUKOWE
WARSZAWA (POLAND), ul. Miodowa 10

All Rights Reserved

No part of this book may be translated or roproduced
in any form, by mimeograph or any other meanse.
withont permission in writing from the publishers.

PRINTIKD IN POLAND

WROCLEAWER A T DR IKARANIA N ATRGF A



JHAPTER 1

§ 1. Introduction

A yot X is said to be dispersed if it contains no connected subset(?),
i.e. if every component of X is a single point.

A point p of a connected set X is said to be its dispersion point if
X --(p) contains no connected subset. A set X is called pulverable if it
is connected and contains a dispersion point p. The set X —(p) and every
set homeomorphic with X —(p) are called pulverized sets. Every pulver-
ized set, a3 containing no connected subset, is a dispersed set. The con-
verse is not true, of course.

Above forty years ago Kmnaster and Kuratowski introduced [6] the
notion of bhiconnected set. They have used the term biconnected to denote
such 2 connected set as cannot be decomposed into two non-intersecting
connected subsets. Each of biconnected sets oonstructed by Knaster
and Kuratowski contains a dispersion point. Kline has proved [4] that
avery counected set contains at most one such point. It follows that
every pulverable set P containg exactly one dispersion point. Neverthe-
less, Miller has shown [12] that, if the continuum hypothesis is true, there
exists a biconnected set which contuins no dispersion point.

In virtue of the definition, a biconnected get with dispersion point
is pulverable. The converse is also true, because every connected subset
of a pulverable set P mnst contain ifis dispersion point (see Lemma 4.1,
p- 10), and consequently a pulverable set ecannot be a sum of two non-
intersecting and connected subsets.

Wa shall use the term “pulverable set” instead of the name “bicon-
nected sot with (ispersion point”. Consequently, we shall use the short
term “pulverized sat” instead of the long one “a set homeomorphic
with o biconnected sct with dispersion point, whose dispersion point is
removed”. In this way by means of the special name of pulverable sets
we distinguish a Iarge subfamily of biconnected sets; this is in accordanec
with ite importance and its eharacteristic structure, which differs from the

(') In this paper w point set X is said to be connccled it it contains at least
two points and s not a sum of two non-void aeparated subrets.



4 Biconnected sets with dispersion points

gtructure of biconnected sets containing no dispersion point. To the fam-
ily of pulverized sets belongs, for instance (see Roberts [13]), the im-
portant set of all rational points (i.e. points with rational coordinates
only) of the Hilbert space (2).

It seems to be advantageous to get examine more closely the structure
of pulverable and that of pulverized sets. This is the scope of the present
paper.

Throughout the paper all sets (spaces) are separable motric sets. By
virtue of the Urysohn metrization theorem all this amounts to an inve-
stigations of subsets of the Hilbert cube.

The paper consists of 4 chapters.

Chapter I is an introductory one. It contains an introduction (§ 1),
preliminary notions and properties (§ 2), some properties of the new no-
tion of relative quasicomponent (§ 3), and some elementary properties of
pulverable sets (§ 4).

Chapter II contains some results on the structure of pulverable sets.
§ b deals with their connected subsets. Miller has proved ([12], theorem 4,
p. 128) that if B is a biconnected set containing no dispersion point, and
if T is a finite subset of B, then the set B—T is connected. Theorem 5.3
completes this result as follows: if P is a pulverable set, a its dispersion
point, and 7' a finite subset of P— (a), then the set P —T is also connected.
Given any family of pulverable sets, the main theorem of § 6 permits to
construct a new pulverable set (Theorem 6.1). Corollary 6.2 asserts that
for every family of at most 2% pulverable sets there exists a pulverable
set being a union of homeomorphic images of these sets. § 7 deals with
quasicomponents of pulverized sets. A gquasicomponent of a point p
in a set X is the common part of all closed-open subsets of X containing
2. In other words, it is a set of all points geX such that the set X is con-
nected between p and g. It follows at once that every closed-open subset
of a set X is a union of some of its quasicomponents. Theorem 7.1 containsg
a topological characterization of pulverized sets; the remaining theorems
are concerned, among others, with the power and dimension properties.

Chapter III contains solutions of problems concerned with con-
tinnous mappings (§ 8), certain minimal propertios (§ 9) and ¢-connocti-
vity of pulverable sets (§10). For instance, overy connected sot can be
obtained as & continuous image of some pulvorable set (Theorem 8.5).

Chapter IV is the inost extensive of all. It deals with the examples
and theirs constructions. § 11 contains two lemmas on some decompo-
sitions of a segment .# and Cantor set €. These two lemmas are based upon

(*) Exdis has proved [1] that this set has dimension 1, otherwise than in Euelid-
ean spaces and in the Hilbert cube #8o ([10], I, p. 87), where it has dimension 0
{see for instance [3)).
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continuum hypothesis and they will be applied to the construction of
example 3 only. No other theorem or example in this is based on these
lemmas or on the continuum hypothesis; they are effective. Finally, § 12
contains five constructions.

I owe my very warm thanks to Professor Dr. Bronislaw Knaster
who contributed to my investigations by many valuable suggestions.

Notation

" ‘I'he notions and notetion are derived from books [6]) and [11]). Besides, I shall
use in this paper the following notation:
¢ — Cantor set,
4 — Cantor fan, i.e. the union L{,L(” of all segments [ (z) of ends (r, 0)
TE

and (1/2, 1/2), where z¢¥.
J#Ro — Hilbert cube,

P - a pulverable set,
@ - a dispersion point of P,
y - a continunouns funetion mapping a set P—(a) into the Cantor set ¢ (i.e.

w[P—(a)] c %) in such a way that each counter-image under it of
a point is & quasicomponent of P—(a) (“quasikomponentientreue Abbil-
dung™) (3). .

em(N)-- o continnous function mapping a closed subset Af of N in one point
not belonging to (N — M), and such that ¢|N— M is a homeomorphism
(identification of a closet M of N to a point) (4).

§ 2. Preliminary notions and properties

We begin with clementary and partially known lemmas concerning
the subsets of any topological space.

LeEMMA 2.1. If W is open in T and T is open in X, then W is open
in X.

LevMa 2.2, If W 4y closed in 1" and T 1is closed in X, then W 18
closed in X.

Both these lemmas are known ([10], I, p. 26).

LEMMA 2.3. Let Z be a subset of a topological spave X. If a subset W
of X—7 is cloked in X —Z, and if
(1) WAZ -0,
then W s closed i X,

() See an equivalent definition, p. 4.
(1) See @ (X F)op.10.
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In fact, we iufer from the hypotheses W = W ~ (X - %) and (1) that
W=WAU(X-2)vZ]=WA(X—-Z)oWArZ = W.

LEMMA 2.4. Let Z be a subset of a topological space X. If a subset
W of X--7% is open in X —Z, and if

(2) WnZ =0,

then W is open in X.
In fact, since the sets W and Z are disjoint, we have X--W -

(X—~(WwZ)]vZ. Hence, by hypotheses (X—7)--W = (X Z)-—-W
~(X—Z) and (2) it follows that

T—W—(X-W)=X-W~W =[X—(WoZ)]oZ~W
=[X—(Wo2) ZlnW =X—(WoZ)nWoWAZ
=X—(WoZ)nW=X—(WoZ)n W~ [(X-2)v 2]
=X—-(WouZ)yn(X—-Z)AnWowX— X (WoZ)nWAZ

=(X=2)—W]I"nWoeX-(WouZ)nWnZ =0.

It means that X— W< X—W.

LEMMA 2.5. Let Z be a subset of a topologioal space X. If a subset T
of X—Z 1is olosed in X—Z, and a subset W of T v Z is olosed in T Z,
ang if

(3) WAZ =0,

then W 1s olosed in X.
In fact, the hypotheses W == W ~ (T v Z) and (3) imply

(4) W=WﬁT,

and the hypothesis 7' = T~ (X —Z) implies W T = WA T ~ (X -Z).
Therefore, in view of (4) and of the inclusion W < T, we obtain from
the last equality W = W~ (X —2Z). It remains to quote Lemma 2.3.

LeymA 2.6. Let Z be a subset of a topological space X. If a subset 7'
of X—Z is open in X—2Z, and a subset W of T Z is open in T U2,
and if

WnZ =0,
then W is open in X.
In fact, by the hypothesis (Tw2)—W = (TwZ)— W ~(T'w %) and by
the identity (T wZ)—W = (T— —W) < (Z—W) we have (T W) (Z—-W)=

(T—-W)(Z—W)~(TwZ)=T—WATZ—-WAToT-—WAZUZ—W
~Z. Multiplying by T, we easily see that T—W = T—W AT wZ—W
~T in view of T~nZ =0. Hence, a fortiori, T--W o T—WAT.
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It means that W is open in T, and therefore W is open in X—2Z by
Lemma 2.1, because T is open in X —Z. It remains to quote Lemma 2.4,
We ipfer from Lemmas 2.1 and 2.2 that

LEMMA 2.7. A quasicomponent @ of a topological space X which is
open and contains at least two points is conneoted.

Proof. If we suppose the contrary, the quasicomponent @ is a sum
of two non-void and soparated subsets @ = @, @,, i.e. @, and @, are
nou-void, disjoint and closed-open in @. As a quasicomponent, Q is
cloged in X ([10], II, 1. 93), and, by hypothesis, @ is open in:X. There-
fore, by virtne of Lemmas 2.1 and 2.2, the non-void sets @, and Q,
are closed-open in X, which contradicts to () being a quasicomponent.

Now, taking into account the above seven lemmas, we prove some
simple properties of closed-open subsets of subsets of a connected space,
and, in particular, of quasicomponents of subsets of a connected space.

LrEMMA 2.8. Let A be a non-void subset of a conneoted space S. Then
for every subset H of S—A non-void and olosed-open in S--A we have
a4dAn E v .Z ~H £0.

Proof. Tf
(5) A~nAvAn~H =0,

then by Lemmas 2.3 and 2.4 the set H is olosed-open in 8. We have then
a decomposition § = H v (S§—H) into two subsets of § non-void, disjoint
and closed-open in S. Since by hypothesis the space § is connected and
the set H is non-void, we have S—H = 0, whence S « H, and there-
fore A < H, contrary to (6) and to the hypothesis 4 # 0.

LEMMA 2.9. Let A be a non-void subset of a conneoted space 8. Then
for every quasicomponent Q of S—A open in S-—-A we have A~Qw A
~Q #0.

In fact, the inequality follows from Lenuna 2.8, because every quasi-
component @ of the set S—A is olosed in it ([10], II, p. 93).

LEMMA 2.10. Let A be a non-void subset of a connected space S. Then
every quasioomponent Q of 8—A not nowhere dense in § has a positive di-
mension (in each of its interior poinis).

Proof. Since by hypothesis §—@ - 8, we have S—@ # 8 by
Q =@ ([10), II, p. 93). Honce Int(Q) = S—8--Q £ 0. Let peInt(Q).
If dim, @ = 0, then there oxists a neighbourhood U < Int(Q) of the point
p, boundary of which is void, contrary to hypothesis that the set S is con-
nected.

Consider now any continuous function f on a subset 8 — A of a con-
nected space S, carrying S—A into the Cantor set ¥. Every set f~'(1),
where tef(S—A4), is then ([10], I, p. 74) 2 common part of a sequence
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of closed-open subsets of S—A. In fact, let {4,}, 12 . bo a, sequence of

closed-open subsets of the Cantor set ¥ such that (r) = ﬂ 4,. There-

Ne=l

fore .4, ~f(8—A4) is for » =1,2,... a closed-open subset of f(S—A4)
-]

and f~'(z) = Nf' (4. ~f(S—A4)] ([10], I, p. 17, formula 7a). In partic-
Nal

illa.l, it may oceur that f~'(r) is 2 quasicomponent of the sat § - A. At
any rate f~!(r) is a closed subset of the set §—A.

There exlsts (seo [10], I, p. 93) a continuous function defined on
S—A, the range of which is a subset of the Cantor set #, aud such that
counter-image of every point under it is a quasicomponent of the set
S—4 (“quasikomponententreue Abbildung”). This function is denoted
by v, according to the list of notation (see p. 5). Hence

(10) p:8—A4 €,
) 8—4= U v,
rep(S—4d)

(12) ~'(7) ix & quasicomponent of a set §—4 for each zey(S—

LeEMMA 2.11. Let A be a conneoted subset of a connected space S. Then
for every continuous funolion f: S—A — € and every olosed-open subset
A4 of the Cantor set € suoh that A~ f(S—A) # 0, the set
(13) Av U )

reAnf(S—-A)

t8 connected.

For the set () f7'(z) is closed-opun in 8 —4 a§ a counter-image

udAf(S— 4)

under continuous function f of a set 4 ~f(8§—4) closed-open in f(S—A4)
([10], I, p. 74, formulae (3) and (4)). Hence set (13) is connected ([10),
IT, p. 83).

LeMma 2.12. Let A be a connected subset of a connected spaoe S. Then
Jor every continuous function f: 8 — A —> € and every subset 4 of the Cantor
set €, the set
(14) Av U flYv

ref(§—d)— 4

18 conneoted.

Proof. Let us choose for each point tef(§— A)~-4 1 cloved-open
in the Oantor set ¢ subset I'(v) of ¥ such that

(15) rel'(v) c ¥—A.
By virtne of Lemma 2.12 the set

Av U 'y
nel(x) AT(S- o)
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is connected and therefore the set

16 Ao -
( ) 11/(39!)-5 qd'('r)an{S—A)f (77)

is connected too ([10], IT, p. 82). It remains to verify the identity of the
sets (14) and (16).

Since I'(z) i8 a neighbourhood of the point 7, closed-open in ¢ and
fulfilling (16), where tef(S—A4)—A4, we have

e U ),

Ner(v)~1(S— )
whence

(17) U e U U .

1e/(S—d)~-4 ef(S—d)— 4 nel(v)~1(S— 4)
Conversely, by (16) we have
P(r) ~f(8—A) = f(§—4)—4
for each point tef(S—A)—Z. Thus
e U ),

nelr(z)~f(S—-4) 7e(S—.4)—4
whenco
(18) U U e U .
te)(S=A)= 3 nsl(7)Af(S— L) 1f(S—4)—4

By virtue of inclusions (17) and (18) sets (14) and (16) are identical.
LemMMA 2.13. Let A be a closed and connected subset of a sonneoted spaoe
S, let f be a continuous function mapping S—A into the Cantor set €, and
let A be a set of all Tef (S —A) for which dim f~*(v) > 0. Then thesetf (S —4)—

—4 1is either void or uncountable.

Proof. By the definition of 4, we have dimf~!(z) = 0 for each
vef(S—A)—d. If the set f(S—A)—A were non-void and at most
countable, we should have ([10], I, p. 176)

(19) dGm{ U _fn]=0.
IG/(-S‘—.A)—-J
But, by virtue of Lemnma 2.12, the set Av | _f'(r) in

f(§-4)-4
conuected; thereforo it has a positive dimension in each point ([10], II,

p. 80), and so has the ket |J _ f~'(r), becanse the set A is closed.
ref(S—A)— 4

Thus (19) is impossible.

Lemma 2,13 is also valid for f = y. Namely

LeMMA 2.14. Let A be a closed and connected subset of a conneoled
space S. If every quasicomponent of the set S—A is 0-dimenstonal, then
the family of all quasicomponents of S—A is uncountable.
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The last group of lemmas pertains to the so-called identifioution.
For any X < #® and any closed I < /™ therc exists a function
¢p (identification), defined on X v ' and having the following properties
([r0], I, p. 138):
(20) @p if a continuous function,
(21) @p|X—F i3 a homeomorphism,

(22) o@g(F) is 2 point not belonging to the set gp(X ).

These properties imply two following lennnas:

LEMMA 2.15. pp(X v IP)—pp(X—F) = pp(I).

In fact, by (22), pp(F) epp(X w F)—pp(X —F), and by [10] we have

(X v F)—gp(X—TF) c pp(X © F)-- [op(X)—pp(X —T)]
= pp(X) v or(F)—{lep(X) v pr(F)]—gr(F)} = pp(F)

([10], I, p. 17, formulae 1 and 3).

LevMMA 2.16. If for every non-void and closed-open subset H of a set X
(23) HAl £0,

then the set pp(X v IF) 18 connecied.

Proof. The case X = F is trivial, because gy (X v F) - @p(F) is a point.
Congidering the case X —F = 0 suppose that

(24) or(XwF)=MOUN, M #0 N,
(26) MANUHAN =0,
(26) or(F)eM.

We have theu by virtue of (25) and (26),
(27) NAopp(F) = 0.
It follows ([10], I1, p.17 and 74) by (20) that @#![N ~ ()]

=‘I_’_F;1(N)“¢FI¢F(F)=’ 75 (N) ~ g7 or(F), whence, by (27), g5 (N)~
~gr pr(F) = 0, and therefore by F < et (Y (1107, T, p. 17, (11))

(28) ppt (N) A~ I - 0,

The set & is, by (24) and (25), closed-open in gu(X < 1) and therefore
py (20) we infer ([10], I, p. 74, formulac (3) and (4)) that the set ¢’ (N)
is closed-open in gp'ep(X o F) = X U . Hence, by (28), the set g7 (N) c X
is closed-open in X. Supposition N 0 implies rpj,:'(N) # 0. Applying
now (23) to the set H = ¢5'(N) we have qT,—._-leﬁ F' # 0, contrary to (28).
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§ 3. Relative quasicomponents

The new notion of relative (nasicomponent has some interesting
properties whieh will be proved in this paragraph and will be made use
of in the proof of basic property of ¥xample 3 (p. 41) which is one of prin-
cipal results of this paper.

Let A be a subset of a topological space X and let ped. A subset
H of X is said to he an envelope of p if H is closed in X and (p)v A~H
is open in (p)w 4. Since H is closed in X, (p)v A~ H is also closed, and
therefore closed-open, in (p)w A. Now a gquasicomponent of the point p of
the set A relatively to the space X is a commeon part of all envelopes of p.
We shall denote this quasicomponent by Qc,(4, X).

It is obvious that in the case A = X the relative quasicomponents
are identical with quasicomponents.

Relative quasicomponents may intersect and eyen one of them may
be contained in the other. For example, let X be the square of opposite
vertices (0, 0) and (2, 2) and let A be
the union of two sequences of segments
I, ={@,y):2=1-1/n, 0 <y <1} and
Jo={@,9):2=1+1/n, 1 <9y < 2}.
The limit segments I, = {(z,¥): = = 1,
0<y<1} and Jo={(z,y): =1,
1<y <2} do not belong to A, It is
easy to see that the relative quasi-
component of the point (1,0) is the
segment{ I,, that of the point (1,2) —
the segment J,, and that of the point
(1,1) — the union I, v J, (see Fig. 1). L ]

In view of the Lindeléf theorem Fig. 1
({10], I, p. 131) every relative quasi-
component Qc,(4, X) is a common part of a sequence of envelopes of p,
and since the common part of two envelopes of p is an envelope of p,
we may afssume that Qc, (4, X) is & common part of a descending sequenoc
of envelopes of .

Recall that o space X ix said to be peripherically compact if and only
if for every point z¢X there exist arbitrarily small neighbourhoods of =
the boundaries of which are compact.

LEMMA 3.1. Let A be a subset of a periphericaily compact space X
and let ped. If

@) (p) = ﬁlﬂ""
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where {Hp)n_1s,. 18 & desoending sequence of envelopes of p, then there
ewists a descending scquence {Hpln_1,.. 0f envelopes :of p Such that
S(HY) <1/n for n=1,2,...

Proof. Let I, be a neighbourhood of the point p such that the bound-
ary Fr(K,) is compact and 6(K,) <1/n. For every n = 1,2, ... there
exigts m, such that

(2) Fr(K,)~Hp, =0 forany m>m,

(because in the contrary case we should have Fr (K,)~ H,, #0 for m

=1,2,..., whence Ft(K,)~ () Hp # 0 in -view of €Cantor’s theorem
o=l
([10], II, p. 6), but the last inequality is impossible in view of (1) aund of
the definition of K,). We may assume m,,, >m, for n =1,2,. .., of
course. ‘
Putting for n =1, 2, ...

(3) H; = Hm,,,q-l ~n I,

we see that p <H,. Since H, = H,, ,, ~ I, by virtue of (2), H is a closed
gubset of X (n =1,2,...). And since (p) v A ~ Hy, ,, i8, by hypothesis,
an open subset of (p) v'A, and K, is an open subset of X, so by (3) the set
(p)v A~ Hy is an open subset of (p)v 4 (n=1,2,...). Moreover,
8(Hy) <1/n and, by the hypothesisn that H,,, = H, and by the
assumption that m,,, < m,, we easily obtain from (3) that Hj , = H,
forn =1, 2,... Hence the sequence {H,},.,. . satisfies the lemma.

THEOREM 3.2. Let A be a'subset of a peripherically compact space X and
let ped. A neoessary and sufficient condition that dim,[(p)w A] =0 i3

(4) (P) = QG,,(.A,X).

Proof. If dim,[(p) v 4] = 0, then there exist arbitrarily simull closed-
open subsets G of (p) - A containing p. We infer then froin equality
[(p)— A]~ @ = G that @ is an envelope of p. Hence, by the definition of
relative quasicomponent, Qc,(A, X) = @, and consoquently (4).

Conversely, hypothesis (4) implies that (p) == (M) H,,, where {H,},....
n=:1

is a descending sequence of envelopes of p. By virtue of Lemma 3.1 we
can assume that lim §(H,) = 0. Hence there exist arbitrarily small

W —>ad
closed-open subsets (p)w A ~ H,, of (p) v 4 containing p. It means that
diny, [(p) v 4] = 0.
THeorEM 3.3. If A is a subset of a compact space X and ped, then
Qe (A. X) is a continuum.
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Proof. Suppose that
(5) Qo,(4,X)=MvN,

where M and N are non-void, closed in X, and disjoint. Then there exists
an open subset G of X such that

(8) peMc@G and G~ N =0,
By the definition of relative quasicomponent we have
(7) Qe (4, X) = OIH'M
M=

where {H,},.;a,.. i8 & doscending sequence of envelopes of p. We shall
show that

(8) H~AFr(@) #0 for »=1,2,...

For supposing H, ~Fr(G¢) = 0 for some n = n, we have Hnuf\('z_‘
= H, ~G in view of Fr(@) = G—@G, and since, by hypothesis, H,, is
closed in X, so H, ~@ is also closed in X. Moreover, (p)v A~ (H, ~G)

TFig. 2

is open in (p) v 4, because, by hypothesis, (p) v 4 ~ H, isopenin (p)vw 4,
and @ is open in X. Hence H, ~G is an cnvelope of p and therefore, by
the definition of relative quasicomponent, we have Qc,(4, X) =« H, ~G.
But multiplying this inclusion by N we infer, by (5) and (6), that N = 0,
contrary to the hypothesis that ¥ 7 0. The formula (8) is proved.
Sineco (@) is compact as a closed subset of a compact space, for-
mula (8) implies, by virtue of Cantor’s theorem ([10], IL, p. 5), the inequal-
ity (Y[, ~r(@)] 0, ie. Ly (7) the inequality Qe,(4, X)~TFr(@) #0,
ITRED
which contradicets (5) and (6).
1Teneo Qe (4, X) is connected.
Remark. Theoremn 3.3 is not truo in the Ruclidean plane &

Fov let .4 = |J 4,, where 4, is a boundary of a rectangle of vertices
Ne=1

(-n, -14+1/n), (=n, —1—=1/n), (n,1=1/n), and (», -141/n) (nee

Iig. 2).
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The relative guasicomponent ¢¢,(4, &%) of the point p  (0,1)
is the union of two straight lines y =1 and y = —1.

THEOREM 3.4. If A is a subset of a topological space X and ped,
then A ~Qep(4d,X) = Qecp{4, 4).

Proof. If geA—Qo,(A, A), then there exists a closed-open subset
¢ of A such that p <@ and ge A—@. But peG, G is a closed subset of X,
and in view of equality G~ A = @ the set @~ A is open in A. It means that
& is an envelope of p and therefore, by the definition of relative quasi-
component, we have Qc;(4, X) = @ Hence and from fhe assumption
geA—G we infer that ged—Qo,(4, X). So we have proved the inclu-
gion 4—Qcy(4,4) = A—Qc,(A, X) obvionsly equivalent to the the-
gis of our lemma. )

LEMMA 3.5. If W c A c @ X$ and for some vy
(9)  each poini of the set (vgX.#)~'W is a point of condensation of thix

set,
(10) for each quasicomponeni ¢ of A the sel (1) xX.F)~ W Q) ds of power
al most Ry,
then the set of all quasicomponents of A relatively to 6 X.# consisting of
one point only end contained im (tgXI)~ W is dense in (roXF)nW.

Proof. Let us remove from the segment 7, X the closure of each
component of the set (r,xX#)— W . Denoting the remaining ket by I3 we
easily see that (7, X #)— B consists of an at most countable set of segments,
each of which has by its definition and by (9) at most ends comimon with
W, and of points not belonging to W. The set B differs then frow the
set (1o XF) ~ W for at most countable set and therefore by virtue of (9)
the set B is a dense subset of (7, XA)~W.

It follows from (9) by the definition of the set B that if beB wnd if [
i8 & segment contained in 7,X#, one end of which is b, then b iy a point
of condensation of the set 1 ~ W. Therefore, by virtue of the hypotheses
W< A and (10), ther¢ exist arbitrarily small segments J contained in
7o X# such that beJ and the ends of J belong to A —Qe¢,(, 4). In view
of Theorems 3.3 and 3.4 we have then Qe¢,(4, ¢ x#) < J, whenee by the
definition of relative quagicomponent we infer that (b) = Qe, (4, € X#).

Hcnoe B is a denso subset of (7o X.£) ~ W and for oach point beB
the relative quasicomponent Qec,(A, ¥ xX#) consigts of the point b only.

TaeoreM 3.6. If A is a subset of € <% such thal
(11) the set {p: dim, A = 0} 48 nowhere dense in A,

(12) for each open subsct U of € X%, if A~ U 70,
then there emists 280 points te% such that (tX.#)~ A~ Uis of power 280,
then A contains 280 guasicomponents of power 280,

Proof. Suppose that the family of quasicomponents of power 28
of the set 4 is at most countable and denote the nnion of all quasicom-













































































































































