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AN INFINITE-DIMENSIONAL PRE-HILBERT SPACE
ALL BOUNDED LINEAR OPERATORS OF WHICH ARE SIMPLE

BY

JAN vaNn MILL (AMSTERDAM)

1. Introduction. All linear spaces under discussion are separable linear
spaces over K, where K denotes either R or C.

The aim of this paper is to construct an infinite-dimensional pre-Hilbert
space L over K with the following property: every bounded linear operator
A of L has a unique eigenvalue such that the corresponding eigenspace is
complemented and has finite codimension in L. Geometrically this means
that for every bounded linear operator A: L — L there are two directions
such that A4 acts as an ordinary multiplication in one direction, and A4 is
essentially “finite-dimensional” in the other direction. Another equivalent
formulation is: for every bounded linear operator 4 of L there is a unique
scalar 1e K such that A —AI has finite rank. We conclude that L only admits
“trivial” bounded linear operators. Observe that L cannot be complete, for
then L is isomorphic to [, (see [1], 17.1), which has many bounded linear
operators not of the above simple type.

I am indebted to Klaas Pieter Hart for some helpful comments.

2. Preliminaries. For all undefined notions, see [1]. We use the term pre-
Hilbert space instead of inner product space.

A cardinal is an initial ordinal and an ordinal is the set of smaller
ordinals. ¢ denotes 2%°. If 4 is a set, then |A| denotes the cardinality of A.

It is clear that the collection

& =|{F: F is a bounded linear operator of /,}

has cardinality c.
Let L be a linear space. If A = L, then dim A denotes the algebraic
dimension of A, ie.,

dim A = max |x: x» is a cardinal

and there is a linearly independent B = A such that |B| = x}.
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Observe that dim A is a cardinal number and not, as usual, either one of
0,1,2,... or oo.

It is well known that there is a family o/ of ¢ infinite subsets of N such
that for all distinct 4, Be &/ the set A N B is finite [4] (for every irrational
number choose a sequence of rational numbers converging to it or consider
the set of paths through a Cantor tree).

The following lemma and its proof are well known:

2.1. LemmaA. dim/, = ¢
Proof. Let &/ be as above. For each Ae.&/, say A = |ny, n,y, ...},

where n; <n, < ..., define x(A)el, by
x(A4)=(0,0,...,0,1/n,,0,0,...,0, 1/n,,0,0, ...).
;.—,,_I_J \—,,_I.J
ny — np—ng—

Then {x(A): Ae o/} is linearly independent and has cardinality c.

3. The construction. In this section we construct the example which was
announced in the introduction. In the next section we will prove that the
example constructed here has all the required properties.

Let |F,: 1 <a <¢, o odd} be an enumeration of the family of bounded
linear operators .# which was defined in Section 2. In addition, let . be the
family of all closed infinite-dimensional linear subspaces of /, and let |K,: «
< ¢, « even] be an enumeration of ¢ such that every Ke .#" is listed ¢ times
(as we will see later, it is very important that ¥ is enumerated in this way).

It is clear that this is possible.
By transfinite induction, for every a < ¢ we will construct linear sub-

spaces L, =1, and subsets V, =/, such that:
(1) if p<a, then Ly =L, and V; = V,;
@ LNV, =0;
(3) dimL, < |¢| and |V| < |af;
(4) if a is even, then there is a vector xe(L, r\K,)\ﬂU Lg;

(5) if a is odd and if
dim {xel,: F,(x)¢sp({x}u U L)l =,

p<a
then there is a vector xe L, such that F, (x)eV,.
(It is very hard to explain at this moment what the intuition is behind the
inductive hypotheses (1) through (5). The reader is encouraged to follow the
argumentation step by step. After reading Section 4, it will hopefully be clear
why we constructed the L,’s in this peculiar way.)

The construction is a triviality. Take xe K, arbitrarily, and define L,
=sp {x] and V, = Q. Suppose that we have completed the construction for
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all B <a, where a < ¢. For convenience, put
=L and V*= () V.
B <a B <a
Since dim ' < || and |V?| < |«|, the set sp(L* U V*) has algebraic dimension
less than c¢. Observe that [*n V* = Q.

Case 1. a is even. Observe that K, is isomorphic to [, ([1], 17.1),
which implies by Lemma 2.1 that dim K, = ¢. Since dimsp(L* U V?) < ¢, we
can therefore find a vector xe K, \sp(L*u V?). Define L, = sp({x} u L% and
V, = V* A routine verification shows that L, "V, = (. We conclude that L,
and V, are properly defined.

Case 2. o is odd. Let
S=xely: F(x)¢sp(ix}u ).

If dimS < ¢ then define L, = [ and V, = V*. Suppose therefore that dim S
= ¢. As in case 1, there is a vector xeS\sp(L* u V?). Define

L,=sp({x}ul) and V,=V*U F,(x)].

We claim that L, and ¥, are as required. All we have to prove is that L, NV,
= (). Suppose therefore that L, "V, # Q. Since F,(x)¢L,, it follows that
L,nV*# Q. As in case 1, this is impossible.

This completes the transfinite construction. Now define
L= L,.

In Section 4 we will show that L is as required.

3.1. LemMma. If Ke X, then dim(LNK) = c.
Proof. Let A= |a < ¢ K =K,}. Then |4] = ¢. By (4), for every ac A
there is a vector

x.e(L, N K\ U Ly.

p<a

We claim that the set |x,: ae A} is linearly independent. Take a,, ..., a,€ 4
and 4,, ..., 4,6 K such that

Z )'l xai = O
i=1

Without loss of generality, o, <... <a, and A4, # 0. Then
n—1 l

which is a contradiction.

4. L is as required. In this section we will show that L is as required. To
this end, let A: L— L be a bounded linear operator. By [1], Exercise X.5,
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there is a bounded linear operator A: I, - I, extending A. Consequently,
Ae #. Choose an index a < ¢ such that 4 = F,. For convenience, define

L'=\L and V=) V.
B<a B <a
4.1. Lemma. If A, ue K are distinct eigenvalues of A, then at most one of
the corresponding eigenspaces is infinite-dimensional.

Proof. Let W, (resp. W,) be the eigenspace of A corresponding to the
eigenvalue A (resp. p). Striving for a contradiction, assume that both W, and
W, are infinite-dimensional. Observe that both W, and W, are isomorphic to
l,, whence, by Lemma 2.1, dimW, =dim W, = ¢. Let E = W,®W, and, for
every vector x€ E, write x uniquely in the form x = x;+x,, where x;e W,
and x,e W,. Define

5%=1x: xe'nE} and L ={x, xe'nE}.

Since dimL* < it follows easily that both L and L, have algebraic
dimension less than c

By transfinite induction, for every ¢ < ¢ take x;e W, and y,e W, such
that

xc¢sp(Lyuix,: n<&) and  ygésp(L, Uy, n <E)).
It is possible to do this, since at each stage of the induction we have
dm(IE U LU ix,: n <& uly: n<é)<c and dimW,=dimW, =

As in the proof of Lemma 3.1 it follows that X = {x,: £ < ¢} and Y = |y,: &
< ¢} both are linearly independent. For every ¢ < ¢ define p; = x;+ y;. Since
W, "W, =10}, it follows easily that {p,: £ <} is linearly independent.
Suppose that there exist a £ < ¢ and a scalar ye K such that Ap,—yp,e .
Since

z = Apy—ypy = Axg+uye —yxe—1ye = A= xg+(u—y yee L N E,
we conclude that
z;=(@A-y)x; and z,=(u—y)y,.

Since x,¢L;, we obtain A—y =0, and similarly u—y =0, whence 1 =y,
which is a contradiction.

We therefore conclude that Ap,¢sp(ip:} u L") for every ¢ < c Since
dim {p,: ¢ < ¢} = ¢, we have

dim {xel,: Ax¢sp(ix}u L)} =c¢,
and, consequently, by (5) of Section 3, there is a vector xe L, < Lsuch that
Ax = F,(x)e V, =1, \L.

However, A extends A, whence Ax = Axe L. This is a contradiction.
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4.2. LemMa. Every orthogonal set of eigenvectors of A corresponding to
distinct eigenvalues is finite.

Proof. Striving for a contradiction, suppose that 4,, ne N, are infinitely
many distinct eigenvalues of 4 and that x, is an eigenvector of A correspond-
ing to the eigenvalue A,, while moreover the set {x,: ne N} is orthonormal.
Let # be a family of ¢ infinite subsets of N such that for all distinct B, B'e #
the set BN B’ is finite (see Section 2). For every Be # define x(B)el, by

x(B)= ) 27"x,.

neB

It is clear that x(B) is well defined (because of the factor 27").
CrLamm 1. {x(B): Be B} is linearly independent.
Take By, ..., B,e# and y,, ..., y,€K such that_

Z 7:x(B) =0
. i=1
Without loss of generality, y, # 0. Take me B, \(B,u...uUB,). Then

0=, %) = (T 1x(B). x> = 3 5 <X(B). x>

= Z Yi <z 27 xp xm> z Vi Z 2 J( s Xm) =71°27 " Xp, Xm)-

i=1 jeB; i= JjeB;
We conclude that y, = 0, which is a contradiction.
CiaiM 2. If M = |BeB: Ax(B)esp({x(B)} U L?)}, then | #| < c.
Suppose not. For each Be .# take y(B)e K such that

Ax(B)—vy(B)x(B)e I°.

Observe that L is a union of fewer than c finite-dimensional linear subspaces.
Since by assumption |.#| = ¢, there are infinitely many distinct B,e .#, ne N,
and a finite-dimensional linear subspace E < I* such that

Ax(B)—y(B) x(B)ecE

for all ne N. Let m=dimE and find 6,eK for i < m+1 such that

m+1

_Z d;(Ax(B;)—y(B;) x(B)) = 0,

while moreover J; # 0 for certain i < m+1. Without loss of generality,
d, # 0. Consequently,

m+1 m+1

2 6(X 4 277x—y(B) } 27x)) = Z &(X 27/(4-v(B))x;) = 0.

i=1 jeB; JjeB; JjeB;

3 — Colloquium Mathematicum LIV.1
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Choose ke B,\(B,u...uB,,,) such that 4, # y(B,) (there is at most one

m+1

ne N with 4, = y(B;) and there are infinitely many indices in B,\ {J B)).
i=2
Then

m+1

0=¢0,x>=<Y 6‘(23 279 (4= y(B))x;), %)
i=1 jeB;
m+1
= '—Zx 0; .Zs‘z_j(lj_‘y(Bi)) Xy X5

=0, '2_"(}-&—)’(31)) s Xi)-

We conclude that §, (4, —7y(B;)) =0, which is impossible since 4, # 0 and

A # 7(By).
Claims 1 and 2 imply that

dim {xel,: Ax¢sp({x}uL)}=c.
By (5) of Section 3, there is a vector xe L, = L such that
Ax =F,(x)eV, < l,\L.

However, 4 extends A, whence Ax = Axe L. This is a contradiction.

43. LEMMA. Let E < L be a linear subspace such that dimE = ¢. Then E
contains an eigenvector of A.

Proof. Let S= {xel,: Ax¢sp({x}uI}. If dimS=¢ then we can
derive a contradiction in precisely the same way as in the proofs of the
previous lemmas. Therefore, dimS < ¢ Let H = sp(L*uUS). Then

dim H < max {dim I, dim §} < c.
By transfinite induction, for every ¢ < ¢ define a vector t,€ E such that
tegsp(Hu {t,: n <&}).
This is possible, since at step ¢ of the transfinite construction we have
dimsp(Hu{t,: n <¢})<c¢ and dimE =«
Let G =sp{t;: & < ¢}. We claim that G n H = {0}. Suppose not. Then there
is a vector xe G N H such that x # 0. We can write x in the form 'Zn:l At

1=

where &, <&, <...<¢&, and 4 # O for every i < n. Then

n—1

te, =X— -; %ttiesp(Hu {te: m < &2y},

which contradicts the definition of ¢, . We conclude that G~ H = {0}.
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Let T = {t,: ¢ < ¢}. Take distinct x, ye T. Since G nH = {0}, we have

Axesp({x}ul) and Ayesp({y}ul).

Take A, ueK and a, be [’ such that
Ax=2ix+a and Ay=uy+b.
Since x—yeG, there are ye K and ce ' (both possibly 0) such that
A(x—y) = y(x—y)+c.
Consequently, (Ax+a)—(uy+b) = y(x—y)+c, and therefore
A=Y x+(y—wy=c—a+bel* = H.

Since (A-y)x+(y—wyeG and G~ H = {0}, this implies that

A=) x+(—wy=0.

As in the proof of Lemma 3.1 it follows that T is linearly independent. We
therefore can conclude that A—y =0 and y—u = 0. Consequently, 4 = pu.

We infer that there is a fixed scalar A€ K such that At—Ate H for every
te T. Observe that H is the union of fewer than ¢ finite-dimensional linear
subspaces. Since |T| = ¢, as in the proof of Lemma 4.2, we can find distinct
vectors t,, ne N, and a finite-dimensional linear subspace B = H such that
At,—At,e B for all ne N. Let m = dimB and find §;e K for i < m+1, such
that

m+1

Y, 6;(Ar;—2r) =0,
i=1

while moreover J; # 0 for certain i < m+1. For each i < m+1, let b, = A,
—).t,'. Then

m+1 m+1 m+1 m+1

:4—(2 5,-t,-)= Z 6,A-t,= z 6ilt,+ Z 5l'bi
i=1 i=1 i=1 i=1

m+1

= ).(_Z 6; ;).

Since J; # 0 for certain i < m+1 and since the t;s are linearly independent,
m+1 )

Y &t is an eigenvector of A belonging to the linear subspace E.
i=1

44. LEMMA. There is a unique eigenvalue of A such that the correspond-
ing eigenspace is complemented and has finite codimension (in L).

Proof. Define S, = Ker A and 4, = 0. By induction, for every ne N we
will construct a sequence of closed linear subspaces S, < I, and a sequence of
scalars A4, K such that, for all neN,
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(1) if dim(SouUS;u...uUS,-,)" is finite, then S, =S,-, and 4, =4,_,;
(2) if dim(Sou S, uU...uS,_;)* is infinite, then

(a) A, is an eigenvalue of A,

(b) if W, is the eigenspace corresponding to the. eigenvalue 4,, then

Sy =Wy, N(SoU...US,— 1) .

(c) 8, # 10}. ,
Suppose that we have constructed S; and 4; for all i (0<i<n-—1).
Define T by
T=(SouS;u...uS,_;)"

If dim T'is finite, then (1) tells us how to define S, and A,. Suppose therefore
that dim T is infinite. By Lemma 3.1, dim(LN T) = ¢. From Lemma 4.3 it
therefore follows that L~ T contains an eigenvector of A, say corresponding
to the eigenvalue A. This eigenvector is of course also an eigenvector of A
corresponding to the eigenvalue A. Define 4, = 4 and let S, be defined by S,
= W, T, where W, denotes the eigenspace of A corresponding to the
eigenvector A. This completes the induction.

Let k be the ‘smallest integer for which dim(Sou...uUS))* is finite, if
such an integer exists, or oo otherwise.

CLam. If n<m <k, then 1, i,.
Striving for a contradiction, assume that 4, = 4,, = 4. Let

M=S§,u...uS§,-;.
Since
S, =W,nM' 2W,n(MUS,US:1Y...USp_1) =8,

we have S,, =S, and S,, L S,. This implies that S,, = {0}, which contradicts (c).
Suppose first that k = oo0. By (c), we can take x,eS,\ {0} for all ne N.
Then {x,: ne N} is an orthogonal set of eigenvectors which, by the Claim,
correspond to distinct eigenvalues. This contradicts Lemma 4.2.
"We conclude that ke N. Observe that

12 = 50@. ..@S"@(So ...V Sk)l.

Since [, is infinite-dimensional, there is an i with 0 <i <k such that §; is
infinite-dimensional. By Lemma 4.1 this i is unique (use the Claim). Define

E = So@. . .@S,'_ 1 ("DS,'.,. 1 (‘Bv. . @Sk®(S0 ...V Sk)l.

Then E is a finite-dimensional (closed) subspace of I, such that [, = E®S,.

Let S; =S, L. Then §; is the eigenspace of A corresponding to the
eigenvalue A,. We will show that S; has a finite-dimensional complement in
L. The argument we give is. routine; it is only included for completeness
sake. Let F be a linear subspace of L such that. L = F®S;. Let P: I, - E
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be the orthogonal projection. Since KerP =S§; and FnS; = |0}, P must
be one-to-one on F. We conclude that dim F < dimE < oo.

All there remains to prove now is that 4; is unique. But this is a direct
consequence of Lemma 4.1 (use that L is infinite-dimensional).

We have completed the proof of thé following

4.5. THEOREM. There is an infinite-dimensional pre-Hilbert space L over
K with the following property: every bounded linear operator A of L has a
unique eigenvalue such that the corresponding eigenspace is complemented
and has finite codimension in L.

4.6. Remark. As was observed by M. A. Kaashoek, the above property
of L is equivalent to the following one: for every bounded linear operator A
of L there is a unique scalar Ae K such that 4— Al has finite rank.

4.7. Remark. For related results, see [3] and [2].
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