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THE HADAMARD PRODUCT AND RELATED DILATIONS

BY
F. H. SZAFRANIEC (KRAKOW)

IN THE MEMORY OF WIADYSIAW BACH (1933 -1968)

One of the elementary properties of positive definite functions is that the
product of two such functions is again positive definite. This is none other
than the classical result of Schur [7] which says that the entrywise prod-
uct (!) (called the Hadamard product or, sometimes, the Schur product) of
two positive definite matrices is also a positive definite matrix.

Positive definiteness, on the other hand, intervenes in dilation theory.
Our goal is to extend the Schur theorem to operator entry matrices and to
show to what kind of dilation questions this leads.

The paper is organized as follows: in Section 1 we discuss circumstances
under which the Hadamard multiplication preserves positive definiteness. In
Section 2 we consider dilatability of the product of two operator kernels
whilst in Section 3 we deal with operator functions on involution semi-
groups. Here the point is that we do not require any unit in the semigroup in
question. In the last section we handle two more particular cases: the kernel
exp K, where K is an operator kernel, and the function x — (I —(p(x))-'
restricted to the open unit ball of a C*-algebra, where the positive linear map
¢ is defined. It should be noteworthy that neither the open unit nor the
function in question is bounded in there.

1. The Hadamard product of operator matrices. Let H be a complex
Hilbert space and B(H) denote the algebra of all bounded linear operators in
H. Let I stand for the identity operator. We say that an nxn operator
matrix A =(A;;), A;;e B(H), is positive definite (in short: PD) if for every
fis s fyin H '

S (4y S f) = 0.

i,j=1

(') This notion, rather neglected, seems to revive in recent years (see also [3], [5], and [8]
for further references).
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In particular, this implies A;; = A%, i,j =1, ..., n. Given two n xn operator
matrices A =(A;;)) and B =(B,)), A;;, B, € B(H), we denote by AxB their
Hadamard product, that is, the n xn matrix (A;; B;;). Suppose both 4 and B
are PD. A natural question arises: is the Hadamard product of two PD
matrices a PD matrix?

In the scalar case, the old (1911) Schur’s theorem answers positively this
question. In a general, operator case, the following necessary condition is
at hand:

ProrosiTiON 1. If the Hadamard product A*B of two PD matrices A and
B is PD, then A;; commutes with B;; for all i and j.

Notice that if the circumstances of this proposition happen, then A*B
= BxA.

In fact, this proposition is a simple consequence of self-adjointness of
A*B as well as A and B. This is why the commutativity condition A4;;B;;
= B;; A;; does not become sufficient as we show by an example.

Example 1. We wish to present a PD operator matrix whose
Hadamard square is not PD. Take two (strictly) positive operators M and N,
necessarily non-commuting, such that ||M~! NMN™!|| > 1. Define

4 =(M2 MN).

NM N?
Then
M4 (MN)z
A*A_((NM)z N )

It is easy to check that A is PD but AxA is not. To see this, it could be
convenient to use the following criterion [1]: a matrix

A C
(C* B)
‘with 4 and B positive is PD if and only if there is a contraction W such that
C=AY?WB'2 .
A look at Schur’s proof (or rather its Halmos’ version [4]) suggests the
following sufficient condition:
PROPOSITION 2. Given two nxn operator matrices A = (A;)) and B = (B;))

with B being PD and such that A;; commutes with By for all i and j. Suppose,
moreover, that each entry A,; is of the form

(1) Au = ZC:, Ca ’

C,;€B(H) and C,; commutes with B for i <j and o arbitrary. Then A*B
is PD.
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Proof. Take f,, ..., f, in H and write

izj:(Au B, fi, /)= i;j(Al'j B, f, [+ ;j (Bij Aij 13, f)
=Y(X (C&Coy By £, )+ X (By C& Coy 3, S).
a i<j i>j

Since C,; commutes with B;; for i < j, C3; commutes with B;; = B for i <
or, equivalently, C% commutes with B;; for i > j. Thus the first ingredient of
the right-hand side is equal to

Z Z (Bii Caifj’ Cai f.')
a iSj

and the second one to
2 X (ByCaj Sy Caif)-
a i>j

Putting both these sums together we have
Z(Aij Bijfj’fi) = Z Z(Bij Cajfja Cai fn‘) = 0.
iJ

Example 2(?). Suppose A =(A,.Jj) is of the form
1 U ur!

A= u* 1 Un?

.U.w;_.l. .U.*;_.z. : 1 ..

with U being an isometry and B = (B;) is an arbitrary PD matrix. Suppose,
moreover, U commutes with B;; for i <j. Since A4;=U*U’ and, con-
sequently, A is of the form (1), where C,; = U’ commutes with B;; for i <},
we can just use Proposition 2 to get in conclusion that

is a PD matrix.
A less subtle version of Proposition 2 is the following

ProposITION 3. Suppose A is of the form (1) and C,; commutes with B;; for
all i, j, and a. If B is PD, then so is AxB.

The proof goes as follows:

Z(Aij B.'jfj,f.') = ZZ(C:; Caj Bij fj,f.') = ZZ(BU Cajfj, Caiﬁ) = 0.

a i,J a i.j

() The author would like to thank D. Timotin for a remark improving the first version of
this example.
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Another version of the above is (cf. [11])
PRrOPOSITION 4. Suppose A and B are such that each entry A;; commutes
with each entry B,,. Then AxB is PD.

This follows from Proposition 3 and elementary spectral theory. Since A4
acts as a positive operator on the direct sum of n copies of H, we have 4'/2
=(C,y). Then C¥ =C;, and A;; takes the form (1). The (nxn)-matrix
diag (B, ..., By) commutes with A4, so does it with 4'/2, This implies that
C,; commutes with B,, for all a, i, k, and I. Now, an application of
Proposition 3 completes the proof.

In the sequel we will make use just of Proposition 4.

2. Dilation of operator kernels. The most general setup of dilation theory
is as follows: suppose X is a set and K: X x X — B(H), called an operator
kernel on X, is PD, that is, for every finite number of x’s say, x,, ..., x,, the
matrix (K(x;, x;)) is PD. It is known [6] that K factors as

() K(x,y)=Fx)*F(y), x,yeX,

where F: X — B(Hg) with an appropriate Hilbert space Hy.

Suppose we are given a semigroup S of actions on X. Denote the action
of seS on xeX by sx. It is reasonable to ask whether there exists a
multiplication-preserving map @: S — B(Hg) such that F(sx) = ®(s) F(x),
seS, xe X. Then the factorization (2) takes the form

) K (sx, ty) = F(x)* @ (s)* (1) F (y),

s, t€S, x, ye X. One can easily prove [6] that such a @ exists if and only if
K satisfies the boundedness condition

(BC) Z(K (sx,-, sxj)j}’jl:) < C(S)Z(K (xi’ xj)j:b fl)
iJj iJj

for x4, ..., x,in X, seS, and f, ..., f, in H. In case X is a semigroup (with
unit) itself, S = X with sx being just the semigroup product of s and x,
the dilation character of (3) becomes more transparent. We have

K(s, ) =R*®P(s)*P(1)R, s, teSs,

where R = F(1) is a fixed operator (being an isometry if K(1, 1) =1).
~ Now, suppose we have two operator kernels K; on X; (i =1, 2). Define
the kernel L on X, x X, by

L(xy, x3, y1, ¥2) = K (x1, y1) Ky (x5, y3).

Suppose

(*) K,(x,;, y;) commutes with K,(x,, y,) for all x,, y,, x,, y,.
Then, as an immediate consequence of Proposition 4, we get
(»+*) L is a PD kernel on X, x X,.
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Suppose we are given two semigroups S; and S, acting on X, and X,
respectively. Then S, xS, acts in a natural way on X,xX, by
(81, S2) (X1, X3) = (5 Xy, $2 X;). Suppose, furthermore, both K; satisfy (BC)
with ¢;(s). A question arises: does the kernel L satisfy (BC)? To answer this,
note that (BC) can be read as follows: for every seS there is c(s) = 0 such
that the kernel c(s) K — K*, where K*(x, y) = K(sx, sy), is PD. Write

¢y (sy)c2(52) Ky (X1, y1) K3 (x2, y2) — K3 (X1, y1) K3 (X2, ¥2)
= (c1 (1) Ky (1, )= Ki (x4, Y1))(Cz(52)Kz(xza y2)— KZ (x2, y2))+
+¢1(51) Ky (x4, ¥ (€2(52) K2 (X2, y2)— KZ (%2, y2) +
+ez052) (€1 (s1) Ky (x40 1) = K3 (x10 1) K (x4 92).

Since the terms on the right-hand side are PD, so is the left-hand side (we
use here again Proposition 4). Invoking the remark on (BC) we have just
made, we get the answer to our question:

(»xx) L satisfies (BC) provided so do both K;.

Notice that L satisfies (BC) with c,(s;)c,(s;). Putting (**) and (**x)
together we have

K (syxy, t; y)Ka(52%5, t255) = F(xy, X)* @ (sy, ;)* P(ty, t;) Fyy, y2),

where F: X;xX, - B(Hk,x,) and &: S1><Sz-*B(Hx1x2) iIs a homomor-
phism. Since (sy, s;) =(s4, 1)(1, 55) =(1, s5)(s4, 1), @ factors as @P(s,, s,)
= @, (s,)P,(s;) with @,(s;) commuting with &,(s,). Finally, we get the
following

THEOREM 1. Suppose K; (i = 1, 2) are PD kernels on semigroups S;, each S;
has a unit. Suppose, moreover, K; satisfy (*) and (BC). Then there are another
Hilbert space Hy x, and semigroup homomorphisms ®,: S; — B(Hg,y,)
and ®,: S, » B(Hg,k,) such that

K, (sy, t) Ky (s, 2) = R* D, (s2)* Dy (s))* D, (1,) P, (12) R,

where s\, t, €S, 53, 1,€8,, and R: H - Hy g, is a bounded linear operator.
Moreover, ®,(s,) commutes with ®,(s,) for every s, and s,.

3. Dilation on involution semigroups. In case S is an involution semi-
group consider a function ¢: S — B(H). Call it a PD function if the kernel
K(s,t) = @(s*t) is PD. In this case the dilation of ¢ is an involution-
preserving homomorphism @ of § into B(H,) such that

4) o(s) = R*®(s)R, seS,

with a bounded linear operator R.
We can apply all what we have shown so far and get in this way the
result of [11]. But we can proceed one step further. Drop the usual
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requirement that S has a unit and lqok what will happen. The suitable
dilation theorem, proved in [10], states that ¢: S — B(H) is dilatable if and
only if ¢ satisfies (instead of positive definiteness) the condition

EX)  Y(o6ts)f; )= ClT e f]* and  o(*) = o(s)*
i,J i

with s, s,,...,s, in S, f;,...,f, in H and C >0, and, in addition, ¢
satisfies (BC). »

As before, we deal with two semigroups S, and S,, now being
*_semigroups and two operator functions ¢, and ¢, on them. Suppose each
@, (s,) commutes with each ¢,(s;).

We know that, by (xxx), the function ¢: S; xS, —» B(H) defined as
o (sy, 53) = @, (s;) 92(52), 5, €S, s, €85, satisfies (BC) provided ¢, and ¢, do
so. But what about (EX)? The idea is again to interpret the first part of (EX)
as positive definiteness of some kernel.

Define

K;(si, ;) = @i(s¥ 1) — C; i (s)* ; (1))
and
L(sy, 53, 1y, 1) = @1 (5T 1) 92(s312) = C; C2 02(52)* 91 (51)* @1 (£1) 92 (22).
All what we have to show is that L is PD on S, xS, provided so are both
K;. With the above notation we have (making use of commutativity of
¢, and ¢,)

L(sy, 52, ty, 12) = @1 (5T 1) K2 (52, t2) +92(52)* 02(t) K, (54, 14).

Since ¢, (s?t,) commutes with K,(s,, t;) and so does @,(s;)* @,(t;) with
K,(s;, t;) and since all four involved kernels (s, t,) = ¢@,(stt;), K,,
(52, t2) > @2(s2)* @2 (t;), and K, are PD, appealing to (*+) we infer that the
right-hand side is PD as well. Thus we get the first part of (EX). The second
is obvious.

Summarizing, we have proved the following

THEOREM 2. Suppose we are given two functions ¢;: S; > B(H) (i =1, 2)
satisfying (EX) and (BC). Suppose each operator ¢,(s,) commutes with each
@,(s2). Then

@, (51) @2(s2) = R* P, (s5,)* P2(s2) R, 5,€8,, 5;€8,,

where @;: S; - B(K
linear operator.

Recall we do not require any unit in the *-semigroups ;.

AY

) is a *-homomorphism and R: H - H is a bounded

V192 192

4. Two special cases. (a) Suppose S is a semigroup with unit and K is an
operator kernel on it. Take s, reS and define the operator

|
exp K(s, 1) =) ;,TK(S’ 1"

n=0
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and the kernel
exp K: (s, t) —»exp K (s, 1).

Suppose K has a dilation. The question is: does exp K share this property
with K? Assuming the range of K, that is, the set {K(s,): s,t€S], to
be commutative, the answer is: yes. This is due to Theorem 1. To see this
we repeatedly apply Theorem 1 to each K(s, t)". More precisely, since
K(s,)"=K(s,t)" 'K(s,t), we apply Theorem 1 with K, = K""' and
K, = K and restrict it to the diagonal of S x S, that is, to {(s, s): s€S} which
is a subsemigroup of S xS.
All these enable us to formulate the following

COROLLARY 1. Suppose the operator kernel K on a semigroup with unit is
PD and satisfies (BC). Suppose, moreover, the range of K forms a commutative
set of operators. Then there is a semigroup homomo;phism ®: S—>B(Hy)
such that

exp K(s, t) = R*®(s)*®(1)R, s, t€S,

where R: H - Hy is a bounded linear operator.

(b) This example is more involved. Suppose A4 is a C*-algebra with unit.
It belongs to rudiments of theory of C*-algebras that if f is a positive linear
functional on A, then

&) I * xp) < IIXILf(y*y),  x, yeA.

Let ¢: A — B(H) be a positive linear map such that ¢(1) = I. Denote by S
the (open) unit ball in A, that is, S = {x: ||x]| <1}. Now, S becomes
a (multiplicative) involution semlgroup Fix xe8§; then, by (5), lle(x)l <1
and the operator (I — @(x)” " exists and

6) : (I—o(x) " =I+p(x)+(@) + ...

Set Y(x) = (I—(p(x))_l for xeS. We are interested in dilatability of
V¥: S —» B(H). The absence of unit in S makes it impossible to use the
well-known Sz.-Nagy dilation theorem ({12], Principal Theorem). But we can
use our, non-unital, version quoted (from [10]) in Section 3. We prove the
following

COROLLARY 2. Suppose ¢ is a positive linear map of a C*-algebra
A, o(1) =I. Define S as above. If the range of @ is commutative, then there
exist another Hilbert space H, and an involution-preserving homomorphism
&: S - B(H,) such that

(I-o() ) =V*o(s)V, seS,

where V is an isometry of H into H,,.
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Proof. Since the range of ¢ is commutative, it is in fact in a commu-
tative C*-algebra (here we use the equality ¢(s*) = ¢(s)*) and, by [2],
Proposition 1.2.2, ¢ is completely positive, which in our terminology, means
¢ is a PD map. Then, by [9], ¢ must satisfy (EX) with C = 1. Inequality (5)
yields that ¢ satisfies (BC) with c(x) = ||x||>. Now we apply Theorem 2 to
each ingredient on the right-hand side of (6) as we have done this in case (a)
of this section. In this way we infer that y satisfies condition (EX) with C = 1
and also condition (BC) with

c(x) = T+|IxlI +IxI*+ ... = (1—]lx|I*)~".

Thus ¢ has a dilation @ and ||®(x)|| < (1—|x||*)~ 2. Moreover, V is an
isometry. This can be easily obtained from what has been established in [9]
and we omit more detailed argumentation.

Note. This is a substantially enlarged version of our earlier paper The
Hadamard product of dilatable operator kernels which has been circulating, as
a preprint, since June 1977.

Result (b) of Section 4 was presented, as a short communication, to the
International Congress of Mathematicians, Helsinki, August 1978.

REFERENCES

[1] T. Ando, Topics on operator inequalities, preprint, January 1978.

[2] W. B. Arveson, Subalgebras of C*-algebras, Acta Mathematica 123 (1969), p. 141-224.

[3] G. Bennett, Schur multipliers, Duke Mathematical Journal 44 (1977), p. 603 -639.

[4] P. R. Halmos, Finite-dimensional vector spaces, 2nd edition, Van Nostrand, Princeton
1958.

[5] C. R.Johnson, Hadamard products of matrices, Linear and Multilinear Algebra 1 (1974),
p. 295-307.

[6] W. Mlak and A. Weron, Dilations of Banach space operator valued functions, Annales
Polonici Mathematici 38 (1980), p. 295-303.

[7] 1. Schur, Bemerkungen zur Theorie der beschrinkten Bilinearformen mit unendlich vielen
Verdnderlichen, Journal fur die reine und angewandte Mathematik 140 (1911), p. 1-28.

[8] G. P. M. Styan, Hadamard products and multivariate statistical analysis, Linear Algebra
and its Applications 6 (1973), p. 217-240.

[9] F. H. Szafraniec, Note on a general dilation theorem, Annales Polonici Mathematici 36
(1978), p. 43-47.

[10] — A general dilation theorem, Bulletin de I'’Académie Polonaise des Sciences, Série des
sciences mathématiques, astronomiques et physiques, 25 (1977), p. 263 -267.

{11] — Dilations on involution semigroups, Proceedings of the American Mathematical Society
66 (1977), p. 30-32.

[12] B.Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this
space. F. Ungar, N. Y., 1970.

INSTITUTE OF MATHEMATICS
JAGFLLONIAN UNIVERSITY. KRAKOW

Requ par la Rédaction le 29. 12. 1978,
en version modifiée le 24. 3. 1980



