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On an application of the Laplace-Picone transformation
in the theory of partial differential equations

by J. BoOHENEK: (Krakéw)

1. First we shall prove some auxjﬁafy theorems concerning bounds
for the solutions of elliptic equations and also for the solutions of nor-
mal parabolic equations.

Let D be a bounded domain in an m-dimensional Euclidean
space E™. We assume that for every point X of the boundary F (D)
of D there exists an open half-line I(X) starting from the point X such
that the common part of I(X) with a neighbourhood of X lies in D
(we shall say that I(X) ‘penetrates” into the interior of D). Let

W L= D eu®) g+ Zbk(x)—+0(x)u-—f(x)

tjel
be an elliptic partia.l differential equation in which ay(X)= an(X),
(X) (4,§,k=1,..,m), o(X) and f(X) are real functions defined and
. m ’
bounded in the closure D of D and the quadratic form ' a¢(X)Acls
1,7=1

is positively defined in D.

TerorEM 1. If
(2) o(X)<—e, I[f(X)<M, ZXeD,

where ¢, >0 and M > 0 are constants, and if u(X) is a solution of (1)
regular in D (i.e. u(X) is of class C? in D and continuous in D) such that
the derivative du/dl exists for X ¢ F(D) and

(3) wX)=0, XeF(D)
or
(3%) %l——-h(X)u— 0, XeF(D),

where h(X) >0, X ¢ T'(D), then
() WX <Z, XeD.
0
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Proof. Let wi(X) =101/_[ +u(X). Then .
[}
6) D) =5 ()LL) = oD g £1(E) <M £](X) <0
0 0

It follows from (3) or (3') that we have for X ¢¥(D)

d
(6) we(X)>0 or HE—hX)w. <0,
respectwely Inequalities (5) and (6) and the extremum property of the
golutions of elliptic equations ([3], Chap. V) imply

(7) wy(X) =0, XeD.

Inequality (7) being equivalent to (4), the proof is completed.

In the case of the boundary condition of the Neumann type we
have the following

THROREM 2. If the boundary F (D) of D is a hypersurface of class C?,
if (2) is satisfied and if w(X) is a solution of (1) regular in D such that
the derivative du/dl ewists for X e I'(D) and

®) B0, xem(D),

then (4) holds.

The proof of this theorem may be based on Theorem 2 of [1] and
it is then analogous to the proof of Theorem 1.
Congider a normal parabolic equation

(9) F(w)

m
0 0
= D) oult, ) g Zbk(tx "t oty Xyu— G =f(t, X).

1,1

The solutions of (9) may be estimated analogously to the solutions of (1).
We assume that ay(t, X) = ay(t, X), be(t, X) (2,7, k=1, ...,m), ¢, X)
and f(t, X) are real functions defined and bounded it the closure D,

of domain D, and that the guadratic form Z ay(t, X) A4 is positively
4,71

defined in D,. Here D, denotes a domain of the space B™ X (— oo, c0)
which is bounded or unbounded in the direction of the axis ¢t at most.
We assume that the boundary I (D,) of D, is composed of an m-di-
mensional domain §, contained in the characteristic t = 0 of a hyper-
surface ¢, oriented with respect to time and an m-dimensional domain
S7, contained in the characteristic t = T, (T, > 0). We assume that
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Sz, is empty if D, is unbounded (i.e. T, = +oo-.and g, is unbounded).
In both cases we assume that o, i closed, We assume that a half-line
'1(P) penetrating into the interior of D, is attached to every point P
of o,. Under all these assumptions we have

TarOREM 3. If
(10) et,X)<—¢ and |f(t, X)|< M, -(t X) *'Do:

where 6, >0 and M > 0 are constant, and if u(t, X) is a solution of (9)
reqular in "Dy such that the derivative du/dl ewists for (t, X) e o and

(11) “(t’x)=0y (2, X) € gy
or
(11) ‘f;; —ht, X)u=0, (t, X)ea,

where h(t, X) i8 a positive function defined on oy, then
(12)  hult, ) < My = max(Mfeo, My), My = Suplu(0, X)|.

The proof ‘'of Theorem 3 may be based on the extremum properties
of the solutions of parabolic equations and is aﬁa.logous to the proof

of Theorem 1 (ef. [2], p..9).
In the case of the boundary condition of the Neuma,nn type we ha.ve

THROREM 4. If 1° the hypersurface o, is of class O2, 2° the normal n
10 the hypersurface o, is mot parallel to the awis t at any point of gy, 3° (10)
is satisfied, then each solution wu(t;X) of (9) regular in D,, having the
derivative duldl at all P e o, (the angle between 1 and the interior mormal
to o, at P being acute) and satisfying

du

13) a=
satisfies (12).

Proof. Put wy(t,X)= My+u(t,X), M,= max(M/c,, M;), M,
=§u£ |u(0, X)|. We have
€X0

0, .PEO'O’

(14) Flwz) = F(Mp) L f(t, X) =c(t, X)M,+f(1, X) <O0.
By (13) we have
{16) %~= 0, Peo,.

By the definition of M, we have
{16) wy(0, X) = My+-u(0, X) >0
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By means of Theorem 4 of [1] we shall prove the inequality
(17) w:l:(ta X) = 0) (t’ X) € -Z_)o . Y

Indeed, if (¢, X) is not constant in D, and if w.(?, X) does not satisfy
(17), then w.(¢, X) attains its negative infimum in D,. Because of (16)
the infimum cannot be attained at any point of S,. In view of (15) and
in accordance with Theorem 4 of [1] the infimum cannot be assumed
at any point ‘of ¢,. By Theorem 3 of [1] the infimum cannot be attained
in D\(8; v q,) either. Therefore if u(?, X) is not constant, then (17)
holds, which is equivalent to (12). If (¢, X) is constant, inequality (12)
follows directly from (16),

2. Let f(y) be a function integrable in <0, > and let

k
(18) g = [1@)e™ay, 1>o0.

The function ¢(4) given by (18) is called a Laplace-Picone transform

of f(y).
THEOREM 5. If there ewist a real number 1, >0, K >0 and a p

such that '
h

(19) " (a) = [ P ) dy| <ER, 4>k,
) 0
then o

[1way =0, neco,n

(im partiould}, if f(y) is combinuous, then f(y) =0, y <0, hd).
The proof is given in [4], p. 352.
Theorem 5 implies immediately the following

TEEOREM 6, If 1° function f(t, X,y) is ocontinuous and bounded in.
a domain D, (defined in § 1); here we assume that S, is a topological prod-
uct of an (m—1)-dimensional domain Q and an interval (0, h), 2° there
exists a positive number 1, and real functions K(t, X) >0 and p(t, X)
defined and bounded in D, such that

h
20) | [P V50, X, y)dy| <K, D) PP, (3, X) e Dy, 1> A,
0

then the fumction f(t, X,y) vanishes identioally in D,.

3. Let Q be an m-dimensional domain in the space of m real va-
riables X = (24, ..., ). Put D == 2x (0, b), Suppose that to every point
Pel=F(Q)x{0,h)y there exists a half-line I(P) penetrating into the
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interior of D and perpendicular to the axig y. Considér in D a hvper-
bolic equation of normal type

) m+1 m+1
@) ) = ) anlE) g+ }_,‘ (X) g + (D) = (X, 9).
1, fe=l

(@Pmar1=1Y).
We assume that

(i) ay(X)= ap(X), b(X) (3,5,k=1,.., m+1), ¢(X),f(X,y) are
defined and bounded in the closure D of D.

m
(ii) The quadratic form‘ 12 aiy(X) & & is positively defined and
. yJ o=l

‘,1m+1,m+1(X) <0 in D. .
Under all the above assumptions we shall prove the following

THEOREM 7. If 1° (X, y) 18 a function biregular in D (i.e. u(X ' Y)
is of olass C* in D and of class C* in D) satisfying (21) with f(X, y) =0
in D, 2° u(e,y) = uy(X, y) =0 in Q, and: moreover

(22) u(X,‘y) =0 on 8
or
(23) %’{-,»(X)ugo on 8,

y(X) being defined and bounded on S, then u(X, 'y)EO'm D.
~ Proof. Put

h
(24) o(X, 1) = [ Vu(X, y)dy.
0

One can easily check that the function »(X, A) satisfies

(25) S’au( X) o +2,bk<x 1) 5 3T, W= (X, 1),

1 y‘—l

where

B( X, 2) = bp(X) + Adpmar(X)
(X, 4) = ¢(X)+ mi1(X)+ Paps1,mia(X) ,

m+1
?(Xl 1) = -lzaf.m+1(x) :—:‘ + by (X) U+ 1am+1,m+1(x)u] '
Y=h

and moreover
(26) ’ »(X,A) =0 on F(Q)
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or
av

(27) Z—7(X)o=0.

In virtze of 1° and 2° equation (25) is elliptic and &(X, 1) < —¢, < 0
for A> 4, A being sufficiently large. Since f(X, 1) is a linear function
with respect to A and its coefficients are functions of X bounded in Q,
then there exist numbers 4, and K > 0 such that [f(X, 1) < KA for
A> 24, and X Q. By Theorein 1 we have

(28) [v(X, 4)| <i—{1 , XeQ, A>max(%,4).
0

Hence, in view of Theorem 5, we have #(X,y) =0 in D.

Similarly Theorem 2 implies the following

THEOREM 8. If 1° w(X, y) is a function biregular in D satisfying (21)
with f(X,y) =0 i D, 2° u(X,y) = uy(X,y) =10 in Q, and moreover

du
(29) i 0 on 8
(8 being of class C?), then u(X,y) =0 in D.

Remark 1. Theorem 7 (Theorem 8) implies the uniqueness of the
solution of the first or third (of the second) mixed problem for equa-
tion (21) in the cylindrical domain D.

CoROLLARY 1. Theorem 7 or Theorem 8 implies the uniqueness of the
solutions of the mized problems for egquation (21) also in the case of an
unbounded oylindrical domain D = QX (0, o).

Proof. If (Xo, Yo) 18 an arbitrary point of D, we choose a number &

such that (X,, y,) € Dn= 2% (0, h). Then by Theorem 7 or Theorem 8
we have u(X,, y,) = 0. Hence (X, y) =0 in D.

4. We shall now give an application of the Laplace-Picone trans-
formation to problems of the uniqueness of solutions of the following
equations (cf. [5])

m+1 m+1
30) ) aylt, X) aa;,a Fu_ 2 (t X)a—-{-c(t yu— 2 411, X, ),
i’f"l

X:(wn-'-;wrrl)y Tmyr =Y, Yel0,h)>.

Equation (30) will be considered in a domain D = D, x (0, k), D, being
defined in section 1. Assume that to every point P e oy X <0, h) a half-
line I(P) is attached penetrating into the interior of D and perpendi-
cular to the axis y. Further we assume that
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1° ay(t, X) = an(t, X), b(t, X) (,§,k=1,..,m41), ¢(t, X) and
f(t, X, y) are defined and bounded in the closure D of D;

m
2° the quadratic form 12 ai(t, X)&& is positively defined in D
1

and a’m+1.m+1(t) X) < 0.

We shall consider the following boundary problem for the equa-
tion (30): Find a function w(¢, X,y) biregular in D, fulfilling (30) in D
and satisfying the following conditions:

1° (0, X,y)=¢(X,y), XeS, yel0,h),

2° w(t, X, 0) =yt X)

uift, X, 0) = plt, o) e 6D,

(31)
3% wu(t, X,y)==o,t, X,y) or |
301, ‘z—?—y(t,x)uF (D,,(t,X,y)] for (¢, X,y) eayxX <0, h>.

We assume that the functions @,y Vo, ¥, D1, Py are of clags ' and
satisfy the consistency conditions on the boundaries of the correspond-
ing sets. The function y (¢, X) > 0 is defined and bounded in o, X <0, k).

TEEOREM 9. Under all the above-mentioned assumptions there ewists
at most one function wu(t, X,y) biregular in D and satisfying (30) and (31).

. Proof, It is sufficient to prove that the only biregular solution
of a homogeneous equation (30) with the homogeneous conditions (31)
is the function w(t, X,y) =0 in D.
After the Laplace-Picone transformation

h
(32) oit, X, A = [ e-vu(, X, y)dy
0

the homogeneous equation (30) agsumes the form

g
24“” ama +2bkt X) ———|—c(t X)fo——»-ft X, A,
=

y.a

where

bi(t, X) = bi(t, X)+ At mes(t, X),
&ty X) = e(t, X)+ Abpus1(ty X)+ Aamsrmr(t, X),

. = ou
X, == D timult, X) gz +bmialt, X+ Mmasmialt, D[
Ymb

{fml
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and the homogeneous boundary conditiong (31) assume the form
1°9(0,X,2)=0 for Xe8,,

2 v(t, X,A) =0 or

. v ¢, 1) 0 for (¢, X) e, .
=Yy, 4)V =
dl

(34)

However, (33) is a normal parabolic equation with homogeneous boun-
dary conditions (34). By the assumptions on the coefficients of (30)
there exists a 4, > 0 such that (¢, X) < —¢, < 0 a8 1 > 4, and (¢, X) ¢ D,.
Analogously one can verify that there exist'a 4, >0 and a K > 0 such
that |f(¢, X, A)| < KA for 2> 4 in D,. In view of Theorem 3 (since
M, =0) we get the inequality

K
(3B) lo(t, X, A)| g-c—oz, (t, X) e Dy, A >max (4, 4).

Hence, by Theorem 5, it follows that u(t, X, ) =0 in D.
Similarly, using Theorem 4, one can prove the following
THEOREM 10. If 1° o, is a hypersurface of class C?, 2° the -coefficients
of (30) and the domain D satisfy the assumptions of Theorem 9, then there
ewists one function u(t, X, y) at most biregular in D and satisfying (30),
the boundary conditions 1° and 2° of (31) and the condition
du :

Ef=¢“(t’ X,y) for (t,X,y)eoyx<0,h),

Dy(t, X, y) being a function of class O im o6,% <0, h).
COROLLARY 2. Theorem 9 (or Theorem 10) implies the uniqueness of
the solution of the boundary problem (31) (or 1° and 2° of (31) and (36))

for equation (30) also im the oase of wunbounded D = Dyx (0, +oc) (cf.
Corollary 1).

(36)
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