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1. Introduction. A sample space is a fundamental tool in the study,
by C. H. Randall and D. J. Foulis, of the mathematical structure of
operational statistics (see [1] through [5]). Such a sample space consists
of an orthogonality space, representing the outcome set of some well
defined scientific procedure, together with an identification of the oper-
ations which may be carried out in the various possible executions of
this procedure. These are called the admissible operations for the sample
space.

Upon a given sample space may be constructed the free orthogonality
monoid (FOM) representing the possible outcomes of finite collections
of “primitive” operations executed in sequence. Viewed in this light,
the FOM becomes a sample space provided that the admissible operations
are specified. In this paper, three collections of operations, #, #,, and
%,, are exhibited over the FOM, and it is shown that each forms a set
of admissible operations. # will be shown to be too general in that it
allows no dispersion-free weight functions to be defined on the FOM.
This leaves #, and %, as the more appropriate choices. Moreover, while
B, < #B,, it may be shown by example that %, is not in general of suf-
ficient size to allow for all operations which should be admissible from
a physical standpoint. In the general case, therefore, #, becomes the
more natural choice. In many applications, 4, and %, coincide. When
two elements of a sample space represent distinet possible outcomes of
some admissible operation, then we say that these two elements are
orthogonal to each other, a relationship which is evidently symmetric
and anti-reflexive.

An orthogonality space (X, | ) consists of a non-empty set X equipped
with a symmetric anti-reflexive binary relation | . If W < X, then W+
= {weX; v | w for every we W}, Wit = (W)L, ete. If weX, then xt
= {o}*. A set V < X is said to be orthogonal if whenever v, weV and
v#w, then v | w. Let 0(X, | )= {V< X;V is orthogonal}, &(X, |)
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={VeO(X, ]); V1 =0} Note that &(X, | ) is the collection of all
mazximal orthogonal sets (with respect to set inclusion). A subset S of X
is called a scattered set if s, te 8 imply s¢ t+. Let S(X, | ) denote the family
of all maximal scattered sets (under set inclusion). Notice that Se S(X, | )
iff for zeX, - NS = @ implies that ze S. (X, | ) is a scattered space if
XeS(X, 1).

Definition 1 (Foulis-Randall). A sample space is a triple (X, | , &)
where (X, | ) is an orthogonality space and & < &(X, | ) satisfies:

a) U & = 4X.

(b) If A c Ee &/, Bc Fe &/, and A = Bt, then there exists Ges/
such that AUB c G.

Members of &/ will be called admissible operations for the sample
space.

Let (X, #) be any orthogonality space, and let I' denote the free
monoid (free semigroup with unit 1) over the set X. We call elements a,
b of I'" orthogonal, and write a | b, if there exist elements ¢, d, ¢< I', and
x,yeX, where z ¥y and a = cad, b = cye. With this relation (called
lexicographic orthogonality), (I, |1 ) is an orthogonality space called the
free orthogonality monoid (FOM) over (X, J¢). Henceforth in this paper,
the notation (I, | ) will denote the above-given construction. We shall
also assume that (X, W) (and hence also (I, ] )) is not a scattered space.

Definition 2. Let A, B = I" and let ¢, de I Then:

(a) AB = {abe I'; acA,be B}, dB = {d}B.

(b) c<d iff cedl. If ¢< d and ¢ # d, then ¢ < d.

(e) = {aed; a<e=>e¢A} and A~ = {aed; e<a=e¢A}

(d) If a =x,%,...2,e I'y where z;eX for + =1,...,n, then we
define |a|] = n. If @ = 1, then |a| = 0.

|a| is called the length of a. For A < I', the length of A is given by
|A| = sup{la]; aed}. If |[A]| < 4+ oo, We say that A4 is bounded.

() ¢ 'A = {eel;06eA},I(A) = {be I';b7*A # 0}, I'(4) =I(4)\ 4,
and 72(4) = I(4)nX.

(f) A sequence {b,}n_, = I(A) is said to be deeply penetrating in A
if, for all non-negative integers ¢, j, we have b; < b; whenever ¢ < j. If 4
admits no deeply penetrating sequences, then A is said to be shallow in I

2. Sample spaces over the free orthogonality monoid.

Definition 3. Let (X, ¥, &) be a sample space. If (I', | ) is the
FOM over (X, J#), then we define subsets %, #,, and %, of &(I', | ) as
follows: ‘

(a) Ee¢ B iff: (i) E = E* #©O and (ii) ac I (E) > i(a 'E)e «.

(b) B, = {Ee #; F is shallow in I'}.

() B, = {Fe%; E is bounded in I'}.
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LEMMA 4. Suppose Ae O(I', 1), 1¢A #~ O. Suppose also that for each
ceI'(A) we can choose Q,c o/, where i(¢"'A) = Q,. Then let M = ) ¢cQ,

ceI’(d)

and define E = M~. Then A < E and Ee #. Furthermore, if A is shallow
(respectively, bounded), then Ee B, (respectively, Ee B,).

Proof. Let E = M~. If ac¢A, then, by assumption, a # 1, so that
we may write a = bx, where be I'(A) and wei(b~'4) = Q,. Thus ae M.
But a¢ I'(4) so that if g < a, then g¢ M. Hence ae M~ = E. Thus A < E.
We continue by showing that Ee #. Clearly, £ # @, since @ # A c E.
Also, E = M~ = (M~)° = E°. Suppose now that ge I'(E). We need only
show that i(g7'F)e /. Now i(¢~'E) +# O since ge I' (E). Thus we may
choose z¢i(g~'E). Then there exists be I' such that

grbe B = M~ c M = U cQ,.
cel’'(4)

Thus, for some feI'(A4), weQ,;, we have gzb = fw. Thus f<g, so
that geI'(A). If b =1, then gwe M and z¢Q,. If b # 1, then b = dw,
where gxd = fe I'(A). Hence for some ¢e I, grdec A, so that zei(g™'E) <
< Q,. In any case then we have shown that z¢ ,, and hence that (g~ ' E)
< Q,. We now must show therefore that @, = i(¢"'E). Let zeQ,. Then
geegQ, = M. If g2¢ M~, then for some de I' and yeX, gzdye M. Thus
gede I'(A). It follows then that zei(¢g~'4) < i(g~'E). On the other hand,
if gze M~ = E, then we have z¢i(¢g~'E) certainly. In any event we may
conclude that @, < i(¢g7'E), so that equality holds, and hence i(g~'E)
= Q,¢ &/ whenever ge I'(E). Thus, by (3), Ec #. It is easily seen that
if A is shallow in I', then £ = M~ is also;i.e., Ee %,; and if A is bounded,
then so is E, and so Fe 4%,.

THEOREM 5. (I'y, | , %), (I, | ,%B,) and (I, | , B, are all sample
spaces.

Proof. Certainly #, #, and %, are subsets of &(I', | ). We will show
hat in addition they satisfy conditions (a) and (b) of (1).

(a) Note that &, = #, = %, so that if we can show that | J %, = T,
then we have condition (a) of definition 1 for all three. Suppose ae I
If @ =1, then ae {1} #,. Suppose a # 1. Then let 4 = {a}. Now using
(4) we see that there exists Fe #,, where ae¢ E. Thus I' = | %,, and
(since the other inclusion certainly holds) we have equality.

(b) We work first on #. Suppose C c Ec¢ #, D « Fe # and C < D*.
We need to find G ¢ # such that CuD < G.If CUD < {1}, thenlet @ = {1},
and we have a satisfactory G in this case. Assume 1¢ CUD #* @ and let
ke I'(CuUD). Then © # i(k"(CUD)) = i(k~'C)Ui(k~'D). Now, since
Cc E and D c F, we have (k™ 'C) c i(kE), i(k™'D) c i(k™*'F) and
at least one of 4(k~'E), ¢(k~'F) is non-empty, and hence is in . Thus
by (b) of definition 1 there exists G, e 7 such that i(k~'C)Ui(k~'D) < G;.
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Define such a @, for each k in I'(CuD), and let
G=( U k) .
keI'(CwD)
By (4), CUD c Ge %, and hence (I', | , #) is a sample space. Note
also that if 0, D are shallow (respectively, bounded), then by (4) so is G.
Thus (I', |, %,) and (I, 1, #, are sample spaces also.

3. Dispersion properties of FOM sample spaces. Let (X, | , &) be any
sample space. Then Se S(X, | ) is «/-dispersed if E NS O whenever
Fe o 8;(X, |, /) will denote the collection of all «/-dispersed sets.
Also, we will say that F e o7 is co-dispersed ift ENS # @ for all SeS(X, | ).
3 will denote the collection of all co-dispersed admissible operations.
(X, 1, &) is called an F-sample space if o3 = .

THEOREM 6. In (I, 1), B4 < %,.

Proof. Suppose Ee #,;\ %,. Then there exists a sequence P = {b,}n_,
which is deeply penetrating in . Then P is a scattered set so that we
may choose Se 8(I', | )such that P = 8. Since FE is co-dispersed, E NS # O.
Let ae EnS. Then since P is not bounded, there exists be P = S such
that |a| < |b]. But be I(FE), so that bce E for some ce I'. Thus bc | a, since
acE and a # be. Hence ac(bc)t = b-ubct. Since |a| < |b|, we have
a¢d bet. Hence ae b, which contradicts the assumption that a, be S. Thus
B\ B, =, so that B,; = B,.

LEMMA 7. Let 8¢ 8(I'y |). Then:

(a) ¢(8) =« I(S) = 8.

(b) 2(8)e 8(X, 4).

(¢) ae 8 = a"'SeS(I, 1).

Proof. (a) Clearly, i(S) =« I(S) and S <= I(S). If be I(S), then there
exists ce I', where bce S. Suppose de S NbL. Then de 8 and de b+ < (be)*.
But bce 8, so we contradict that S is scattered. Hence S nb+ = @, so we
must have be 8. Thus I(8) = 8§.

(b) ¢(8) =I(8)NnX =8nNnX < 8. Hence i(8) is a scattered subset
of (X, ). Suppose now that weX and (S)Nnw® =@. If be S Nnwt,
then b # 1, and we may factor b, where b = y¢, ce I', and y € i (S) Nnw® = @,
a contradiction. Hence Snw' =@, so weSNX =i(S). Thus %(S)
e 8(X, ).

(¢) Suppose ae S but a~ '8¢ S(I', | ). Then there exists ge I' such
that gt Nna™'S =@ but g¢ a~'S. Hence, since ag¢ S, we have (ag)t NS
# O, so that

O # (atvagt)NnS = (at nS)uU(agt NnA).

But aeS, and whence at NS =0. Thus @ +# ag- NS. Letting
be agt NS, wehave b = ac, where ce g* and ce a~'S. Hence g+ na™'8 +# O,
which is8 a contradiction. Thus a~'Se S(I, ).
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THEOREM 8. Suppose (X, J, &) i8 an F-sample space, and let 5
be any subset of B, such that (I', | , #) is a sample space. Then (I', | , F)
18 an F-sample space also.

Proof. After (6) we need only prove that #, « #, to show that
Iy 1,%,) forms an F-sample space. Suppose that EFe #,\ %,. Then
there is an SeS(I, | ), where SNE = . Let b, = 1. Then b,e 8, so that
bo¢ E + @. Thus b, 'S +# @ +# by 'E. Suppose now that, for some integer
n>=0, by,by,...,b, have been defined, where b, >b,>...>b, and
b;'S %@ #b;'E. Then b;'SeS(I', 1) and b;'Ee #, and so i(b;'S)
e 8(X, ¥), and i(b,'E)e & = o 5. Thus there exists x,,,¢X such that
Tpp1€%(bt8) Ni(b, ' E). Therefore there exist f,ge I', where b,,.,fe€ S,
bytpi 19 B. Let b, ., =b,z,,,. Then we have b,},8 #0 #b;},E
and b;>b,,, for ¢ =0,1,...,n. Thus we may continue to define the
b;’s inductively arriving at a sequence {b,};~, which is deeply penetrating
in E. This contradicts the assumption that F is shallow in I'. Therefore
we have the inclusion that we need to show that (I', | , &,) is an F-sample
space. Now if 4 « #,and (I, | , #) forms a sample space, then since all
of the operations in %, are co-dispersed, certainly they all are in .# also.
Thus the theorem is proved.

LEMMA 9. Suppose (X, | , /)18 any sample space which is mot scatiered.
Then if Se S(X, 1), there exists se S such that s+ +# O.

Proof. Suppose for all ¢ in 8, s* =@. Since X is not scattered,
there exists x¢X such that % +# @.1f se S Nnzt, then'ze st = @, a contra-
diction. Thus 8 Nzt = @, and since Se¢ S(X, | ) we have xe 8. But this
is a contradiction since z*+ # @.

THEOREM 10. If Se 8(I, 1 ), then there exists E e # such that E NS = O.
Consequently, S;(I,. |, #) = 9.

Proof. If Se S(I', | ), then there exists a sequence P = {b,}n_,
which is deeply penetrating in §. We may assume that |b;] = j for all
§=0,1,..., and if b, = b;_,x;, where x,e¢X, then we may assume by (9)
that ff 0@ for k =1, 2,... Now, for each k, choose V,e & such that

2,eV,, and define W, = V,\{z,}. Now let E = b;_, W;. Clearly
k=1

Ee&(T, 1), and if ceI'(E), then for some %, ¢ = by P and @ + i(¢ ' E)
= Ve «, so that Ee #. Suppose that de E N S. Then, for some positive
integer &, d = b;_,w, where we W,. Thus w ¥ x;, so that d =b,_,w |
1 bx_12;, =b;,. But be I(8) = 8, so that d¢ S since S is scattered, a contra-
diction. Thus EnS = @.

4. Dispersion-free weight functions. If (X, | , &) is any sample space,
then a real-valued function w: X — [0,1] is called a weight function if,
for each Ee¢ o, > w(e) = 1.

eel
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Of special interest in the present context are those weight functions
which are dispersion-free, meaning that their range is contained in the
two-element set {0, 1}. Let 2(X, | , /) denote the collection of all weight
functionson (X, | , o/)andlet 24(X, | , o) denote those weight functions
which are dispersion-free. It is easily seen that there is a one-to-one cor-
respondence between the sets S3(X, | , <) and 24(X, |, &), where each
&/-dispersed maximal scattered set in X corresponds to its own characteris-
tic function. In the FOM, we make the further observation that if Se
S;(Iy 1 ,%,) and if ae 8, then a~'Se 83(I, 1, #,). From this it is easily
shown that S(I', 1, %,) = 8Sg(I', |, %), and hence Qu (I, |, B,
= Q4(I', | , B,). Further, by (6), any operation in #\ %, is not co-
-dispersed, and hence %, is the largest subset of # on which we can define
dispersion-free weight functions. Together with (10), this discussion
gives the following result:

THEOREM 11. (I, |, &) admits mo dispersion-free weight functions
whatsoever. Furthermore, if B, S < B and (I, 1, F) is a sample space,
where Q4(I'y, |, ) #O, then S =B, and 24(I, |, F) = Qu(I', 1, B,).
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