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Summary

The main aim of this paper is to set forth some fundamental properties of the
statistical set, the structure of which is changed at random in relation to a definite
characteristic X. In this exposition we shall consider in detail the case where
the set of values of the function induced with X is a finite set. In this case
the structure in question will be represented by an =-dimensional vector A. The
results obtained will be applied to a problem of disintegration of radioactive isotopes.

1. The structure of a statistical set. Let us observe the triple
2 = {w}; o,¥) where ¥ is a probability measure defined over the
o-algebra &/ and suppose that the characteristic X of elements w induce
the numerical function X (w) defined over 2 and measurable with respect
to /. Under the structure # of the statistical set in relation to X the
system u = (2, X, ¥) is understood.

If X induces in a random way the family of functions & = {X}
measurable in relation to o/, then the structure of the statistical set
changes at random in relation to X; for that & = {X} defines the set of
structures U = {u}.

Let us now observe the triple (U, %, &) where & is the measure of
probability defined over the o-algebra % and let us assume that for
every % the funetion X maps £ on the set of real numbers {z;; i = 1,
2,...,n} If we denote by By = {w; X(w) = @;}, where it is obvious

that for every ueU, U By, = Q, then X = Zw@X B, Where X5 is the

indicator of B;,. Further putting p;(w) = !F(B ) we get the n-dimensional
vector A, = {p,(u), p,(%), ..., p,(u)}, whose coordinates satisfy the con-

dition ) p,(u) =1 for every ueU. The vector 4, is called the wvecior of
y=1

structure of the statistical set in relation to X.

In the further exposition the random vector A = (p;, gy ..., Pn)
whose set of realizations is the family {4,; ueU} is called the wvector of
random structure of the statistical set with respect to X.
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2. Distribution function of the vector A. On the basis of the preceding
exposition the conclusion can be made that the vector 4 maps the space
= {u} on that set of points W of the hyperplane

(1) j'w, =1

whose coordinates are non-negative. Accordingly, measure & induces
the measure P(G) = & {u; A,¢G}, where @ is an element of g-algebra %~
of subsets of W.

Let us now observe a sequence of non-negative numbers o, ¢ =
=1,2,...,n and the distribution function ¥ of the random vector A4

F(ay, agy ...y @) = P{Ay;p, < @,y »=1,2,...,0}.

Then the following theorems can be proved.
THEOREM 1. Let a;+a; > 1 for every i # j; then F(ay, agy ..., Gp)
n
=1-— Z: D,(a,) where D,(a,) = P{4y; D, > a,}.
THEOREM 2. Let the first 8 variables a;, t =1, ..., 8, satisfy the condition
a;--oy <1 for every i £j=1,...,8, while the other (n—8) ones have
the property a,+ oz > 1. Then

”
Flay, agy..., 0p) = 1'—2D (a,) 4Ry,
pm1
-1 8

where Ry, = Z' 2 P(By), By B =0, By = {Ay; 2> ai} ~ {44505 > 04}

Let u be the Lebesgue measure defined over %" and let P be absolute-
ly continuous in relation to x; then according to the Radon-Nicodym
theorem there is a non-negative function & defined over W with the pro-
perty P(G) =J¢dy (@eW).

If we have G = {4,;4a, <p,<b,, »=1,2,...,n—1}, then the
following theorem is valid.

n—-1

THEOREM 3. Let ‘Z‘ b; <1 and suppose that for every i =1,2,...,n—~1
the imequality 0 < a; < b; holds. Then

bp—1

P(@) = f f f D(my, Ty ». ’wn)‘/";ﬁdmn
T, = 1— Z z,.

ya]

3. The discrete type. Let us consider vector A and suppose that

the set {A,; we U} is finite; writing P, {4 = A4,} = P, we get > P, = 1.
4
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We shall further consider a random distribution of ¥ elements into »
cells. Let us denote each cell by a natural number from 1 to » and by X}
the number of elements which belong to the »th cell. Because of the rela-

n
tion }' X} = %, it follows that the end-points of the realization of A belong

r=1
to the set of points of the hyperplane

n

(2) | Yo, =k

. 9=l
whose coordinates are non-negative.
Let us write
PAX; =145 v =1,..., 0} = Diiy. 4,5
then it is not difficult to see that

k=%, k=1, k—%1p—Tpp3,n

(3) Zk ka S D by =1,

G=04,_1=0 =0 ip=0 Ty 420
where z,, =j§z‘, and » = 1,..., n. Further, if of, j =1,...,n, is the
sequence of natural numbers such that af +of > & for each ¢ + j, then
the distribution funetion is .
P(af, o}, ...;of) =1— Y Di(a}),

vau]

where
k k-1, k—zq, k-—tl,—r,_,_a’”

D:'(a,‘) == Z 2 ‘e Z s 2 p‘l':z---in'
iv-=a;+1 i,_1=0 i1=0 i,_,_z-o
If the first s variables af have the property of +af <k, ¢ #j =
=1,...,8 and the other (n—s) ones satisfy the conditions ey ay > &,
P #q=n—8 n—s+1,...,n, then we have

n
F(a?, 0;1 EEY) a;) = l—ZDf(a':)-l-RL,
vaal

where
8—~1 =& k—af k- =% keaf—Tpu—%, 130 )
B=d SRy ma=3 S 5
pe=l f=l‘+1 ‘“aa; i”..lno i"+2=0
Finally, let a7 and bf be non-negative integers so that af < b},

n—1
t=1,...,n—1, and > b <k; then according to Theorem 3
yul
b

bn—l
Pl SXI Bl i=1,,n—1}= D ... ¥ pg o

f=0)  ly_jmal_















