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Introduction

Following A. L. Garkavi ([16], p. 97), we will call a real normed
linear space X uniformly rotund in the direction ze¢X, |2 =1 if
By Yne X, Bl = Wall =1, 2,— Y, = 4,2, 4, real, [}(z,+¥,) -1 im-
ply A, — 0. This notion is useful in the theory of Chebyshev sets,
Chebyshev center [16] and may be used in the theory of fixed points,
too [45].

In Chapter 1 of this paper we derive some necessary and sufficient
conditions for this property and a characterization of such directions in
some spaces.

In Chapter 2 -we investigate a dual property and a connection to
Chebyshev property and to a question of norm-preserving extensions
of linear functionals.

In Chapter 3 we consider some equivalent renorming results con-
cerning this notion.

Chapter 4 contains some remarks concerning Banach spaces with
uniformly Gateaux differentiable norm and some counterexamples to
various notions of rotundity. ,

Chapter 5 contains an application of the theory of spaces uniformly
rotund in each directions to a nonlinear fixed point problem.

In Chapter 6 there is proved a uniformization of one Mazur’s theorem
concerning the separation of a point and a convex set by a ball.

We consider only normed linear spaces over the reals. z, - &

respectively #,——» in X or f ,,i fin X* (the dual space of X) mean
norm respectively weak convergence in X or pointwise convergence
in X*.

N denotes the set of all positive integers, R the set of all real num-
bers. For r > 0,

8, = {(UGX; llell = T}, K, = {(BEX, llli <r}

87 and K, are defined analogously in X*. For K c X, 8,(K) denotes the
norm boundary of K. If o, ye X,z # y, (2, y) respectively [z, y] denote
the line through @, y respectively the closed segment between =, .
By a subspace of a Banach space X we always mean a nonempty
closed linear subspace of X with the norm induced from X. For a subspace
P < X, the deficiency of P means the dimension of X/P, P! means the
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set {feX*; f(z) = 0 for z¢ P}, for convex K c X, ext K denotes the set
of all extreme points of K. Rz is one dimensional subspace generated
by #eX,x # 0. Under isomorphism 7T of X, Y/X, Y are normed linear
spaces we mean a linear continuous one-to-one mapping of X onto Y
such that 7' is continuous.



CHAPTER 1

Uniformly rotund directions

First, we will need a simple geometrical lemma:

LEMMA 1. Let X be a normed linear space. Suppose x,,y,eS; « X,
2pe[®,, Yy, ] sSuch that ||z,|| — 1 and there exists § > 0 such that min |z, — 2,|,

Wn—2,l) > 6, neN. Than inf [tw,+ (L—1)y,| -1 a8 1 — oo.
te(0,1)

Proof. There exist 8, >0, >0 such that z, =1¢,0,+(1—1,)y,
where 0 < 8, <t, < 6, < 1 for every neN. For every neN choose f,eX"

such that fn(zn) = ”zn”! ”fn” = 1. Then fn(zn) = tnfn(wn)_l_(l_tn)fn(yn)'
Hence for every & > 0 there exists n,e N such that for n > n,, neN

—(1-t
fn(.’Bn)= fn(zn) (1 n)fﬂ.(yn) 2 1__‘9_> 1_1
- i, tn 0,
and similarly
1—e—1 €
>—T>1— .
Falyn) > —3— S 1,

Therefore, for every ¢ > 0 there exists n,e N such that for neN, n > n,,
min (f,(#,), fo(¥,)) > 1—e. Consider an arbitrary = > n, and te[a,,¥,].
Then ¢ = aw, -+ (1— a)y, for some ae{0,1), and

)2 a(l—e)+(1—a)(l—e) = 1—e.

Therefore [t|| > f,(t)>=>1—e.

PROPOSITION 1. Let 2¢8, <« X, X is a Banach space, ¢ >0 be an
arbitrary fized number.

Then the following conditions are equivalent:

(1) X is uniformly rotund in the direction z;

(2) @py YneS1y B—Yn = 12,0 <A< 6, |3 (2,4 9,)[| = 1 dmply 4 = 0;

(3) Ty yneKI! Tp—Yn = lnzi “%(mn'*' yn)” -1 imply ;'n —0;

(4) 2, YneX, |z, ]l — llyall — 0, {wn} bounded, z,— Y, = 4,2, [|B,[|+ 1Yl —
- llmn"‘?/n“ -0 1‘mpzy )'n - 0;

(8) lloall = 1, @, + A2l > 1, {f©,+22,2]| -1 imply 4, - 0;

(6) there exists no {®,} bounded, such that |[x,+ z||— |i@,|| - 0, |©,+ 2{|+
+ [[@all— |22, + 2] > 0;
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(7) there exists no {x,} bounded, such that 2(|z,+ 2|+ |z,||?)— |2z, +
+2||* > 0;
(8) for every e >0
inf (1—[13(z+y)l) > 0;
z,yeS

T—yeRz
- lz—vl>e

(9) for every ¢ >0
inf (1— inf l|tm+( —t)yll) > 0;

y'sl t‘( !
r-yeRz
le—yl=e

(10) for every ¢ >0

| &
int (1— 1y
I,U‘Sl

T—Yy=62

(11) for every € >0

o

inf (1— inf |tz+(1—2t)yl) >0
z,y€8) te(0,1)
r—y=ez

Proof. (1) implies (2): obvious.

(2) implies (1): Suppose (1) is not satisfied. Then there exist z,,
Yn€S1) B—Yn = 4,2, (4| 2 6 >0, @, + ¥,/ > 2. By Lemma 1 inf |t

te[z,,v,]
=1—¢,—> 1. Therefore for n>ny,neN,1—¢, >%. Take n>n, an

arbitrary number. If 0e(2,,y,), 0¢[z,,y,] we would obtain a simple
contradiction with convexity since z,, y,¢8, (see for instance Th.1.10b,
of 743]). If 0e¢[z,,y,] then |0| >} — a contradiction. Therefore we
may denote by P" the plane through 0, #,,y, in X and K"= K, n P".
Then Jpn(K") = 8, N P* — which is easily seen by a characterization
of boundary points of a convex body through the values of its Minkowski
functional. By our assumptions |z,—v,| > min(a ¢). Denote min(d,c)
= c¢. If [=,, y,] = 8, then we may simply choose Z,, ¥, ¢[®,, ¥,] s0 that
Z,—Y, = o'z and |[tz,+(1—1)y,]| =1 for all ¢{e{0,1). Now suppose
[®,,y,] contains some interior point of K". Denote H the closed hali-
space determined by (w,,y,) and 04H. Define K* = H n K". Then K"
is a compact convex body. There ex1sts a supporting line ! # (z,y) in P" to
K™ in the direction 2. Since I N K™ + @ denote V = I n K. Consider an
arbitrary element x of K™ Then there obviously exists ae(0,1) such
that ave (2,,y,). Suppose that ex¢[z,,v,]- Than since [z,,y,] contains
some interior point 2, of K", 2, +#+ x,, 2, # ¥, and since axeK" since K"
is a convex set and 0<K", we see that in this case x, or y, would not be
a boundary point of K" again by a simple consideration involving con-
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vexity of K. Therefore az¢[,,¥,] and thus ||| > |az| > 1—e, by our
hypotheses. Now choose an arbitrary element » of V. Then again the
line (0, v) crosses [#,,%,] in some point . Consider now the Banach
space B on (0, ) with the norm from X. Consider a coordinate system
0, {0, v), (z,, ¥,) in P" where (z,,y,) denotes the line through 0 parallel
to (2,,¥,), with the measure umits on (0, %), (2,,v,) obtained from X
and an orientation such that v has a positive (0, v) — coordinate.

Now, for every te[u,v], p(t) denotes the line through ¢ parallel to
(%,, ¥,). Denote ¢(¢) a function defined on [, v]:

q(t) = sup [lz—y].
z,yen(t)nK?
Then it is easy to see that ¢(t) is well defined, bounded. We check that .
g(t) may be regarded as a sum of two well defined functions f,(—f,) on
[, v]:
Ji(t) = Sup s, J2(t) = inf~ @y, U= {t, 0}
{t;,zg)e KN {t;,xp) e K™

where {x,, #,} denotes the coordinates of #eP" in our coordinate system.
Further, since we are in a compact set, these suprema and infima are
always attained. f, (f:) is a concave (convex) function. For it, take for
instance f,. Suppose ? = at'4(1—a)t? ael0,1), #, t2e[u, v]. Denote
fi(#) = B, f1(t?) = B.. It means {1, ﬂl}ek“, {th, ﬂz}ek"_ Therefore
{ati+ (L—a)t}, aB,+ (1—a)Bs}eK™ since K™ is a convex set. Thus
{t:, afy+(1—a)p} K" and therefore f,(t)> afy+(1—a)B, = afy()+
+(1—a) f,(t?). Using the continuity theorem for convex functions ([4b,
Ch.2; 5]), we see that these functions f,, f, are continuous on [u, v] excetp
perhaps %, ». We may, of course, prove continuity of both of these func-
tions at % and v with respect to [u, v]. Take for example f, and u. We are
to prove lim f,(t) = f.(u) (¢ = {¢;, 0}). Obviously, lim supf,(t) < f.(%),

ll-buf' G—>u '
liminf f,(¢) < fo(u) otherwise we get a simple contradiztion with con-
tl—mi"
vexity of f,. If liminff, (t)<f,(u) denote a= liminff,(t). Take t"e[u,v] s0

t-u] {—uf

that {} -« and f,(t") - a. It means {I7, f,(t")l} - {u,, a}eIE", a < fa(u)
— a contradiction with definition of f,(x). Thus ¢(¢) is continuous
on [u,v]. Now, if ¢(v) > o' it simply implies that there exists a line
gegment on §; in the direction 2 of the length- ¢*. So, in this case we
may again choose z,,¥,e8, such that
T—3, = 'z, |t@, 4+ (L—0)7,] =1 for all 1c(0,1).
If ¢(v) < ¢* then since g(u) > ¢! and [u, v] is a connected set of B we ob-
tain by well known Darboux property of continuous functions again there
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exist @, y,¢8, N K", &,—y, = o'z Since for t¢{0, 1), t&,+ (1—1t)y,c K®
we have already proved |tz,+(1L—1)y,]>1—e¢,. Therefore for every
% > ny, ne N we have found z,e¢8,, ¥,¢8, such that z,—y, = o'z where

<o, inf |t2,+(1—10)¥,l|>1—e, — 1. Thus (2) is not valid.
te(0,1)

(1) implies (3): Suppose there exist a,,y,e¢K,, z,—y, = 4,2, |4,]
> 06>0,|}(@,+9,)| >1. Take neN. Then there are only two possibili-
ties. [«,,y,] contains some interior point of K, or not. In the second
case T, ,y,e 8, and therefore we take w, = x,,v, = y,. Otherwige it is
a simple consequence of convexity that (w,,y,) N S, are exactly two
points which we denote 2,,¥,. Let z, = }(z,+,). Then |jz,—z,| > 4,
l¥n— 2.ll = 39, |z,]| =1 by our hypotheses. Thus by Lemma 1 [{}(z,+
+9,)|| - 1. Of course, z,—y, = 4,2, where |1,| > |4,| > 8. Therefore (1)
is not satisfied.

From the proof of the rest of our proposition we mention only a few
parts. The others are easily deduced from these ones. We prove the equiv-
alences from (1) up to (11).

(3) implies (4): Suppose (4) is not satisfied. Then there exist ¢, >0
and {z,} bounded {y,} c X, llw,l— .l =0, 2,— ¥, = 4,2, lwll+ lynl—
— |8+ yall > 0, and [4,] = e, > 0. Assume without loss of generality
gl >1 (2, #>0). Then |y,| 1. Take z, = (max(|z,l, lyall))~"2n,
Yy = (max(|o,l, [¥.1)'¥,. Then z,—y, = i,z Wwhere |i,| > ke, >0 for
B> Mg, Dy, Yo Ky ||T,+¥,]| > 2. Therefore (3) is not satisfied.

(6) implies (7): Suppose {»,} is a bounded sequence of X such that
2 (|, + 2|2+ ||2,12) — |22, + 2||* — 0. If for some & > 0 and subsequence n,,
(||ln, + 2]l — llzy, )? = 6 we would have

2 (||, + 217+ [l 1) — (120, + 2l|* 2 (ll2, + 2] — [[24,1)* = 8 >0,
a contradiction with our hypotheses. Therefore |z, z||— [lz,/| = 0. Then

(llon 4 2|+ llog )2 — [|2@5+ 2] =

=2 (|lw, + 218+ llz, 1) — 122, + 2l1*— (Il + 2l — [l@4]))* — 0.
Thus

An = (lon+ 2+ llogll — 120, 4 2[1) (2 4 21|+ [[24]] + 1220, +2]]) — O

Now, if for some subsequence n,, Ty, >0, then from 2 (|lf%k+ z||*+ ll%,,ll')—
— |20, + 2||* -0 we have (limiting %k — oo) 2|2||*— |j2l|* = 0, i.e. 2 =0,
a contradiction. Otherwise there exist 4 > 0 and n,¢N such that |jz,| > é
for n > my. Then the second member of A4, is not less than J for n > n,.
Therefore |z, 2|+ |l@,||l— ||22,+ 2| - 0. Thus we have a contradiction
with (6). ~
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A characterization of uniformly rotund directions in some spaces

Let § be some nonempty set, B(S) denote the Banach space of all
bounded real valued functions on § with supremum norm and if § is
a topological space, C(S) be the Banach space of all bounded real valued
continuous functions on § with supremum norm. ¢,(8) denotes the Banach
space of all real valued functions f on 8 with the property that for every
& > 0 the set {s¢8; |f(8)| = ¢} is finite, with supremum norm. Let (T, X, u)
mean a measure space, i.e. a set 7, o-field 2’ of subsets of T' and a non-
negative countably additive real valued measure on X. If we denote
L,(T, X, u) the Banach space of all integrable (i.e. absolutely integrable)
functions (of course, ‘‘classes’’), we suppose 7 is ¢ - finite since L (T, Z, u) —
the Banach space of all essentially bounded real valued functions with
the norm esssup is then isometrically isomorphic to Ly (T, Z, u). 1,(8) is
the space of all absolutely summable real valued functions on S with
its usual norm )’ |x(s)|, ¢(N) the Banach space of all real valued con-

8eS

vergent sequences with the supremum norm.

For all these spaces see [11], [14].

For a,beR,a +# b, ]a, b[ denotes the open line segment between a, 5.

ProrosIiTION 2. Assume K is some subspace of B(S). Suppose geK,
llgll = 1 is such that the following conditions are satisfied:

For every ¢ > 0 there exisis t,e8 and f,eK, ||f,)| = 1 such that the fol-
lowing conditions are satisfied simullaneously:

1) Ig(ta)l S 2 Ifa(te)l 2 1_3)
2) lg(0)| = € implies [f,(t)] <e.
Then K 18 not uniformly rotund in the direotion g.

Proof. For ¢e< } denote h, = f,—g. Then |k)]<1+¢ |f,)l =1,
fe—h, = g. Furthermore,

I3 (Bt = [(fi— 29) (0] = [fo(t)— 139 (%)] > 1—2s.

On the other hand, ||} (f,+ A.)ll < $(lik,li+ If.l). Furthermore, |j&,]| > 1— 2e.
Thus |ja)| >1, Ifl =1, fi—hs =g, I}(fi+h)>1 whenever &—0.
Hence K is not uniformly rotund in the direction g.

ProrosITION 3. Let K = B(S8) be a subspace of B(S). Suppose K is
not uniformly rotund in the direction g, geK, |gl| = 1. Then there exist
i,¢8, suoh that g(t,) — 0.

Proof. K is not uniformly rotund in the direction g means there
exist f X, goeK, Ifoll = lgal =1, fa—gn = 48, 4a] >8>0, [4(fatga)l
= 1—¢, > 1. Take ¢, = ¢,+1/n. Then for every neN there exists z,¢
such that |}(f,+9,)(®,)] = 1—e¢,. It is easy to see that |f,(z,)— g.(2,)|
< 2¢,, nel, Since [4,)> 8 >0 and [2,9(2,)| = |f,(2,)— ga(,)] >0, We
have g(z,) — 0.
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PROPOSITION 4. Leét K — B(S) be a subspace of B(S) such that

(1) f(8) =1 on 8 18 in K,

(2) he K implies |h|eK.
g be an arbitrary element of K, |jg|| = 1.

Then the following properties are equivalent:

(1) K is not uniformly rotund in the direction g. .

(2) K has a nontrivial line segment on the boundary of ite unit ball
in the direction g.

(3) inf |g(¢)] = 0.

teS

Proof. Suppose K is not uniformly rotund in the direction g. Then,
by Proposition 3 there exist 8, ¢S such that g(s,) — 0. Thus (1) implies (3).
Also, of course, (2) implies (1). Therefore it suffices to prove (3) implies (2).
Suppose (3) is satisfied. Take f(1) = 1—|g(t)]e K. Then 0 < f< 1, (|If| =1
and for an arbitrary ae]0,1[, 0 < [g(#)]—ag(t)<14a. Thus 1>1—
— |g(t)| + ag(t) = — a. Therefore || f+ ag| < 1. On the other hand, g(¢,) > 0
for some t,e8 and thus |1—|g(¢,)|+ ag(t,)| — 1. Therefore ||f+ ag|| =1
for a€]0,1[. Now consider k, =f, h, = f+4g to obtain the desired
results.

COROLLARY. We may take in Proposition 4 K = B(S8), K = C(8)
or K = ¢(N).

In the following, we will use the following simple and trivial fact:

Remark 1. Let X, Y be Banach spaces, T a linear isometry of X

onto Y. Then X is uniformly rotund in the direction z, jj2|| =1 iff ¥ is
uniformly rotund in the direction T=z.

From the results of R. R. Phelps (Th. 3.6 of [34]) we have a corollary
that ¢,(S) does not contain any nontrivial line segment on its S; in the
direction z¢8, iff z does not take on zero. Thus ¢,(S), 8 uncountable has
a nontrivial line segment in every direction.

We now give in the following proposition an example of the space
and its direction such that

(1) the space is not uniformly rotund in this direction;

(2) the space does not contain any nontrivial line segment of its §; in
this direction.

PROPOSITION 5. ¢o(N) i8 uniformly rotund in no direction.

Proof. Take zecy(N), |l2]| = 1 an arbitrary element. We will show
the assumptions of Proposition 2 are satisfied for z. Let ¢ >0 be an
arbitrary number. Then there exists an integer », such that |2(n,})| < e.
Take f, as follows: f,(n,}) =1, f.(w) =0 for » # n,. Then f,e¢,(N),
if.l = 1. Then the assumptions of Proposition 2 are satisfied and there-
fore ¢,(N) is not uniformly rotund in the direection z.
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Now consider an arbitrary Banach space X and let £ denote a topo-
logical Hausdorff space of all extremal points of K; with relativized w*
topology. Consider a mapping T of X into C(E) defined as follows: For
zeX, Tz(g) = g(z), geE. T is obviously linear. Consider z¢8, = X. Denote
F the set of all elements f of S} so that f(z) = 1. F' is a nonempty convex,
w* compact subset of X*. Therefore, by Krein-Milman theorem, it has
an extremal point k. h is an extremal point of K}, too. For it suppose
h = 4(hy+hy), hyy hye KT, by # hy. Then hy(z) =1, % = 1,2. Thus h;eF,
it =1,2, hy # hyy, h = }(h,+h,), a contradiction with extremality of
h in F. Therefore T is a linear isometry of X onto some subspace of C(E).
Using these well known arguments we may immediately derive the fol-
lowing:

PROPOSITION 6. Let X be an arbitrary Banach space. If X is not uni-
formly round in the direction zeS, c X then there exisis a sequence {g,}
of extremal points of K; such that g,(z) — 0.

Proof. If X is not uniformly rotund in the direction 2, then by
Remark 1 T'(X) is not uniformly rotund in the direction 7'z, where T
means the natural isometry of X into C(E), mentioned above. Therefore
by Proposition 3 there exists {g,} = ¥ such that Tz(g,) = ¢,(2) > 0.

In the space L,(0,1> of all Lebesgue integrable functions on
{0, 1) there exists a nontrivial line segment on its §, in each direction
[1]. The same result is proved in [34], Th. 2,5 for the space L,(T, Z, u)
where u contains no atoms.

If we consider [,(S) for an arbitrary nonempty set 8 — the space
of absolutely summable real valued functions on §, we have the following:

PROPOSITION 7. Assume 1,(8) is not uniformly rotund in the direction
28, = 1,(8). Then there exists a nonirivial line segment on 8, < 1,(8)
in the direction z.

Proof. By Proposition 6 there exist g,cextK; such that g,(2) — 0.
Denote T a well known natural linear isometry of I; (§) and m(S), namely,
for fel} (8), (Tf)(s) = f(e,) for seS where ¢, is an element of 7,(S) defined
as follows: ¢,(1) = 0 for t +# s, e,(s) = 1.

By the Alaoglu Theorem there exists a subnet I, = geK}. Then
Tg, — Tg pointwise in m(S). Since T is an linear isometry, Tg, are
extreme poinfs of K, « m(S8), i.e.,, by the characterization of extreme
points of K, < m(S), |Tyg, (s)] =1 for seS. Therefore |Tg(s)| =1 for
seS and Tg is hence an extreme point of K, =« m(8). Thus g is an
extreme point of K] < I} (8), g(z) = 0. Denote Tg = {¢(8)},.5- Take z(s)
= ¢(8)]2(s)|, where 2 = {2(8)},.5. Then {z(s)}el,(8) and it is easy to
see that for ie]0, 1[2 Iz (8)+ Az(s)| = 2 1w(s)]+12 (8)z(s) = 1, since
g(2) = D) e(8)z(s) = 0

8e8
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Take, for example, %; = {#(8)},y; ha = {®(8)+ $2(8)},.g to obtain
the desired conclusion.

As for a finite dimensional case, it is obvious (compactness) that the
notion of uniformly convex direction coincides with nonexistence of
nontrivial line segments of 8, in this direction.

In this connection, Professor V. L. Klee settled in [25], p. 419,
& problem, one part of which asks whether a direction for a compact »
dimensional convex body K must exist such that there is no nontrivial
line segment on 4(K) in this direction. This problem was solved positi-
vely by T. Me. Minn ([32], p. 944) and A. S. Besicovitch ([4], p. 24) for
n = 3 and by Professor V. Klee and Professor B. Griinbaum for (n— 2)-
smooth compact convex s dimensional bodies, ([26], p. 408). Professor
V. Klee kindly communicated to the author a preprint by W. D. Pepe
where the problemy had been solved positively for » = 4.



CHAPTER 2

Duality properties

For »,yeX (a normed linear space) g(@, y) = |lz—y|.

DEFINITION 1. P =« X be a one-dimensional subspace of a Banach
space X. Then P is said to have § property if, whenever g(z,, P)—
—o(@p, ¥,) >0, o(a,, P)—e(®,,2,) >0, {g,} =« X bounded, {y,} <P
{z,} = P imply y,—z, — 0.

Remark 2. Obviously, S property is not weaker than the Chebyshev
(Motzkin) property (i.e. each point of the space has a unique nearest
point in a set) and these notions coincide in finite dimensional case since
the distance is a continuous function of a point.

From the compactness argument we immediately have:

PropPoSITION 8. Pc X, dimP =1 has S property iff, whenever
{z,} € X, Y P, 2P, {x,} bounded, ¢(x,, P)—o(2,,y) -0, ¢(x,, P)—o(zy,?)
— 0, then y = 2. )

PrOPOSITION 9. Let Pc X be a one-dimensional subspace of the
Banach space X. Then P has 8 property iff X i8 uniformly rotund inzeS; N P.

Proof. Suppose X is uniformly rotund in z. Assume P does not
have S property. Then there exist sequences {z,} < X, {y,}, {2,} = P,
{x,} bounded such that ¢(z,, y,)— e(@,, P) >0, o(2,, 2,)— (%, P) >0
and |ly,—z,)| > & > 0.

If for some n,, o (w,,, P) - 0, then o(¥,,, 2,,) < 0¥y, Tn,) + € ( @y %))
— 0, a contradiction. Because of the boundedness of {®,} we thus, with-
out loss of generality, suppose ¢(z,,P)—>k #0. Take s, = x,—Y,,
tn = @,—2,. Then [s,]| = &, [t,]| — &, [} (8,+ %)= ll@,— $(¥,+2,)ll. Thus
I (2a+t)ll = e(@,, P). Wehave [}(3,+1,)[| >k, 8,— l, P, |I8,— ]| > £ >0,
a contradiction with the uniform rotundity in 2z (Proposition 1, (5)). On
the other hand, suppose P has S8 property. If X were not uniformly
rotund in ze8, N P, there would exist {z,}, {y,} = 8, < X, 2,—y,eP,
such that |z,—v,l|> e >0, inf|tr,+(1—1%)y,|| = 1—e, — 1 (see Propo-

teR

sition 1; (9)). Consider p, = }(¥,—2,), ¢ = $(T—9,) ( =1,2,...),
Th = i(a’n-}' yn)' Then Pre P’ anP’ Hrn_'pn” = “rn—Qn” = 1) ”rn” <1l
We have g¢(r,, P) < |ir,l|. Furthermore, if ze P, there exists a,e R such
that 2 = a,p,+ (1—a,)q,. Then 2—r, = — (4,7, + (1 —a,)y,). Therefore
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lr,—2|| > 1—e¢, and thus 1> go(r,, P) >1—¢,. Thus we have po(r,, P)—
—0{Tny Pn) >0y 0(1ny P)—0(70) @) >0, Ppy @ne Py [[Pn— a0l = [12,— ¥l
> ¢ >0, |7l < 1. This is the required contradiction with § property of P.

Now we may study a dual property to the property 8. We will use

the notation |f| = sup |[f(2).
:ttSlnP

DEFINITION 2. P <« X be a subspace of X, deficiency of P equal
to 1. We say P has U property if the following condition is satisfied:
whenever f,, g e X*, f,—g,e P, [fol > 1, lig,l = 1, lifyllp —1, then f,—
— g, —> 0.

Remark. It is obvious that U property is not weaker than the
unique extension property with preserving the norm which is studied
in [34], and coincides with it in finite dimensional case.

The following is a very simple argument using the compactness
considerations in P'.

PROPOSITION 10. Let P be a subspace of X, deficiency of P is equal
to 1. Then the following three conditions are equivalent:

(1) P has U property,

(2) whenever fn’ gnEX*’ fn_gnepl! an“ ""17 ”gnH _>1’ “fn"P =1
then f,—g, =0,

(3) whenever f,, g, e X", fu—g, = he P, |fulle = 1, Ifall =1, llgall -1,
then h = 0.

PROPOSITION 11. P has U property iff PL has S property (dim X|P = 1).
Proof. Suppose P- does not have 8§ property. Then there exist
{fa} = X* bounded, {h,}, {g,} = P* so that o(f,, P*)—e(fn,hs) >0,
e(fus PY)—0(fny 9) =~ 0, |h,—g,ll=>¢>0. As it was pointed out in
[34], for every fe X" and every subspace ¥ < X, o(f, Y*) = ||flr. Indeed,
if ge¥*, Ifly = sup [(f—g) @) <I[f—gl so that-|ifllr < e(f, ¥*)

ze ¥ S,

On the other hand, choose heX*, » =f on Y and [h|| = ||f]ly. Then
f—heY+ and therefore o(f, Y1) < |If— (f— k) = lIfllr.

Again, without loss of generality suppose |f,|p —a # 0. We have
”fn_ hn”— ”fn“P - 07 an'_ gn“_ “anP -*0’ hn’ gn‘Pl' Denote Fn Ifn—' hn
Gn =fn_gn' Then ”Fn” —> @&, HGn” - &, HFnHP —> &, Fn—Gn = Qn_ hn‘P'L’
|1F,—@,l = |lk,— g,l| = ¢ > 0. Therefore P would not have U property.

On the other hand, suppose P does not have U property. Then there
exist F,, Gn‘X*y F,—@G, = h,e P, |F— Gl = € >0, ||F,|| -1, IG,]] >1,
|Fallp —~ 1. Then o(F,, Pt) = |F.lp =1, @(G,, P*) =IGllp 1, {Fn}
bounded. This means o(F,, P*)— o(F,, 0)—> 0, o(F,, P+)— o(F,, h,) >0,
{F,} bounded, h,ePL, |h,]>¢e>0, i.e. P- does not have § property.

ProrosIiTiON 12. Suppose X is a reflexive Banach space, P a one

dimensional subspace of X. Then P has 8 property iff PL has U property.



2. Duality properties 17

Proof. By Remark 1, P has § property in X iff »(P) has S property
in #(X) = X** where z is the canonical isometry of X onto X**. n(P)
= (P*)L and by Proposition 11, (PL1)* has 8 property in X** iff P+ has U
property in X".

ProposiTiON 13. Let P < L\(T, 2, u), T o-finite, deficiency of P
equal to 1. Let PL = Rz, ||| = 1, zeL{ (T, X, u). Then the following pro-
perties are equivalent:

(1) P has the unique morm-preserving extension property;

(2) P has U property;

(3) essinf|z| > 0.

Proof. The equivalence of (1) and (3) was proved by R. R. Phelps
in [34, p. 251]: Evidently, (2) implies (1). It suffices, therefore, to show (1)
implies (2). By a result of R. R. Phelps, [34, p. 240], (1) is equivalent
to the fact that PL has Chebyshev property. By Proposition 11, (2) is
equivalent to the saying that P! has 8§ property. This means, by Propo-
sition 9, L} (T, X, u) is uniformly rotund in the direction z. By Theorem
V. 8.11 of [14] there exist a compact Hausdorff space §; and a linear
isometry of L (T, 2, u) and C(8,). Denote T, the linear isometry between -
Li(T, X, p) and Ly (T, X, u), T, the linear isometry of L, (T, X, u) and
C(8,). Then T,T, is a linear isometry of L;(T, X, u) onto C(S,). By
Remark 1 we see that our assumptions imply C(8,) is not uniformly
rotund in the direction T,T,x. By Proposition 4 it means that there
exists a nontrivial line segment on the boundary of the unit ball of C(S,)
in the direction T,T,x. That means there exists a nontrivial line segment
on the boundary of L} (T, X, u) in the direction #. From this fact follows
immediately that P! is not Chebyshev subspace of Ly (T, Z, u).

2 — Dissertationes Mathematicae LXXXVII



CHAPTER 3

Some renorming results

ProrosIrioN 14. Suppose X, Y are Banach spaces, T i3 a linear
continuous one-to-one mapping of X into Y. Assume Y is uniformly
rotund in every direction ||Tz||™. Tz, z¢8, = X. Then X has an equivalent
norm which 8 uniformly rotund in every direction.

Proof. Denote |||z||| = Vz|k+ ||Tz|% an equivalent norm of X.
Take z¢8, = X. Suppose 2(|||z,+2[{[2+ |[|z,]][®)— |[|22,+2]||2 - 0 where
{#,} is bounded. Then

2([[wn+ 2l 1 lia|?) — 1122, + 211+ 2 (| T3, + T2\ + | T,|?) — |12 T, + T2|2— 0.

This is a sum of two nonnegative members. Therefore both of them con-
verge to zero. Further, {Tx,} is bounded in Y. We have

2(|I\T2) 7 - (T2, + T2)|[* + (1T21™" - 1T ))2— || 1T~ - (2 T2+ T2)|[ 0.

Since Y is uniformly rotund in the direction ||T2||"'T2 we have that this
is not possible.

COROLLARY. Every Banach space which has a countable lotal subset
of X* has an equivalent norm which i3 uniformly rolund at every direction.

Proof. Denote by {f;};.» = 8] this countable total subset of X".
Define a mapping T of X into I,(N) as follows:

Tz — {f"(f)} el,(N).
2 1eN

Then T is obviously continuous, linear, one-to-one mapping of X into
1,(N). I,(N) is, as a unifomly rotund space trivially uniformly rotund
at each direction. Now apply considerations of Proposition 14.

Now, we would like to remark that an excellent averaging procedure
of E. Asplund ([2]) works in this case, too.
For this, suppose |z|,, |[z|]; are two equivalent norms on a Banach

¢
T2 loli Denote f(o) = Hli,

space X, so that 3}l < lleli <
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'go(w) = 3{lz|z. Then E. Asplund constructs another equivalent norm
lolls such that if k() = }|lz|; then

*2"’) [ a1t 2fo(

h(@)+ h(y)— 2h( ‘”“’)

_'E.‘(fo(a’)*‘fo(y))]: 2, yeX,

for every neN where C > 0 is our constant from the equivalence of ||,
and o], |

An analogous assertion holds for # and g, only with change of C
to some other constant.

Now suppose |||, (or ||z||;) is uniformly rotund at z, ||}y = 1. It is
easy to see that by Proposition 1 (7) it means

o= it [n@+nm—o(2FY)]>0

:ccB,y’-z—z

. z4+y
( l,,nf go(w)+yo(y)—2go( 2 )]>0),

2¢B,y=z—0

gor every bounded subset B of X. Suppose now there exists B, bounded
jn X such that

(») int [(w)+h(y) 2h( +”)]=0-
:ccB::'p-z—a

Then, obviously, in this infimum, ¥ runs a bounded subset B, = B—z.
Take n,e¢ N so that

21;0 o m)+fo(?/)]<— for w@eB,,yeB,.

Then

oty 1 a
2 )>FZT°.-2~>0

)+ (o) — 28
for every =z,y, veB,, y = £—2, a contradiction with (*). Thus ||| i8
uniformly rotund in the direction z.

DEFINITION 3. A Banach space X is said to be locally uniformly
rotund (LUR) if @,,0,e8;, <X, |}(z,+a)|>1 n=12,..., imply
@, — 2.

A Banach space X is called weakly uniformly rotund (WUR), if o,,

ypoe8, c X, 3@, +y, )l >1 imply #,—y,—0. Similarly for the case
(W*UR) — with respect to the w*-topology of X*.
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A Benach space X is said to have wuniformly Gdteauz (UG) (uni-
|2+ thl|— Yerl|
t

formly Fréchet (UF)) differentiable norm if the limit lim

-0

= DJ|-||(®, k) is uniform on z« Y, fareach k¢S, (is uniform on {x, 2} ¢S, x §,).

ProrosITION 15. Every separable Banach space has an equivalent

norm which is locally uniformly rotund, uniformly rotund in each direction
and uniformly Gdteaux differentiable.

Proof. M. 1. Kadec ([19], p. 54) proved there exists in our case an
equivalent norm of X which is locally uniformly rotund. We proved
([46], p. 199) there exists in our case an equivalent norm |&|; being
locally uniformly rotund and whose dual norm in X* is (W*UR). (=4
direct consequence of the methods of E. Asplund mentioned above).
By the definition, (W*UR) means the following: £,, g, 87, |13 (f,+ ¢.)Il = 1,
then fn—g,,i":’ 0. This property is dual to Géiteaux differentiability of
a norm ([30], p. 646). The corollary to Proposition 14 gives an equivalent
norm ||z||; of X which is uniformly rotund at every direction. The Asplund’s
method applied to ||z||, and ||z|, gives the desired result.

Another method how to obtain spaces which are uniformly rotund
at every direction, is, fer example, the following-

ProproOSITION 16. X =1,(B;), teN, is uniformly rotund in every
“direction if so are all B;.

Proof. Using Proposition 1 (7), take {z,} bounded, ze¢S; < X so0
that 2(|iz,+ 2|’ + ||lz,*) — |22, +2|" — 0. Then

2 [2 (Nl + 2"k, + oz l5,) — 1247+ 2"l[,] ~ 0.

Slnce all members of the sum are nonnegative, we have 2 (|} - 2 ||2
+ ll#dl5,) — 1205+ 2'lfp, - 0 a8 n — oo for every ieN, z = {z'}¢8, in x.
Choose i,e N go that 2" # 0. Then we have
229 + 2%

(1 L
- ll2 WHB, ”zi‘)”B,-O

%lls,,
Since B; is uniformly rotund at every dlrection, we obtain a contradiction.

2 2

Biﬂ



CHAPTER 4

Some remarks to the theory of weakly
uniformly rotund spaces

PROPOSITION 17. X 8 (WUR) iff the following condition s satzsfwd
Zps Yne X, 2 (|0l + 19al*) — |2+ 9.l — 0, {@,} bounded, then w,—y,, = 0.

Similarly for the case of (W*UR).

Proof. It depends only on the methods which were discussed in
the proof of Proposition 1.

JPROPOSITION 18. Let X, Y be Banach spaces, T a linear eontinuous
.mapping of X onto a dense subset of Y. Suppose X is the space with uni-
Jormly Gdleaux differentiable norm. Then there exists an equivalent norm
of Y which is uniformly Gdteaux differentiable.

Proof. T" is one-to-one linear continuous and w*—w"* continuous
mapping of Y* into X*. Take a new norm of Y"*:

NI = VIIf B+ 17" £

Then ||{f||| is an equivalent norm of Y which is w* -lower semicontinuous
functional on Y*. Therefore |||f]|| is a dual norm of some equivalent
norm of Y. Now we want to prove |||f]|| is (W*UR). To this purpose
SUpPose  fry gne Xy 2([|1fullP+ 11194/ [1*) — [llfn+gn||I2 —~ 0, {f,} bounded.
Then {|T"f,|x} is bounded and 2 (1" fulfs+ 117" glix-) — |73 + T} lx» — 0.
Since X* is (W'UR), by the duality theorem of V. L. Smul]an ([41],

a shorter proof see [10], p. 291), we have T*f,—T"g, > 0 in X*. Since
{f.}, {9.} are bounded in Y*, there exists a closed ball K; c Y* such
that {fn— gn} S K;" . By the Alaoglu theorem K is weakly* compact.
Since T* is w*—w* continuous and one-to-one in K}, it is a homeo-
morphism of K onto T*(K*) and therefore from T*(f,—g,) 20 we
have f,— g,,—»O in Y*. Thus |||f]|| is (W*UR).

Remark. Proposition 18 is a uniform analogy of the Theorem [7]
Th. 5 of M. M. Day. The proof is also similar.

COROLLARY 1. ¢y (S) has an equivalent (UG) norm for every nonempty S.

- Proof. Take X =1,(8) and T the ‘“natural identity” mapping of
1,(8) into ¢,(8) in Proposition 18.
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COROLLARY 2. L\(T, X, u) has an equivalent (UG) norm if T is finite

or o-finile.
Proof. The proof is analogous to one of M. M. Day in [12] for an
~analogous corollary for the case of the Gateaux differentiability. If T
is finite, we simply put X = L,(T, Z, 1) and F the “identity mapping”

of L,(T, Z, u) into Ly(T, Z, p). I T = |J Ty, 0 < u(T;) < oo, then M. M.
f=1

-Day constructed the mapping F of L,(T, Z, u) into L,(T, Z, u) by the
following: If @ is the characteristic function of 7, in T'(j =1,2,...),
et 1
then for w®eL,(T, X, u), Fa =2w~¢,~7'(p(1',))‘”2. The mapping F

i=1
satisfies hypotheses of Proposition 18.

Remark 3. M. M. Day proved [12] (see also [20]) that I,(I") has no
equivalent Gateaux differentiable norm if I" is uncountable. This result
implies immediately that ¢,(I") has no equivalent (WUR) norm if I' is
uncountable, see also [42], p. 95.

Similarly to Proposition 18 we obtain

PROPOSITION 19. Suppose X i8 a reflewive Banach space T is a linear
continuous one-to-one mapping of X into (WUR) space Y. Then X has
an equivalent (WUR) norm.

Proof. Take |||z||| = V|#|k~+ ||Tz|%. Analogously to Proposition 18
we may see |||z||| is an equivalent (WUR) norm of X.

Another method for obtaining (WUR) spaces is again:

PROPOBITION 20. X = l,(B;),1¢N, is (WUR) if so are all B;.

Proof. Assume,, y, < X, {z,} bounded, 2 ([lz,|/*+ [[y,I) — Iz, 4 ¥, > 0.
It means ~

D (21l + lhls) — loh+ vhl] >0 as m —> oo.
j=1

It immediately follows from these ficts that {y,} is bounded (see Proof
of Proposition 1) and

2 (Il + lyals ) — e+ 9ol >0 as m - oo

for every jeN. Therefore, since obviously {z’} is bounded in B; for every
jeN, we have that a7,— 9/, 5 0 in B, for every jeN since B, are (WUR).

©

Now, if feX* then f(z) = Y f/(2/) where f'eBj, ¥ ||ff||;;< co. Let us
L8 i=1 i

=1
8ay |4, — ¥nllx < K < co. We are to prove the following: For every ¢ >0
and every fe X" there exists nye N such that for n > ny, neN |f(@,—¥,)|< 8.
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Take fe X*, ¢ > 0. Then there exists j,e N such that ( ||f’{|2 ) <<r-
J=jp+1
Now choose n,e N so that for j — 1,2, ...,75, |f/(zl—yl)| < <§ whencver

[
% = ny. Then

[f (@n—ya)l = l;‘ff(wf,—yi)\

Jo )
< 2|f’<w1i—yi)|+ D 1 (@ —y)l

I=7g+1

— 2 17 ls; -l — vl

2 .'f"fo'l'l

—+{ X )" 3 ot yil,)"

i“jo"l‘l 1-0+1
< 4%
— — K = &
2 7 9k

whenever n > n,.
Similarly we obtain
PROPOSITION 21. X = I,(B;),1eN 8 (UQ) if so are all B;.

Proof. X* is isometrically isomorphic to I,(B). B are (W*UR)
([41], p. 646) and the method of the proof of Proposition 20 may be vsed
for the rest of this omne.

Now, we shall proceed with some remarks concerning uniformly
Géateaux differentiable norms.

PrOPOSITION 22. X is (UG) in the direction ze S8, = X iff 8;3x,, y,¢K,,
1+ llyall— llen 4+ ¥all

1 —>

(]

Proof. The proof is similar to that of G. Kéthe ([27], p. 363) for
the case of uniformly Fréchet differentiable norms. Suppose X is (UG)
in the direction z. Then it is easy to see by a well known argument ([27],
p. 349) that this is equivalent to the following:

@+ t2]| 4 |lw— t2]| — 2
14
whenever ¢ >0, — 0, uniformly on zed§,.
Assume we have #,e8y,Y,eK,, ¥,—Y, = 4,2, 2, #0, 4,0,
1+ ”yn“_ llpn + yn” = 8||wn—?ln|]7 e>0. Take 2,+Y, =38, Zp—Y, =1,
Then s,+1t, = 2w,,8,—1t, = 2y,. Hence

”"v'n“"l' ”yn”— ”mn+ yn" = %(llsn‘i‘ tn”"l' ”‘gn_ tn”)'— Hsn“ =& ”tn“

Cp—Yp = A2, 4, # 0 imply 0 whenever A, — 0.

-0
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If for some subsequence 7y, ,,+y,, — 0 then since z,—y, — 0 we would
have 2z, = @, —Y,, +, +9, —0;, a contradiction with z,¢8,. Thus

there exist § > 0 and n,e N such that |js,|| > 8 for n > n,. Take s, = ”:"” ,
/ L n
t “_.. We have:

==
" sl

llon -+ tall + llon— tall — 2 ll8n]l 5= 2¢eltall, llsall =1, ¢, = a,2

where a, = Therefore a, — 0. This gives a contradiction with

1

ol ™
(UG) in the direction =.

On the other hand, assume X satisfies the condition: Suppose X
is not (UG) in the direction z. This means there exist z,¢8,, v, = a,z,
a, # 0,0, >0 such that [2,+9ul+ £,—all > 2+ o lly,ll, & > 0. Take
ZotYn = Vny Tpn—Yn = Wy. Then ”'vn”+ “wn” = 2+%50|]'vn_wn”' Fni'thﬁl',
Ioa+w,{ =2 and therefore [o,]|+ [0, — [0, 4w/l > }eollvo,— w,]|. Take

’ - vn w' wﬂ
* o omax(|oll, wal)’ " max(|lo,ll, [lw,l)

Then
l[oall + 1)l —= [0 +wall > deqllon—w,]l, 0, we K, and max([log[l,[lwy]) = 1.
Let us say [v,|| = 1, otherwise we rearrange v,, w,. Further, since

1 1 ) -
max (|iv,, [lwal)

’

max(“”ﬂ”’ "wn“) -1, “vn_w;s” = H'vn—wﬂ“

0,

since v,—w, = 2y, — 0. Further, for »> n,,

, ' 1 - - -
v —w, = (v,—w,) =4,z for some A, #0,4, > 0.
U T max (o, e,y v " mTo

Thus we have obtained a contradiction with the fact that X satisfies
our condition.

Remark 4. We cannot, of course, suppose in the conditions of
Proposition 22 z,, ¥,¢8,. The simple counterexample is easily seen in P,
with |jz|| = max(|z,|, |z,]) where z = {z,, 2.}, in the direction {1, 0}.

We {finish the chapter with some examples concerning the notions
studied here.

1. An example of a Banach space which is uniformly rotund in
every direction, but it is not weakly uniformly rotund.

Take C (0,1) with an equivalent norm

Izl = Vel o, + 1721, 0,0 5
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where T is the natural “identity mapping’” of C(0,1) into L,{0, 1).
By the proof of Proposition 14, |||z||| is uniformly rotund in each direction.
But €0, 1) does not have any equivalent (WUR) norm, since otherwise,
by the universality of C<{0,1 ) for separable Banach spaces, I,(N) would
have an equivalent (WUR) norm and since the weak and strong con-
vergence of sequences in [,(N) coincide, I,(N) would have an equivalent
norm which is uniformly rotund (z,,¥,¢8;, |[}(z,+y,)l =1 imply
2,— Y, >0). But then by the well-known theorem of Milman-
Pettis ([27], p. 304) asserting that each uniformly rotund Banach space
is reflexive we would obtain a contradiction.

2. An example of a Banach space which is locally uniformly rotund,
but it is not uniformly rotund in some directions.

Take the space ¢ (N). If wec,(N) then z has a countable support
E(z) which can be enumerated so that [z(q)| > [#(q¢,,,)]. The Day’s
equivalent norm on ¢, () is then defined as follows: Consider D a mapping
of ¢,(N) into I,(N):

&z (ak)__

oF n E(x),
Dr = _
0 outside E(z).
Then |||z||| = |[Dzl,x) i8 an equivalent locally uniformly rotund norm

on ¢,(N) ([3], p- 41, [37], p. 335).
However, it is not uniformly rotund in some directions, namely in
{2,0,0,...} (use &, = {0,0,...,1,...,1,0,...} and Proposition 1, (1)-(7).
k 2k

3. An example of a Banach space X" which is (W*UR) and therefore
uniformly rotund in every direction, but it is not locally uniformly rotund.

Take the space I, (N). Since it is separable, there exists an equivalent
norm ||[@]|| of I,(N) which is (UG) ([45], p. 199). Take the dual norm of
l||2||| in I} (N). This is, by the Smuljan’s theorem on duality of (W*UR)
‘and (UG) ([42], p. 646) W'UR and therefore uniformly rotund in every
direction. However, it is not locally uniformly rotund, since then, by the
Lovaglia’s Theorem on the relation between (LUR) and the Fréchet dif-
ferentiability of the dual norm ([30]) the norm ||{z||| would be Fréchet
differentiable which is not possible since the Theorem of V. L. Klee- G.
Restrepo asserts: If X is a separable space which has an equivalent Fré-
chet differentiable norm, then X* must be separable ([24], p. 27, [38],
p. 413). For the Theorem of Lovaglia, we recall that the norm |z] is Fré-
chet differentiable in xeX if the limit in the Definition 3 is for a given
x uniform on heS,.

4. An example of a space X* which is rotund but not uniformly
rotund in some directions. '
Take I,(N) and denote by T a usual linear isometry of I} (XN) onto
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m(N). Denote by A a mapping of m (N) into I,(N) defined by Az = {e;2;};.n
where ¢ = {#;};.yem(N) and {¢;} is a fixed sequence of positive real
numbers such that Yo} = 1.

t=1

Consider a new equivalent norm of I} (N):

A = TS ey + 1A TS Il vy -

This is a rotund one, by a standard argument ([27], p. 362). But |||f]||
is not uniform’ly rotund in some directions. For it take hel;(N) such
that Th = {;,1,...} analogously to Garkav1 (see (17]). Further, let
facll(N) be so that Tf, ={,...,},—% 1,%,..}. Then |[h||| =2

n—1 n n+l

HIfalll =1, I fa+RHE =1, HIfa— &Il > 1. Denote f,+h = p,, fo—h = ¢,.

Then |[Ip,ill =1, lllgulll =1, llpa+ @ulll = 2lIfalll =2, Pp—gy = 2h.
Therefore If (N) with |||f||| is not uniformly rotund in the direction

hy = I |h||| ——— h. By the Fatou lemma the new ball in I} (N) is w" - sequentially
closed and since I,(N) is separable, it is also w*-closed ([27], p. 273).
Thus |||f]|] is & dual norm of some equivalent norm of !,(N), denoting
by [il=]l].

5. An example of a subspace P of a Banach space which has a unique
norm preserving extension property but not the property U (dimX|P = 1)
(For the definition of U, see p. 18).

Take X, |||-||| from the example 4, L being a subspace of X”* generdted
by h,. L is w*-closed since one dimensional. Therefore there exists a sub-
space P < X, deficiency of P equal to 1 such that L = PL.

Since X* is rotund, L has the Chebyshev property, and therefore,
using the Theorem of R. R. Phelps ([34], p. 240), asserting that the
Chebyshev and extension propetries are in some sense dual, we immediately
see that P has a unique norm preserving extension property. But since
X" is not uniformly rotund in the direction k,, L does not have S property
(Proposition 9) and this P does not have U property (Proposition 11).



CHAPTER 6

An application to a fixed point theory

DEFINITION 4. Let C be a subset of a Banach space X. A mapping T':
C — C is said to be nonexpansive on C if |Tox— Ty| < ||z—y|| whenever
x, yeC.

DEFINITION 5. Let C be a bounded subset of a Banach space X,
diam C denotes its diameter. The point z¢C is said to be a diameiral point
of C if sup |z—y|| = diamC.

«C

DEF';NITION 6. A convex subset C c X is said to have normal struc-
ture if every bounded convex subset C; = ¢ which cointains more than
one point contains a point which is not diametral of C,.

THEOREM (W. A. Kirk ([21], p. 1004)). Let X bs a reflexive Banach
space, C be a bounded closed convex subsel of X which has wormal siructure.
Then every nonexpansive mapping T of C into itself has a fived point.

It is easy to see that every convex subset of a (WUR) or (W*UR)
Banach space has normal structure ([44], p. 431). Moreover, we have.

PrOPOSITION 23. Suppose X is a Banach space which is uniformly
rotund in every direction. Then every convex subsel of X has normal structure.

Proof. (Analogical to the case of a uniformly rotund space — see
for example [44], p. 431). It is sufficient to prove that every bounded
convex subset of X which contains more than one point contains a point
" being not diametral. Take x,yeC, z #* y. Consider » = w-;—y eC. It is

easy to see that u is not diametral. For it suppose v,¢(C is a sequence
such that |ju —v,|| > diamC. We have |z— v,|| < diamC, |ly— v,|| < diamC,
|4 (z— v, +y—w,)|| >diamC, z—v,— (y—v,) = £—y. Thus ¥ = y since X
is uniformly retund in every direction (see Proposition 1).



CHAPTER 8

On one Mazur’s theorem

In this chapter we prove a uniformization of one Mazur’s result
concerning the fact that in reflexive Banach space with Fréchet differen-
tiable norm each closed convex bounded subset K is the intersection
of all balls B o K.

This result was improved by R. R. Phelps ([34], p. 977). In the
following, K, (#) = {yeX; |ly—a| <r}. First of all, we will need the
following simple and obvious fact:

LeMMA 2. Suppose X i3 a Banach space, K, (xv) = X some ball such
that o = o(K,(2), 0) > 0. Then for every »' >r there ewists a ball K, (y)
> K, (»), Q(Kr’(y)’ 0) =e-

Proof. Denote a(K,(:v)) N Rz = {u, v} where |[u| < |[v||. Then ||| >r
and u = w(l— —-r—-)

lll

Now, if peK,.(z) consider the line segment [p, 0]. Denote by ¢ the
Minkowski functional of K,.(x) with respect to #. Since ¢(0) > 1, ¢(p) < 1,
q is continuous on X, there exists p’e¢[p, 0] such that ¢’(p’) = 1 which
means p’'ed(K, (m)). Since p’¢[p, 01, we have |p’|| < ||p||. Therefore |z|
= [ull+r = o2, 0) < o(x, ')+ e(®, 0) <7+ |lpll. Thus |jpj|=> lull. Now

take for an arbitrary ' > r the ball K, ((.'H— (r'—7) ﬂ) Then if |y — o||

7l ‘\r Therefore K, (w+(r —r)—“T)

> K,(x). We have J(K,' (w-l—(?‘ —’)ﬂ)) N Eo ={ Il ll } ” -

“ > |lu||. Furthermore, as in the first part of our proof we may

<r we have ”y—w—(r'—r)

I| lI
prove that Q(K,, (w-l-(r —7) iz “) ) = |lul|. Now we recall the following

well known statement:
LEMMA 3. If the norm of X i8 uniformly Gdteaun (uniformly Fréchet)

. thi| — . :
differentiable, then the limit lim o+ t“ Ll = D||(x, k) i8 uniform on

—~0
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(zy h)eS, X K where K is an arbitrary morm compact (bounded) set of X.

Proof. Suppose the norm of X is uniformly Gateaux differentiable.
Assume our limit is not uniform on some §,X K where K is a norm
compact set of X. Wirte |lv+ th|— |»|| = D] | (@, th)+ w(z, th) then the
last fact means there exist ¢ >0, 1,¢8,, h,eK, {,eR, ¢, # 0, lim¢, =0,

t, h
such, that 1£(m"—t’”—”) = &. Suppose without loss of generality k, - heK.

n
We have

+ D1 (@ bg)— D || || (@ h)l)

|1+ o Bl — N0y 4t
t,

l W (T, tnh)_l S Iw(mm tnhy)
b g t

+

> l 'w(mnt’ tahy)

n

1 .
— (Wbl o —hl) > 56 it 3> .

This gives a contradiction since we have h 3 0 and

, h
( oyt by || = h')
1lim . — Dj|- —}] =0
Lim ‘ I-H (“"" nhn)

whenever ¢, # 0, limt, = 0, by our assumption on the norm of X and
therefore if we put #, = || ¢,,

v, +

nt;n h
lim . ~D|l@, &) | =1lim

n—oo tn n—+co t,;
1]

- Now consider the case of uniformly Fréchet differentiability. If our con-

clusion were not satisfied for some bounded M <« X we would have there

w (w'l' tﬂ hﬂ)

lEm bh) _

exist @,¢8y, h,eM, h, # 0,1,¢R,t, # 0, lim¢, = 0 such that

n
> &> 0. But we have for our ,,, b, and arbitrary #, - 0

1 wlz,,t. b 0
- —_— 3 V.
t, P Ryl

Therefore for arbitrary ¢, — 0

w n n -
Tl "\

since {h,) is bounded. If we put #, = |jk,||-Z, we obtain a contradiction.
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PRrROPOSITION 24. Suppose X has wuniformly Gdteaux differentiable
norm. Let K to a norm compact subset of X, & >0 an arbitrary posilive

nwmber such that sup|z|| > a. Then there exists r > 0 such that for every
zeK

conver M c K, o(M,0)> a there exists xze¢X such that K.(r) o M,
0¢ K, ().

Proof. Denote by a the system of all convex sets M with the prop-
erties that M <« K and (0, M) > a, fcr a given K, a. The statement
wil: be proved if we prove:

There exists p > }a such that for every M ea there exists eS8, ¢ X
suc that for every ye¢M we have |jpr—y| < p— }a. Suppose this is not
trus. It means for every p > }a there exists M ea such that for every
wely there exists y,  ¢M, such that |[pr—y, .|| >p—}a. Now take for
every p > }a, f, e8] such that f,(y) > a for y e M, (M, is the closure of M),
by the well known theorem ([4], p. 345). Using the theorem of E. Bishop
ind R. R. Phelps on subreflexivity of every Banach space, [6], p. 97,
tak> some f,eS7 such that f,(y) > §a for ye M, and there exists @, ¢S,
suc that f,(z,) = 1.

Y.y

P
“mp+zp"_ 1= fp(zp)'i'w(a;p’ zp)

since D|-|(x,, 2,) = fo(2,) by well known theorem of 8. Mazur ([14],
p. < 84). Further

. Than we have

Denote Zp = —

Pw(%y, 2y) = DT —Yp,z |— P+ f(¥p,2) > P—ta—p+1a = ta.

Therefore we have
_y ,
pw(ww —pp—z”) =pw(2y, 2,) > $a >0.

Since yp_a,peK and ,¢8, < X, this fact gives a contradiction with
uniform Géteaux differentiability of the norm of X (Lemma 3).

Similarly we may prove the following statement:

ProrositioN 25. Suppose the Banach space X has uniformly Fréchet
differentiable norm. Then for every two positive numbers a < b there ewists
r > 0 with the following property:

W henever M is a convex 36t in X such that o(0, M) > a and M < K,(a)
ther there exists a ball K, (x) such that M < K (x)30.

CoroLLARY 1. Suppose the Banach space X has uniformly Fréchet
difforentiable norm. Then for every two posilive numbers a < b there exvists
r > 0 such that whenever a convexr seét M satisfies o(M, 0) > a, diam M < b,
ther: exists a ball K. (x) such that M < K (x}30.
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Proof. By Proposition 25 there exists »* > 0 for a given a, b such
that whenever a convex set M satisfies M < Ky (0), o(M,0) > a then
there exists a ball K,(z') such that K,(z')c M, K, (z')$0. Take
r = max(r’, b). Suppose M is an arbitrary convex set in X such that
0(0, M) > a,diam M < b. If M < K,,(0) then there exists a ball K. (z')
such that K, (2') > M and 0¢K, (z’). Now, using Lemma 2 we have
there exists a ball K,(#) such that K.(v) > M,0¢K,(2). If M N (X~
=~ Ky,(0)) 9, then take an arbitrary point 2z of M N (X = K4 (0)) and
the ball K,(z) has the property that K,(z) o M, 0¢K,(2). Now again
using Lemma 2 there exists a ball K.(y) > M, 0¢K,(y).
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