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Approximation of functions possessing derivatives
of positive orders

by R. TABERSKI (Poznan)

Abstract. In this note we deduce some estimates for the best trigonometric
approximation in the mean of 2-nperiodic functions f of one variable. Moreover, two
theorems concerning the order of approximation of f(") by suitable trigonometric
polynomials are given.

1. Introduction. Let L (1 < p < o) be the class of all 2n-periodic
real-valued functions Lebesgue-integrable with p-th power [essentially
bounded if p = oo] over the interval {—=, ). Write L instead of L2
Denote by w,(d,f)» and E,(f).», respectively, the %-th modulus of
smoothness and the best trigonometric approximation of feL?, in the
LP-norm:

T

(e = { [ If@Pdal™ it 1<p< o0,

-7

I1f ()l = esssup |f()].

. {~m,m)
{see [6], p. 115, 41).
Suppose that

SIfi= D ™
k== —o00
is the Fourier series of feL for which the integral over (—=, =) is zero,

so that ¢, = 0. Given any a > 0, we define the a-th integral of f by the
identity
I(2,f) = D" alik)~"e™,
k= —oc0
where

(tk)™° = |k|""exp( —3 wiasignk);

the dash ' indicates that the term ¥ = 0 is omitted in summation. As is
well known ([7], p. 134), f,(#) = I,(#, f) exists possibly for almost every =,
is Lebesgue-integrable and S[f,] = f.(®) a.e.
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If 0 < a <1, the derivative f”(«) of f is defined by the formula

d
(a) — .
) = o I,_.(x,f),

provided the right side exists. We set

T+1

d
fo*@) = (fO@) = —x Liu(@, )

for positive integers r.

Using the above notions, we shall present the L”-analogues of two
theorems given in [6], p. 316, 555.

The suitable positive constants, depending on the parameters y, 7, ...
only, will be signified by C;(y,%,...) (j =1,2,...).

2. Auxiliary results. Considering 2=-periodic functions fe L such that

T

[ floydw =0,

we shall prove the following
LeMMA. Suppose that, for a certain positive a < 1, the function
g(@) = I,_.(x, f)

is of bounded variation over the interval {—w,w). Then

where
2
M =— var g(o).
T —n<ge<n

Proof. As is well known ([3], p. 38),

w;(0,9),< M6 when 0 <d<m.
Clearly,

o

g(@) = 2' c,(tk)*~1e**  for every @

ko= —00

and

L(z,9) = D 6(ik)e = (ik)™"¢™ = f,(a)

ke —o00

uniformly in @e(—o0, oo). Hence

I.(®,g) = fi(@) for every a.
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Putting
z
F(z) = [ f)ae,
0
we have
Fo) = Y c(ik)™ (6™ 1) = fy(a) —f,(0)
Ke=—oc0
uniformly in @e(— oo, oo). Consequently,
Fo) =1,(x,9)—1,0,g) for all 2.
In view of the Lebesgue dominated convergence theorem,
—1kt —a zkz
2_& - f g(t)e=™ - (ik)
=_1_. 2’ (ik)~ fg(t k=t 74
27 =
1
= — fg(t)'lfa(w——t)di for every a,
2% 4
where
o o COS (ku—ﬂ)
— T\ e gtk
o) = D7 (@) =2 Y ———
k= —o00 k=1
Therefore, for all real =,
1 T T
O F@) == [g0Pe-0a—£0), [ F@-ni=o.
T -TC -7t
Given positive numbers k, 4 (24 < h < =), we have
J. = f Flo+h+A)—F(ew+h—A) F(a:+ﬂ.) —F(o—2) P
e 24 24
' 4 A)—Y (u—4
{g(x+h—u)—g(2—u)} a8t )21 (% —4) du | dx

w1
[{fe

{ 9(@ 4+ — ) — g(@+b) — g(&— ) + g()| dee

¥ (wd-1) — ¥, (u— A)’
22

15
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By the mean-value theorem,

1. |V (%+ A) + [Fa(u—A)
JA\;MI flul Y du

lul<24

+

+ f |u| PO (u— A+ 292)| du + f h|¥’§,"(u—1+2ﬁl)ldu}
22 ul<h h<lulsn
= %M{P+Q +R}, with some & = #(u,1) (0<d<1)
It is known ([7], p. 136) that
1P, (1)) < Ca(a@)[t*7Y, [P < Co(a)tf*~?  if 0 < |t] < 3w/2.

Hence
P < Cy(a) f {lu+A1°" 1+ Ju—41*" Y} du
lul<24
A? 34)°* 1+4+3°
=202(a){7+ o } — 20,(a) =12 1,

Q < Cy(a) f [u] |u— A+ 284" du
2 |ul<h
] —24

13
udu udu
<o [ 5 [ )

h—A4

h—2
v+ A w+ 2
<O d _—
3(a) =i{ ,vz_a v+‘ wz_a dw}

— )2 _ 2@ a—-1__ __\e=1
=Cs(a){2(h A 2 +2;~l (h—4) }

a l—a

=20,(a){(h"’”a_‘a+ a }<20’,(a){

a l1—a

(h—A)° A® }
+ )
a l—a

h

d
oAt

R < Cy(a) f h{u—1+2ﬁﬂ.[°‘2du=03(a){f =
h

h<| u<sn

-k r: n
+_£ u—2+201P~ d’“}@‘(“)u (w—2" du+_£ md“}

— 3ye—1 __ __2ya—1 __ava—1
g BT — =T o AT
l1—a 1

= 20,(a)



Approzimation of funclions possessing derivatives 17

Consequently,

9 1 3¢ _ 1\e a
J1<_M=02(0) + ((h A) A
T a

3+ Cy(a) + a)+03<°’

* h(h—z)"-l}_

l—a
Applying the Fatou lemma, we obtain

T

fIF(’)(w+h)—F")(m)|dw< lim I,_QEMCa(a)(—h——f- h ),
~ A0+ 1 a 1—a
i.e.,

f|f<w+h)—f<w)|dm<3(i+ ! )oa<a)Mh° (0<h<m)

w\a 1—a

-7

and the desired assertion follows.
Analogously we can show that if the measurable function

g(@) =1, ,(®¢,f) for some positive a <1

is of bounded second variation in the sense of KharSiladze [1] over
{—m, ), then

w,(8,f)p = O(8%) as 6—0+.

Two corresponding results for the modulus w,(d,f)z» (1 <p < oo,
k =1, 2) also hold whenever g is the integral of a function g, Lebesgue-
integrable over {—m, =) and such that

T

() [ lp@)Pde < oo, (i) esssup [ lp(@+u)—g(@—u)Pds < oo,

-1 O, %
respectively.

3. Approximation of differentiable functions. Let us start with the
following
THEOREM 1. Suppose that the 2w-periodic function f possesses a deriva-

tive '~V of non-negative integer order r—1, absolutely continuous in
(—m,n> and such that fPeL? (1 < p < o). Then,

Cy(r)

(n—l-l)" En(f(r))LP fO?" n=201,2 ..

En(f)Lp <

Proof. Consider the case r = 1. Write

S[f1= D aé™, ag(@ =Lz, f).
k=—o00 !a
2 — Annales Polonicl Mathematici XXXIV.1
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Clearly,

6" = f(¢) uniformly in o,
k=—o0

BfM = D cike™,  g@) = D o6 =f@)—e,

k=—o00 k=—

or every @. Hence

E,(f)rr = En(9)1e for n =0,1,2,...

and
fO(@) = gV @) ae.
The partial integration gives
d —ikt 1 (1) (4 ,—ikt
2re;, = ff(t)e dt=ﬁ fg (tye ™ dt.
Consequently,

o - 1 oo
g(m) = Z er = 2— Z fg(]) 1k(z—t)dt
Kk —00

and by the Lebesgue theorem,

1 k)
9@ = 5= [ ¥ -1,

where

Sv i) gl _ 22 Smku

A—J

k=—00 k=1

As is well known ([6], p. 316), for each trigonometric polynomials
U,(®), V,(@) of the order » at most, there is a trigonometric polynomial
T,.(x) such that

1 ™
9(@)—Tn(@) = 5= [ {90~ Va}{¥(a—)~ V(o —t)}at

1 r
=E:_ f{g(l)(w—S)—Un(w—s)}{wl(s)_vn(s)}ds_
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In view of Minkowski’s generalized inequality,

an{ fﬂ 19(@) — T, (@) P da} "

T T

< [ 1@ = Va@){ [ 1@ —8)—T,(@—s)Pda) * ds

T

<| [P0 - [ 1¥,(s)=Vo(s)lds;

-7t

whence
1
En(g)Lp < % En(g(l))LP'En(Tl)L'

By a suitable theorem of Jackson’s type ([2], p. 73-78),

1
E,(Y)L < 6w,(n+l,¥’l) for n =0,1,2,...
L
Since
¥, () r—u if 0 <u<2m,
u) =
! 0 if u=0,u =2m,
ie.,
var Y ,(u) = var Y,(u) = 4~,
KU ogu<er
we have
2 1 48
B, (V)< 6-; ‘4 ) = p— for n =0,1,2,...
Thus,
48
E,(9)r < mEn(ga))Lp

and, for » = 1, the proof is completed.
I¥f r=2,3,..., we apply the induction argument.
Evidently, the theorem of Jackson’s type

1
R T e

([6], p- 274-275) and estimates for the modulus w(é, f) , lead, by
Theorem 1, to some special inequalities concerning E,(f), ,-

THEOREM 2. Given any p (1< p < o), let us consider the trigono-
metric polynomials T, (x) = T,(z,f) of order n at most, such that

(2) 1F()—Tals Mo < Cs(P) En(f)p (n=0,1,2,...)
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for all functions f satisfying the conditions of Theorem 1, with some positive
integer r. Then, for these f’s,

(3) IF™ () =T e < Cq(p, T)En(f(’))Lp (n =0,1,2,...).

Proof. Let 8,(«,f) denotes the »-th partial sum of the Fourier

series of f, and let W, (=, f) or W, (f) be the de la Vallée-Poussin means
of this series, defined by the formula

W,(2, f) =—Zs 2,f) (mn=0,1,2,...).

y=n

As is well known, for any feL,

(@, f) =— ff(a;+t () dt,

where
(1) = 1 sm(v-{—«})t _ sin(n4-3)¢-sin(fn4-3)¢
n+1 s 2sin}¢ 2(n+1)(sin3t)* '’
and
% [@n(t)dt=1, % [ 1®, (1) dt < 2 ;::;<4.
Moreover,

W, (z, f7) = W(x,f) whenever f, f®eL.
In view of Minkowski’s inequality,
IFOC) =Ty N < WFOC) = Waley FO)N o+
F T Wal) =T Dl o+ W H) =T (-, Wal D)o
for every feIL such that f®eL?.

Denoting by Th(z,f) the trigonometric polynomial of best approxi-
mation of f in the LP-metric, of the order » at most, we have

) =W (s fNLe < W) —Ta ey fzo+ 1T (-, fO)Y =W (o5 f)o
= Eo(fO) o+ Wal- T;(ﬂ’b—f(";llm
<5 B (f)o.
The Zygmund inequality ([7], p. 11) gives
|TO(-, WalH)) =T Pllee < 07| Tolss WalF)) =T+, oy
WO, =T (-, W (e < @) | W (5, ) =Tu(, Wo(H)||o
< Os(p) - (2n) By (Wo(f))zr
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Further,

2., W)=
<|| T (s WalH)=Wales Hzo+ 1Wa (5 FY—F (e +1F(-) =T0 (-, flize
< O(p) E, (Wa(f) )LP+5En(f)Lp+Cs VE,(f)rr
and

Eo(Wo(f))re < 4E,(f) s
Thus,-
IFOC) =T, Hllee < BB (F7) 2o+ 507 (Co(p) +1) En(f o+

+4C(p)(20) E,(f) e

and, by Theorem 1, the desired result follows (cf. [5], p. 233-234; [6],
p. 350-351).

4, Case of derivatives of non-integer orders. Assuming that
feL and [ f(ydt = o0,

an extension of Theorem 1 will now be given.
THEOREM 3. Suppose that the function

g(z) = Il—a(“’:f):

with a positive ae(O 1), s absolutely continuous in {—m, ), and that
the derivative g (2) = f@(z) is of class L* (1< p < oo). Then

Cy(a
(n +1

If, moreover, the derivatives (), f N (m), ..., " V(w), with a posi-
tive integer o, are absolutely continuous in {—=n, =) and if fe+9¢L? (1< p
oo), then

(4) B, (f)1o E,(f)w  for n =0,1,2, ...

_ Ou(@)Cyle)
S

(,n_l_l)a+e
Proof. We start with identities (1) and we observe that for each

trigonometric polynomials U, (%), V,(«) of the order » at most, there is
a trigonometric polynomial 7,(z) such that

(5) En(f)L-’P En(f(a+o))L-'P for n =0, 1, 2) .

F)=Ty(0) = 5= [ (oo —0)=Ua—o) (£,(6)~Valsds —L.(0,0)
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Assuming that 0 < 1< =/2, we have

{f F@+i)—T,(@+A)—Fle—A)+T,(@—2) |7 }1/1’
dz
22
1( | fg@ti—s)—Uy@+i—s)—g@—A—8)+U,(@—i—s)
=2—n{_£ _j; 22 X
X (W, (8)— Vo ()} ds| } f () =V ()] X

| g@+A—s)—g@—2A—s) U (@+i—s)—U,(@—Ai—s)|?
x{_,[ 27 N 2

Let U,(t), V,.(s) be the trigonometric polynomials of best approxi-
mation of ¢g(¢) and ¥, (s) in L? and L-metrics, respectively. Then,

}1/.0

1p
da;} ds.

Flo+Ai)—F(o—2) B T,(o+A)—T,(@—2) |*

<{fﬂ

-7

2%

g+ —g(t—1)  Upt+A)—TUy(t—

24 24

» F 4
dt} .En(q]u)L
and, by Fatou’s lemma (see also Theorem 2),

or| [ 1F0(@) —TP(@)Pda}’ < [ 1900 —UD@)Pat}" - B, (¥,

< GQEn(g(l))Lp ' En( Wc)L .
Hence

T

2n{ [ 1f(@) —TO@)Pda}" < Oy B, (fV) 10 By (Po)y

-7

and, consequently,

1
En(f)Ll’ < EC9En(f(a))LPEn(Ta)L'

Applying a suitable theorem of Jackson’s type ([2]) and the above
lemma, we get

3 1
Bu(flir < = OByl i pon (1 W)

En(f(a))Lpf

3
< —
ST CyCy(a) M (n+1)°
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where

2

M =— var Y,(z) =8.
™ —n<ga<n

Thus, estimate (4) is established.

To obtain (5), we apply (4) and Theorem 1.

THEOREM 4. Under the assumption of Theorem 3, inequality (2) implies
(3) for a corresponding positive mnon-integer r =a+po (0 <a<l,
e=0,1,2,...).

The proof is similar to that of Theorem 2. In this case, the inequality
of the Bernstein—Civin type ([6], p. 266, [4], p. 49) and the assertion of
Theorem 3 are used.

We note that the above results can easily be extended to the Orlicz
spaces L°.
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