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Introduction. Let (M, g) be a closed, connected two-dimensional
Riemannian manifold of genus zero with sectional curvature x, %, : = minx,
%, :=maxx. Then the first positive eigenvalue 1, of the Laplacian on
functions fulfils the inequality

2%0 < A, < 2%y,

and the equality on the left or the right holds iff (M, g) is isometrically
diffeomorphic to a sphere (cf. [2], p. 179-180, and [9], also [16]; naturally
the inequality on the left is of interest only if x»,> 0).

Hersch’s result (the right-hand inequality) suggests to investigate
eigenvalues A with A > 2x,. The following is our main result in the two-
-dimensional case:

THEOREM A. Let (M, g) be a closed, connected Riemannian manifold,
dimM =2, %,> 0. Then 4> 2%, implies 4> 6x,, and A = 6x, implies
that the universal Riemannian covering (M, §) of (M, g) is isometrically dif-
feomorphio to a Buclidean sphere 8*(x,) with constant curvature x,.

As above, the result is of interest only if 6x, > 2x,, i.e. for pinched
manifolds with pinching constant 4, 6 > . So especially for manifolds
“not too far from a Riemannian sphere” we get additional information
on relations between curvature and the distribution of small eigenvalues.

One basic tool of our proof is an integral formula for eigenfunctions
on two-dimensional manifolds which we prove in Lemma 2.1. The other
tool are certain systems of differential equations for eigenfunctions on
spheres (Obata [13], Tanno [20], Ferus [7], Gallot [8]; for Gallot’s results
of. also Tanno [20]); they suggest to “compare” eigenfunctions corre-
sponding to the eigenvalues 1, resp. 4, (where 4, < 4,, a8 we do not regard
their multiplicities) with corresponding eigenfunctions and eigenvalues
on spheres (cf. (2.2)-(2.5)). To extend this method to higher eigenvalues
A, (p >3), one would need an analogue to (2.1) which corresponds to the
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differential equations for higher eigenfunctions. Generalizing our method
to higher dimensions in Section 3 we continue investigations on lower
bounds for 4, on Einstein spaces (Tanno [19], Simon [16]); in Section 4
we improve local results from Lange-Simon [11]. In Section 5 we finally
improve results from Simon [15] on minimal submanifolds of spheres.
In the two-dimensional case we get the following genecralization of a result
of Lawson ([12], p. 195, Proposition 3):

THEOREM B. Let (M, g) be a complete, connected Riemannian manifold,
dimM = 2; letz: M - 8¥(1), N > 2, be an isometric minimal immersion.
If }< %<1, then either & (M) is totally geodesic (x = 1) or @ (M) is the
Veronese surface in 8*(1) (x = §). )

Lawson additionally assumed M to be closed and N = 4.

A.A

no eigenvalues

>

)

1. Preliminaries. Let (M, g) be a connected Riemannian manifold of
class 0°, » = dimM > 2, denote by V the corresponding covariant differ-
entiation and by g, resp. ¢“ the components of the metric tensor g resp.
g~ ! in local coordinates (u‘); denote by do the volume element on M and
by R*,, resp. R, the components of the curvature tensor resp. the Ricei
tensor (with the sign of [10], p. 201); let B denote the scalar curvature
(such that B =1 on the unit sphere). As usual raising and lowering of
indices are defined.

Let f: M — R be a O -function, let f,:= V,V,f denote the com-
ponents of the Hessian Hess(f) and denote the Laplacian by Af:= g¥f,.

1.1. LeMmmaA ([16], (7a-b)). Let f: M - R be a C™-function. Then
J Julfils the equation

S Al =2 Y nlo— 0 +V,,(40) +
i<j
+ Vifg VI + U 2V, By — Vi By,
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where a,, ..., 0, are the eigenvalues of the Hessian, B,, ..., B, are corre-
sponding orthomormal eigenvectors and x, i8 the sectional curvature of the
plane {H;, By},

1.2. LEMMA. Let (M, g) be closed (compact without boundary), dim M > 2.
Let fy,h: M — R be C®-functions. Then

[ fyh¥do— [ AfAhdo+[ RIfhydo = 0.

This lemma generalizes the Bochner-Lichnerowicz formula (cf. [2],
p. 131).

1.3. Remark. Let (M, g) be closed, connected, dimM > 2. Then
each eigenfunction f with eigenvalue A fulfils

(n—1)A [ lgradfi*do = n [ B¥f f,do+ [ D (0,— ;) do.
<]

1.4. LeMMA [13]. Let M be a complete connected Riemannian manifold,
dimM = n > 2. There exist a nontrivial function f: M — R, fe C%, and
a real positive constant ¢ which fulfil the sysiem
(1.4.1) n'f“""ozf’ggj =0
iff M is isometrically diffeomorphic to a sphere 8"(c?) of sectional curva-
ture o2

1.5. LemmA ([20], [7], [8]). Let (M, g) be simply connected and com-
plete, dimM > 2. There exist a constant ¢ R, ¢ # 0, and a nonirivial

SJunction f e 0°(M) such that
(1.5.1) T+ 2 (f19u+fi 9+ 258y) =0

iff (M, g) i8 isometrically diffeomorphic to an m-sphere S"(c?) with sectional
ourvature c®.

2. Two-dimensional manifolds.
2.1. LEMMA. Let (M, g) be a closed, connected, two-dimensional Rie-
mannian manifold. From Af+Aif = 0 it follows that

1
0=— -E-f(l—-%c)(al— 0,)* do+ fIIkaqll’do -
1
- {x).+ 2 (a—zn)'} lgradfiFdo,
where o, and o, are defined in Lemma 1.1.

Proof. To use formula 1.1 for n = 2, we make the following cal-
culations:

(i) 2fyf? = (01— 0aa)* +(4f)
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(ii) » = 2 implies R, = x»gy; the Ricci identity and Af = — if give
4(f;) = (x—2)f;; therefore

f ”fkv{Rﬂc = {V‘(lef"f‘l )}-V«t(fa )thjk—f“ f‘kRﬂ:
= {...}+#(2—x) lgrad fif — xfyf*.
(iii) Analogously we have
IV By = (Vi(fIf*By)} — ((4f) — Allgrad ).
(iv) From (i), (ii) and (iii) it follows that
[f91*2V, Ry — V, Ryldo = — [ x(0y—03)*do+ [%(A—2x)ligrad| do.

(v) From (i) and Green’s theorem we get

f 9V, V,(4Af)do = —4 f foffdo = —-;-[ f (0,—03)2do 4 A- f ||gradfu=ao].

The assertion follows from 1.1, (iv) and (v).

2.2. Remark. In the following we “compare” eigenfunctions on (M, g)
and eigenfunctions on a sphere. Motivated by results of Obata [13] and
Tanno [20] on the first resp. second eigenfunctions on spheres, we define
for an eigenfunction f a (3, 0)-tensor B(f) by

A+2x% A—2x%
(2.2.1) B(f)yr:= Fn+ 1 9yl + 1 (9acfs + 93 S3) -

B(f) vanishes identically on spheres if A is the first or second eigen-
value and f a corresponding eigenfunction. Formula (2.2.1) implies

@22)  IBUI = Wl ~ 5 leredfit {1+ 5 =201,

and Lemma 2.1 gives

1
(22.3) 0 = % f (2x—2) (0 —0x)'do+ f lgrad it (A — 2%) (A + 2%)do +
+ f IB(f)ldo.

2.3. LeMmA. If (M, g) i3 & closed connected two-dimensional Riemannian
manifold, then each eigenfunction [ fulfils

J(er~01do = [ (A—2x)lgradfiido.

Proof. Apply 1.2, 2.1 (i) and Green’s theorem.
2.4. LEMMA. Let (M, g) and f be as in 2.3. Then

0> f ||B(f)|'|2do+} f lgrad fI? (A — 2x)[ 4%, — (A— 2x)1do.

Proof. (2.2.3) and Lemma 2.3.



LAPLACIAN AND CURVATURE 23

2.5. THEOREM. Let (M, g) be closed, connected, iim M = 2, x > 0. Then
A> 2%, implies 4> 6x,, and A = 6x, implies that the universal covering
(M, §) is isometrically diffeomorphic to a sphere & (x,).

Proof. Let 4 > 2x,. Then 4 > 6%, from 2.4. In case of equality A = 6x,
we gef, from 2.4,

03 [IB(IFdo+ 3 [ lgradfit(A—24) (x—m) do > 0,

which implies B(f) =0 and (x— x,)]igradf]® =0 on (M, g).

If [lgradf] # 0, then
(2.56.1) 0 = B(Niy = e+ %0(294Fe+ 901+ 9T5) -

If G:={p e M|gradf|, =0} is nowhere dense in M, then (2.5.1)
and Tanno’s result (1.5) imply the assertion. Assume there exists a non-
empty open set V < @; then gradf =0 on V implies df =0 and from this
we get 0 = Af = —Af, 80 f =0 on V, i.e. V < N, where N is the nodal
set of f. But this contradicts known results on N (cf. [3] and [6]).

The last proof was shortened by a hint of 8. Tanno.

3. Einstein spaces. Let (M, g) be a closed, connected Einstein space,

n = dimM > 3. Then each eigenvalue fulfils the inequality

A= nR,
and A, = nR iff (M, g) is isometrically diffeomorphic to a sphere (Obata
[13]), where R is the (constant) scalar curvature. Again we denote by
%, the minimum of all sectional curvatures.

3.1. THEOREM. (a) Let (M, g) be a closed, connected BHinstein space,
n > 3. Then there is no eigenvalue in the interval (nR, 2(n+2)x,—2R),
i.e. A> nR implies

A>=2(n+2)x,—2R.

(b) 2 = 2(n+2)%,—2R holds iff the universal covering space (M, §)
18 1somelrically diffeomorphic to a sphere 8"(x%,), %, = B, and A = 2(n+41)%,
i8 the second eigenvalue.

3.2, Remarks. 1. Part 3.1 (a) is of interest only if 2(n+42)», —2R
= nR, i.e. 2x,> R. Theorem 3.1 improves results of S. Tanno [19] and
U. 8imon [16]. Furthermore, as a corollary to 3.1, one can improve
Theorem 1 in [14]. '

2. Theorem 3.1 together with a result of Cheng ([4], Theorem 2.4)
implies a result which is closely related to a result of Berger ([1], Pro-
position 6.4).

Let (M, g) be a closed, connected Einstein space, dimM > 3. From
Oheng’s theorem and 3.1 it follows that if

n(n+4)n? % < (n+2)x, —2R,
then (M, §) is isometrically diffeomorphic to a sphere.
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3 (Berger). If (n —2)/(n—1) < % < 1, then (M, g) i3 a 8pace of constant
ocurvature.

The assumption on the pinching constant in Remark 2 works only
for small n and generally is not as good as Berger’s. But the discussion
of equality in 3.1 (b) suggests that it must be possible to improve Cheng’s
result.

3.3. Proof of Theorem 3.1.

(a) Using the ideas from 2.2, we define

1 1
B(f)igr 2= fur+ P (A+2R) g,/ + D (A —nB)(guf; + 9usfi)

which gives
(3.3.1)  IB(f)ul?® = Ifeel®—
lgrad i {34 — 4AR (n —1) + 20 (n —1) E?}.

n42
We apply Lemma 1.1 to closed Einstein spaces (By= (n—1)Rgy) and
make the following calculations, using Af+Af = 0:
(A) 1.1 gives
0= 3 ony(o,— o)) do—1 [ fufdo+ [ VifyVfdo;

<]
(B) 1.2 gives

[fof?do = (A—(n—1)R) [ lgrad fII*do;
(C) 1.3 gives

J 3 (0~ 0fdo = (n—1)(2—nE) [ lgradfiFdo.

i<J
If (M, g) is not a sphere, then 1> nR, and (A)-(C) imply
AA—(n—1)R)
(n—1)(A—nR)

(33.2) 0 = (o, o 22y —
i<q

From (3.3.1) and (O) we infer for 2 > nR that
(333) [ Ifyeltdo

Joo+ [ satao.

1

w12 {32* —4AR(n—1) +2n(n —1)R?} X

1 2
X (n—1)(A—nE) f ; (o= 05" do

= [ 1Bt do+




LAPLACIAN AND OURVATURE 25

which, together with (3.3.2), gives

(3.3.4) 0 = f 2(6;—01)2[2@—

i<f

(b) If A = 2[(n+2)%,— R}, (3.3.4) gives

A+2R
|+ 1B

(3.3.5) 0= f 1B (f)gul do + f Z(a‘—aj)"2(x‘j—xo)do

i<

and, because of x;—x,=> 0, we get

0 = B(f)yx = fuyx+2%095f2 + (2% — B) (Gurf; + 91913) -

Application of Lemma 3.4 below implies (1, §) to be a sphere and
xo = .R-

3.4. LEMMA. Let (M, g) be a connected Einstein manifold, dimM > 3.
(a) If there exists f € O°(M) such that f fulfils
(3.4.1) Jur+195 e+ 890 f;+t9uf; =0  (with r,8,t e R)

on M,then s = tand f (resp. g: = f — o for a constant ¢ € R) i8 an eigenfunction
(Af + Af = 0) and either

A
(3.4.2a) f,,,+; fogp =0 0n M, 2 =nR,
or
(3.4.2b) r=2¢t and wr+2t=2(n—1)R+2r =A.

(b) Let (M, g) be complete and simply connected and assume that r € R
Sfulfils (n+42)r > 2R > 0. There exists fe C°(M) which fulfils (3.4.1) iff
(M, g) is isomeirically diffeomorphic to a sphere and [ i8 a first (3.4.2a)
resp. a second (3.4.2b) eigenfunction

Proof. (a) Because of the symmetry of (3.4.1) in (i, j) we get ¢ = s.
Formula (3.4.1) implies (A4f), -+ (nr+2t)f,= 0, so

(3.4.3) A(f—c)+A(f—0) =0, where 1 = nr+2¢.

As g = f— o fulfils (3.4.1), without loss of generality we assume ¢ = 0.
From (3.4.1) we get

Jien = —r9pfa— Hgufu+ 9iiln)s

so, on the one hand,

(3.4.4) fina—2fya = v (29yfu—gnSa) +1(29uf 1+ 205Fu — 9sfra— Guilp) -
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The Ricci identities imply
(3.4.5) Jaue—Tape = Vi(foB'),
(8.4.6) fuyu = fyBwat+TuRma+Tgu = fos Buat SR+ Vilfe B +Fagnes
so, on the other hand,
(3.4.7) fjkil - 2fijkl = [fn-a “f}aa] —{fljkl}
= [Vi(fe B%s)]1 — {fos Btia + fa Bpa+ Vi fo B'1) +Fage} -

As Ry = (n—1)Rgy, Af = —Af, and V'R, = 0 (from the second
Bianchi identity for Einstein spaces), (3.4.4) and (3.4.7) imply (both after
contraction with g%)

(3.4.8) [A—2(R(n—1)+7)]|f + (2t — 1) Afgy.= 0.

Now either both coefficients vanish, which gives (3.4.2b), or (3.4.2a)
holds and then from (3.4.3) and (3.4.8) we get A = (n+42)r —2R. Using
this value for A, covariant differentiation of (3.4.8) and comparison with
the coefficients of (3.4.1) give r = R resp. 4 = nR.

(b) Apply Obata’s [13] result in case (3.4.2a), resp. Tanno’s [20]
in case (3.4.2b).

4. Isometries with spheres. Following ideas of [11] we get the follow-
ing analogue to Theorem 3.1:

4.1. THEOREM. Let (M, g) be a connected Einstein space, n = dimM > 3,
which admits m > 1 linear independent eigenfunctions f(a) (a =1,..., m)
corresponding to the same eigenvalue A. Assume furthermore that

(4.1.1) D fla)f =o,
where ¢ i8 a positive constant.

Then either

A

(4.1.2a) A =nR and f(a),,+;f(a)g,, =0 fora=1,...,m,
or
(4.1.2b) A> 2[(n+2)x,—R].

Bquality in (4.1.2b) holds iff

(4.1.2¢) fla)yr +%{205 () +guf(a);+gufla)} =0 for a =1,...,m.

Proof. Note that 4 > 0 ([11], Lemma (2.7)) and 4> »R ([11], Lem-
ma (3.1)). Defining B(a)y; : = B(f(a))y in analogy to (3.3.1), we get

D @)yl

= DBl + 5 > lgradf @I (3H (0 ~1) R+ In(n—D BY).
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This, together with [11], formulas (2.3), and Lemma 3.4, implies

(41.3) — -;- (n—1)cAdR

= 222%(0)@(0(6)‘—0(0)1)2_(l—(”—l)R)lzo‘l' 2 1B (a)gll” +

a <] a

+ A0{32 —4(n—1) AR+ 2n(n—1)R%};

n+2
here o(a)yy ..., 0(a), are the eigenvalues of f(a); and x(a); is defined
via corresponding pairs of eigenvectors (cf. Lemma 1.1). As n >3, we
have R = const. Introducing now the notation x,:= infx, from [11]
(formula (3.4¢)) and (4.1.3) we get

(4.1.4) (A—nR)(A—2[(n+2)x,—R]) > 0.

So 4> nR gives (4.1.2b). The case 1 = nR was discussed in [11]
(Theorem 3.2), while the equality A = 2[(n + 2)x,— K] implies B(a);;, = 0
from (4.1.3), and this together with 3.4 (a) gives (4.1.2¢).

4.2, LEMMA. Let (M, g) be a connected Riemannian manifold, diim M = 2,
which admits m > 1 eigenfunctions f(a) (a = 1, ..., m) which fulfil (4.1.1).
Then the curvature x fulfils the following differential imequality:

24x% < (A—2x)(A—6x).

Equality holds iff B(a)y, =0 for a =1,...,m.
Proof. We use (4.1.3), where n =2 and B = x, and

D (o(a)—o(a)y) = do(2—2R)

(cf. [11], (3.4¢)).

4.3. THEOREM. Let (M, g) be a complete, connected Riemannian mani-
fold, dAimM = 2, with m linear independent eigenfunctions f(a) (a =1,
...y M) corresponding to the eigenvalue A, which fulfil (4.1.1). Then either
(M, g) is isometrically diffeomorphic to a sphere 8°(x) of curvature x and

A =2”o or 1?6”0.

A = 6x, holds iff the universal covering (M, §) is isometrically diffeo-
morphic to a sphere and A i3 the second eigenvalue.

The proof is similar to the proof of Theorem (5.3) in [11], but
we apply Tanno’s result (1.5) instead of Obata’s result in [13].

It is obvious that the results of this paragraph improve results in
[11] even if we did not formulate all the consequences of our results
here (cf. especially [11], §4).
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5. Minimal submanifolds of spheres. Let &: M — 8¥—!(1) be an iso-
metric minimal immersion, ¥ —1 > » = dimM.

5.1. If j: 8¥-!(1)—> E" is the canonical embedding into a Euclidean
space such that the center of 8V~!(1) is the origin of the canonical coordi-
nate system of EV, then the position vector # (with respect to this coordi-
nate system) of the immersion j# fulfils (cf. Takahashi [17])

(5.1.1) Az+nz = 0.

5.2. Each coordinate function #z(a) is an eigenfunction corresponding
to A = n; furthermore {», > = 1, where {,> denotes the inner product
in BV, Let § resp. 8 denote the squares of the lengths of the second
fundamental forms of the immersions @ resp. j@. We have

(5.2.1) 8—n =8 =n(n-1)(1—R).

5.3. Applying Lemma 1.1 to each coordinate function, we get
(cf. [15])

N
(5.3.1) —2]:' A§ = %’ 48 = 2 22%(0)“(0 (a), - 0'((1)!)2 —’n«S"I- <m‘ﬂ‘, qu> .

a=] i<f

5.4. In analogy to (3.3.1) we define

n
+ 12 (1 — B)(gu2; + giyv;)

which gives

2
(5.:42) (Zigy X = (ag, 2Ty — —

) [3n —4R(n—1)+2(n—1)R?].

Furthermore (cf. [11], (3.4¢))

(5.4.3) D) D (ola)y—o(a))® = n*(n—1)(1—R),

a 1<]

(5.44)  (1—R)n§ = — (” l)R ' D (tay—o(a)).

a $<J

5.5. Assume #(M) not to be a sphere; (5.3.1) and (5.4.1)-(5.4.4)
give
1 .
(6.5.1) 548 = Z 2 ((a);— o(a)y)? {2x(a),,

a i<J

n+42R

X, 20,

which implies the following result:
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5.6. THEOREM. Let &: M — 8V¥~1(1) be a minimal isometric immersion
inlo the unit-sphere, where (M, g) i8 complete; assume

(5.6.1) 2(n+2)%, > n+2R.

Then either (M) 18 totally geodesio, i.6. &(M) is a great m-sphere in
S¥-1(1), or H(M) i3 an isometric immersion (but no embedding) of an
n-sphere 8"(x,), o = n[2(n+1).

5.7. Remark. (a) As &(M)< 8V!(1), we have <1 and R<1.
If 1> x> %, then (5.6.1) is fulfilled. So 5.6 improves Theorem I in [15].
The immersion of 8"(x,), ¥, = n/2(n+1), is one of :the examples given
in [6].

5.8. THEOREM. Let (M, g) be closed and let x: M — EV be an isometrio
immersion with parallel mean curvature vector & (therefore (&, &) = const).

If 2n{(n+2)xy— R} > (&, &), then x(M) i8 an n-sphere or &(M) is
an isometric minimal tmmersion (but no embedding) of an n-sphere S™(x,),
%o = {& E>[2n(n+1), into 8V~ (%), % = (&, &) [n®

Proof. Cf. [15], Theorem II (in [15], without loss of generality, the
constant (&, £ was chosen to be {{&, &) = n?).

Especially for n = 2 we get from (5.5.1) Theorem B which was for-
mulated in the introduction. Naturally there is an analogue to Theorem 5.8:

5.9. THEOREM. Let (M, g) be closed, iimM = 2, and x: M — EV be
an isomelric immersion with parallel mean curvature vector and 12x,>
<& &

Then either (M) is a great sphere (%) = 8 (%), % = <&, &)/4, or
x(M) is a Veronese surface of constant curvature x = (&, £)[12 in 8*(%).

Addendum. As a result of discussion with K. Voss and P. Buser
(Geometrietagung Oberwolfach 1978) we get the following corollary
to Theorem A:

THEOREM O. Let (M, g) be closed, simply connecied, dim M = 2,
and %, > 3%, > 0. Then

(a) There are exactly three eigemvalues 1, < Ay < A3 (counted with their
multiplicity) in the interval [2xy, 2x,], and A, > 6x, > 2x,.

(b) If A, = 23y or Ay = 2x,, then (M, g) 18 isometrically diffeomorphic
to a sphere. If A, = 6xy, then (M, g) is isometrically diffeomorphic to 8°*(x,).

Proof. (a) Let (M, g) be given as above. For simplicity, assume
that », > } and », = 1. By the existence theorem of Weyl () one can
realize the Riemannian manifold as an ovaloid in the Euclidean space

() Cf., e.g., L. Nirenberg, The Weyl and Minkowski problems in differential
geometry in the large, Communications on Pure and Applied Mathematics 6 (19563),
p. 337-304.
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E?, choosing M = §8%(1) and considering the curvature x as a given func-
tion of the outer normal & of 8%(1). Define a one-parameter family
(8*(1), g(t)) of ovaloids with metric g(t) in the following way:

For each t € [0, 1] there exists an ovaloid with curvature x(t), given
as a function of the outer normal, where

1
x(1)

= (1—t),—1‘+t, te[o,1].

f_l. gdw =0 and f&dw =0 on §(1),
X
we get

1 ¢dw = 0 for each f¢.
%(1)

The metric g(t) changes continuously with ¢ and so do 2,(f), 4;(¢),
As(t). As 4;(0) = A3(0) = A3(0) = 2x, = 2%, on the unit sphere, from
Theorem A we get 2x,(t) < A,(1), A:(2), As(t) < 2%,(¢) for ¢ € [0, 1], which
especially holds for ¢ = 1. Thus

(M, g(1)) = (M, g).
(b) Assume that an eigenvalue A fulfils A = 2x,. Then 2.4 implies

0> [IB(f)IPdo+ [ llgrad P (%, — ) (2xg+ % — 1) do > 0.

As G:={pe M |gradf|, = 0} i8 nowhere dense in M (cf. 2.5),
we get
(7‘1—“)(2%0‘*"‘—"1) =0 on M,

which together with x», > x > 4%, gives
(%, —%)(%—x%,) =0 on M.

But this is possible only if » = const on M. Therefore 1; = 2x,,
which implies the assertion.
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