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REGULAR ARITHMETICAL CONVOLUTIONS -
AND THE SOLUTIONS OF LINEAR CONGRUENCES
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P.J. McCARTHY (LAWRENCE, KANSAS)

The Ramanujan sum, and its k-analogue which was introduced by
Cohen in [2], have been used to obtain identities involving arithmetical
functions and to determine the number of restricted sclutions of certain
congruences; see, for example, [3]-[8], [12]-[15], [21], [23]-[25]. We shall
refer to the results contained in these papers as the classical results.
In [9], Cohen introduced the unitary analogue of the Ramanujan’ sum,
and the unitary analogues of many of the classical results were obtained
in subsequent papers [10], [11], [15], [17]-[20].

The classical Dirichlet convolution and the unitary convolution of
[9] are regular arithmetical convolutions. The notion of regular arith-
nmetical convolution was introduced by Narkiewicz in [22], and will be
discussed below. In terms related to this notion we can formulate questions
involving analogues of the classical. arithmetical functions and concerning
the number of restricted solution of congruences. The purpose of this
note is to point out how the answers to these questions may be obtained
easily from the classical results. We shall discuss in some detail the number
of restricted solutions of certain congruences. It will be clear how the
analogues of the classical arithmetical identities can be obtained. Of
course, our results will include certain known unitary analogues of the
classical results.

For each positive integer r, let A (r) be a non-empty set of positive
divisors of r. If f and ¢ are arithmetical functions, we define a new
arithmetical funection - by -

rr) = D f(d)g(r/a).

dsA(r)

This furnishes us with a binary operation on the set F of all arithme-
tical functions; it is called the arithmetical convolution A. Two examples
of arithmetical convolutions are the classical Dirichlet convolution D,
where D(r) is the set of all positive divisors of r, and the wnitary con-
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volution U, where U (r) is the set of all positive divisors d of r such that
(d;r/d) =1 (the unitary divisors of 7).

An arithmetical convolution A is called regular if: (a) F is a commu-
tative ring with respect to addition and the convolution 4, (b) the con-
volution of multiplicative functions is multiplicative, and (¢) the function
e defined by e(r) = 1 for all r has an inverse u 4 in the ring ¥ and u,(r) = 0
or —1 whenever r is a prime power. The convolutions D and U are regular.
Narkiewicz characterized regular arithmetical convolutions in terms of
the sets A (r) ([22], Theorems I and II). In particular, he showed that
a regular arithmetical convolution is completely determined by the sets
A (p°) for all prime powers p* > 1, and that for each such prime power
there is a positive divisor ¢ of a such that

A(p*) =11, pt7 pzt’ -"9?“}’ st = a,

and for 1 <j<aft, A(p") = {1, 9% ..., p"}. The integer ¢ is called the
type of p® and is denoted by 7,(p”). Note that for all p* > 1, 7p(p%) =1
and ty(p®) = a. We shall assume complete familiarity with the first

three sections of [22].
Let A be a regular arithmetical convolution. The function u, is

multiplicative, and for every prime p and positive integer a,
—1 if v,(p°) = a,

0 otherwise.

pa(@°) =

If n is a non-negative integer and 7 is a positive integer, we denote
by (n, r), the largest divisor of » which is contained in 4 (7). The function
¢4 is defined by

@4(r) = the number of integers x such that 1 <z <r and (z,7), = 1.

We have shown in [16] that ¢, is multiplicative and that if p is
a prime and a a positive integer, then ¢, (p°) = p*— p®~%, where t = 74(p°).
The analogue of the Ramanujan sum is defined by

cy(m,r) = 2 exp(2rinx/r),

(:i,T)A=l
where the sum is over the ¢ (r) integers # such that 1 <z <r and
(¢,7)4, = 1. We have investigated this sum in [16], and it follows from
results given there that if (r,, 7;) = 1, then ¢ (n, r 7)) = ¢ (n, ) e (n, 7s).
Furthermore, if p is a prime and a a positive integer, then

p*—p* if p°ln,
cy(n, p%) = —pa-t if pa_t|'”'7pa'r”7

0 it p*~t1m,

where ¢ = 74(p%).
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- We denote by e¢,(n,r) Cohen’s extension of the Ramanujan sum.
If (ry,ry) =1, then c,(n, r ry)) = ¢ (n, r)c.(n, ry), and if p is a prime
and g a positive integer, then ([2], Theorem 3)

p™—pP kit pPn,
Cp(n, p°) =1 —p* if p**|n, p™1n,
0 it pP— rp.

If we compare this formula with the one given above for c,(n, p°),
we see that for all primes p and positive integers a we have

cq(n, P%) = ¢(n, Palt)

for all non-negative integers n, where ¢ = 7 ,(p®). It is this observation
that is the starting point for the remarks which follow.

First, we shall show that the sum c¢,(n,r) has the same value as
the proper analogue of the von Sterneck function (see [23]).

THEOREM 1. If A is a regular arithmetical convolution, then

o galm) (n,7).4
For fixed n, the function on the right-hand side of (1) is a multi-
plicative function of ». Hence, it is enough to verify this identity when

r is a prime power p* >1. If ¢ = 7,(p“), then

2. (p*") u(q)
#:(9)

where ¢¢ = p°/(n, p°), ([4], Theorem 1; [13], p. 61). The function ¢, is
the ¢-analogue of Euler’s function, and (n, p°), is the largest ¢-th power
divisor of » which divides p*. Now, (n, p%)4 and (», p°), are both equal
to p”, where j is the largest integer < a/t such that p”|n. If a = st,
then both m and ¢’ are equal to p©~, Hence, ¢ (m) = ¢, (p® )
= @p*”’) = ¢4(q). Furthermore,

cq(n, p*) = ¢/(n, pa/t) = ’

1 if j =s,
pa(m) = p (@) =1—-1 i j=s5-1,
0 if j<s8—2,

which is precisely the value of u(q). Thus, the asserted equality holds.
When A = U, (1) was given in [15], p. 56, and, in an equivalent
form, in [11], Lemma 2.2.
We now turn to the determination of the number of solutions, restricted
in various ways, of the congruence

(2) n =x,+...+x,(modr).
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Two solutions of this congruence, z,, ..., z,and 2}, ..., ., are counted
as the same if and only if x; = x; (modr) for ¢ =1, ..., s.

Let N (n, r, 8) be the number of solutions of (2) such that (z;,r), =1
for ¢ =1,...,8 Then

1
(3) Namyr,8) = — D eqlrfd, rfes(n, d).
ded(r)

If (r,,7r;) =1, then. N, (n,r,r,,8) = N 4(n,r,, 8)N (n, 7y, 8). Thus,
it is sufficient to verify (3) when 7 is a prime power p* > 1. Let M, (n, r, 8)
be the number of solutions of
(4) n = a,+...4+ x,(modr*)
such that (z;, r*), = 1fori =1, ..., s. As we have seen, (z, %), = (¢, p°)4,
where t = 7,(p°). Hence, N (n, p%, s) = M,(n, p°", s). Therefore, by [4],
Theorem 12,

1
N, 2% 8) = 2 > " [d, p™) e n, ).
P
djpalt
As d runs over the divisors of p®/, d’ runs over the elements of A(p?),
and ¢(p°/d, p*") = ¢ (p°|&, p°) and ¢, (n, d) = c (n, d’) since t = 7 4(d").
Thus, (3) holds whenever r is a prime power, and so for all r.
THEOREM 2. If A is a reqular arithmetical convolution, then

@q(r) pq(d)
N y 7y = ————c, a
a(n,7r,8) dﬁ;{,)%(d) c4( )
. P —1)((p" —1y7 (p'— 1)3 1)’
-] - ']
s sin

where, for each prime p which divides r,t = v ,(p" ), where p%|r and p°t! 1o,

The first of these expressions for N (n,r,s) follows immediately
from (1) and (3); when A = U, this evaluation was given by Cohen [10],
Theorem 6.1.

The second expression extends to the case of an arbitrary regular
arithmetical convolution a formula for N,(n,r,s) = M,(n,r,s) which
was given by Rademacher many years ago [1], and derived in another
way by Rearick in [25]. The analogous formula for M, (», r, s) was given
by Vietoris [26] (see also [27]). We shall indicate how this latter formula
can be obtained by using the k-analogue of still another evaluation of
M,(n,r,s) due to Cohen [6], Theorem 7. We have

(5) M, (n,r,8) = 2 d e, ((r/d), )P p(d, r)

dkun k)



where

_1)s+1
¥(d,r) = n (1—{— (——)
. (p*—1y°
pid
Here, p runs over the distinct prime divisors of » which do not divide
d; if there are no such primes then y{(d,r) = 1. Using this to evaluate
the right-hand side of (5) when r is a prime power, we obtain

My(n,r,s)
_ (P*—1)((@*—1y'— Y p*—1) —( 1)°
= ko s .
pkl(n,r"’) pk !I;]
ok1n

When k = 1, this is the formula of Rademacher. From this formula
we obtain immediately the second expression for N ,(n, r, s) in Theorem 2.

Now we can easily obtain necessary and sufficient conditions for
the non-existence of solutions of (2) which are resticted in the prescribed
manner.

COROLLARY. N (n,7r,8) = 0 if and only if one of the following con-
ditions hold:

(i) s =1 and (n,r), #1,

(i1) s >1,2eA(r), and n = s(mod 2).

When A = U, this result was obtained by Cohen [10], Theorem 6.2.

The function 6,(n,r) = N (n,r,2) is the analogue of the Nagell
totient function [12]. Various results for 0,(n,r) can be obtained by
specializing those for N, (n,r,s). For the special case when A = U,
see [17] and [18]. In particular, we have 6,(n,r) = 0 if and only if » is
odd and 2eA4(r).

Let N';(n, r, s) be the number of solutions of (2) such that ((#,, ...,
&), r) 4 = 1 If welet M, (n, r, s) be the number of solutions of (4) such that
(@1, ..., 2,), "), =1, then for every prime power p°>1 we have
N;(n,p 8) = M, (fnp"” s), where t = 7,(p"). If we try to use this
fact and the known formulas for M, (n,r,s) ([15], p. 49) to evaluate
N (n, p% s), we run into difficulties. For, these formulas involve not
only the k-analogue of the Ramanujan sum (or Euler’s function), but
the ks-analogue or the k(s—1)-analogue. However, when s = 2, wc¢ can
evaluate 0,(n,r) = Ny(n,r,2) in this way; from the formula at the
bottom of p. 49 of [15] we have

0:4 (n,r) = (PA(('”" T)A)'

r
(my 1) 4
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It follows that for a prime power p° >1 we have

, o PPt if Pm
bu,p) =1 o
p if p'1n,
where ¢ = 74(p°®). Thus, we see that for every A, 0,(n,r) # 0 for all
n and r. Consequently, if s >1, then for every 4, N, (n,r,8) = 0 for

all n and 7.
By applying the inclusion-exclusion principle, as was done on p. 50

of [15], we obtain

Niy(nyry8) = > pald)(rjdy"

ch((n,r)A)
When A = U this becomes
-1

s 7o)

-N'U('”fy r,8) =

where J) is the unitary analogue of the Jordan function; it was studied

in [20].
Let N j(n, r, s) be the number of solutions of (2) such that (a;,7),
is a square for ¢ =1,...,s. By using now familiar arguments we can

evaluate this number; we use the formula of [14], Theorem 3. Let i(r)
= (—1)?M, where 2(r) is the number of primes dividing » with repetitions
counted, and let i, be the multiplicative function such that for every
prime power p° >1, A,(p°) = A(p*"), where t = v,(p°). If we set

Balr) = D diy(r]d),
deAd(r)

then
124 1
Ny(n,r,8) = — 2 (Ba(d)Ay(r/d)cq(n,d).

de A(r)

Let 6,(n,r) = Ng(n,r,2). For every prime power p° we have
Ay(p) =1, and so fy(r) is the sum of the unitary divisors of r. Hence,
for a prime power p* >1,

p"+3 if p%m,

0’[ n a —
ot 2°) [p°+2 if p*1n.

Consequently, 6 (n,r) never vanishes.
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