FASC. 2

A REMARK ON (p, q)-ABSOLUTELY SUMMING OPERATORS IN lp-SPACES

BY

RON C. BLEI (STORRS, CONNECTICUT)

The purpose of this note* is to give a simple proof to Kwapień's generalization of Grothendieck's inequality, which was proved in [1] by using a complex interpolation method.

THEOREM. Let $1 \leq p \leq 2$ and let N be an arbitrary positive integer. Let $(a_{mn})_{m,n=1}^N$ be a finite matrix of complex numbers such that

$$\left|\sum_{m,n} a_{mn} t_m s_n\right| \leqslant 1$$

whenever $t_m, s_n \in \mathbb{C}$, $|t_m|, |s_n| \leq 1$ for m, n = 1, ..., N. Let $(x_m)_{m=1}^N$ be an arbitrary sequence of elements in the unit ball of l^p . Then

$$\left(\sum_{n}\left\|\sum_{m}a_{mn}x_{m}\right\|_{p}^{r(p)}\right)^{1/r(p)} \leqslant \mathcal{O}^{2/p-1}\mathcal{G}^{2-2/p},$$

where $r(p) \ge 2p/(3p-2)$, and \mathcal{O} and \mathcal{G} are universal constants.

Proof. Write the left-hand side of (1) as

(2)
$$\left(\sum_{n} \left(\sum_{k} \left| \sum_{m} a_{mn} x_{m}(k) \right|^{2-p} \left| \sum_{m} a_{mn} x_{m}(k) \right|^{2p-2} \right)^{2/(3p-2)} \right)^{(3p-2)/2p}.$$

In (2) we apply Hölder's inequality to \sum_{k} with the exponents 1/(2-p) and 1/(p-1) to the first and second factors of the summand, respectively. Thus we infer that (1) is bounded by

$$\left[\sum_{n} \left(\sum_{k} \left|\sum_{m} a_{mn} x_{m}(k)\right|\right)^{2(2-p)/(3p-2)} \left(\sum_{k} \left|\sum_{m} a_{mn} x_{m}(k)\right|^{2}\right)^{2(p-1)/(3p-2)}\right]^{(3p-2)/2p}.$$

Next, we apply Hölder's inequality in the preceding line to \sum_{n} with the exponents (3p-2)/(2-p) and (3p-2)/(4p-4) to the first and second

^{*} Author was supported partially by NSF Grant MCS 76-07135.

factors of the summand, respectively. Therefore, we infer that (1) is bounded by

(3)
$$\left[\sum_{n} \left(\sum_{k} \left| \sum_{m} a_{mn} x_{m}(k) \right| \right)^{2} \right]^{1/p - 1/2} \left[\sum_{n} \left(\sum_{k} \left| \sum_{m} a_{mn} x_{m}(k) \right|^{2} \right)^{1/2} \right]^{2 - 2/p}.$$

The first factor in (3) is bounded by $\mathcal{O}^{2/p-1}$ and the second factor in (3) is bounded by $\mathcal{G}^{2-2/p}$, where \mathcal{O} is the universal constant in the "general Orlicz inequality" and \mathcal{G} is the universal constant in the "general Littlewood inequality" (see (2.10) and (2.11) in [2]).

Remarks. 1. The constant in (1) is an improvement over the constant $\mathcal{O}^{2/p-1}$ $\mathcal{G}^{2/p}$ that was obtained by Kwapień (see Remark 1 on p. 333 of [1]).

2. As is shown on p. 332 of [1], the inequality in (1) is sharp with respect to r(p). This can be seen also as follows:

Let N be a fixed positive integer, and put

(4)
$$a_{mn} = \frac{1}{N^{3/2}} \exp(2\pi m n i/N), \text{ where } m, n = 1, ..., N.$$

A routine verification yields

$$\Bigl|\sum_{m,n=1}^N a_{mn}t_ms_n\Bigr|\leqslant 1$$

for all (t_m) , (s_n) in the unit ball of l^{∞} . Let $x_m = e_m$ be the *m*-th basic vector l^p , $e_m(n) = \delta_{mn}$, and compute

(5)
$$\left(\sum_{n=1}^{N} \left\| \sum_{m=1}^{N} a_{mn} e_{m}(n) \right\|_{p}^{r(p)} \right)^{1/r(p)} = N^{1/r(p)+1/p-3/2}.$$

But the right-hand side of (5) is an unbounded function of N unless $r(p) \ge 2p/(3p-2)$.

Note that the matrix given in (4) appears in a similar context on p. 172 of Littlewood's classical paper [3] on bounded bilinear forms.

3. Kwapień notes in [1] that the interpolation method that he uses to prove the theorem above can be adapted to establish a similar result in the case 2 . We were unable to modify our simple argument and obtain Kwapień's result in this case.

REFERENCES

[1] S. Kwapień, Some remarks on (p, q)-absolutely summing operators in l^p -spaces, Studia Mathematica 29 (1968), p. 327-337.

- [2] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p -spaces and their applications, ibidem 29 (1968), p. 275-326.
- [3] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables. Quarterly Journal of Mathematics 1 (1930), p. 164-174.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CONNECTICUT STORRS, CONNECTICUT

Reçu par la Rédaction le 15.8.1979