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FUNCTIONS REPRESENTED
BY INTEGRATED RADEMACHER SERIES
BY
JAMES R. McCLAUGHLIN (UNIVERSITY PARK, PENN.)

Functions represented by lacunary trigonometric series provide
interesting examples of certain types of functions, such as the Weierstrass

function f(t) = )2 "cos2"t which is: continuous but yet differentiable

n=1
nowhere ([18], p. 47). Several authors have considered functions repre-
sented by series of “saw-tooth” functions which also provide interesting
examples of continuous nowhere-differentiable functions ([3], p. 115;
[7], p. 38; [17], p. 353) and continuous functions having a symmetric
derivative everywhere but non-differentiable on a dense set ([15], p. 93).
The present author has noticed that many of the series of “saw-tooth”
functions previously considered are simply integrated Rademacher series.
Also there is a close parallel between trigonometric series of the form

o0 t )
(1) Dlan [ sin(bpa)de = ) anby'[1—cosbyt]
m=1 0 m=1
and integrated Rademacher type series of the form
oo 4 0o
(2) D)t [ 11 (bna)de = D ansnl(l),
m=1 0 m=1

where {a,} is a sequence of real numbers, {b,,} is an increasing sequence
of positive integers such that b,,/b,_, is even, and r,(t) is defined as
follows:

1, 0<t<1/2,
(3) r(t) =1{ —1, 12<t< 1,

r,(t+ k), for any integer k.

In the simplest case, b,, = 2™, s, (f) is the primitive of r,(t) =
= r,(2™'t), the m-th Rademacher function. The main reason for this
parallel appears to be the fact that r,(¢) = signsin=¢ whenever the latter
is non-zero.
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In this paper we study series of the form (2) and find analogues
of known theorems on lacunary trigonometric series of the form (1).
In general, the proofs of our theorems are simpler than either the corre-
sponding ones for trigonometric series or for the series of “saw-tooth”
functions previously considered. For instance, Theorem 3 generalizes
all the well-known examples of continuous nowhere-differentiable functions
which are represented by series of “saw-tooth” functions, and yet its
proof is no more difficult than those previously given for the special cases.
Also, by utilizing integrated Rademacher series we give a simple example
of an absolutely continuous function possessing a proper minimum on
a dense set (Corollary 4).

Now let F(t) denote the sum of series (2) whenever it exists. Since
I8 (1) < by', we have

LEMMA 1. If 3 |anbn'| < oo, then F is continuous.

Also, since 7,(b,t) is constant over [p/b,(p+1)/b) for m < k and
orthogonal over that interval for m > k, we have

LEMMA 2. If p/bp <t < (p+1)[bx, where p and k are integers, k > 1,

then
k-1

(4) Fl(p+1)/be]— Fp[b] = b D) amny (bmi).
M=l
In order to study the modulus of continuity of F' (defined in [18],
p. 42) we will need
LEMMA 3. Let @,(t) be orthogonal and bounded on [0,1), D,(t+ k)
= @,(t), and D,(t) = ®,(mt), where k and m =1,2,... If 0< h <1
and

G(t) = Zamfcb (z)dx

m=1
exists for all t, then
2n ©
(5) G(E+h)—G) = O0[h Y lanl+ 3 lamim™
m=1 m=2"41
uniformly in t, where n is chosen such that 2="' < h < 27",
Proof.
) t+h ©
GU+h)—Gh) = D, an [ On(a)dn = 2 + ) =P+e,
m=1 Mm=1  m=ghy]

|P|=0[hi’|am|], Q1 = 0| Z”‘ @l m ).

m=2"41
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THEOREM 1. Let G(t) be as defined in Lemma 3. If 0 < a <1 and

n

D lan] = 0[n%=9],

m=]
then Gelipa.
Proof. By Lemma 3 we have

G(t+h)—@Q (1) = Olh2"(““’+ 22-“"] = O[h"].
k=n

COROLLARY 1 (G. G. Lorentz [2], p. 217). If 0 < a < 1, and

(6) D (1aml+ bml) = O(n~2),
then H(t) = S (@m cos mt+ b, sinmt) eLipa.
Mm=1

Proof. Condition (6) is equivalent to

n
S (loml+ bu))m = O[2*~9], 0<a<1.
Mm=]
We now return to series of the form (2) and prove
THEOREM 2. If 0 < a <1, then FelLipa if and only if
k-1

D 1am| = O[Bf~1.

m=1
Proof. If FeLipa and ¢ is chosen such that r,(b,t) = signa, for

1 <m <k, then by Lemma 2
k—1

bt D, lam| = O[bz°].
m=1
This together with Theorem 1 implies our desired result.
COROLLARY 2. If0 < a< 1, then F eLipa if and only if |am| = O [b%~9].
COROLLARY 3. FeLipl if and only if D |an| < oo.

THEOREM 3. If D' |ambn'| < co and an # o(1), then F is continuous
but has no finite derivative anywhere.

Proof. If p/b. <t < (p+1)/be, then

k—1
(7) (FUP+1)[0e]— P25l be = Y tmry (bn)

m=1

cannot converge for a fixed ¢ as k¥ - co. But it follows easily (cf. [3],
p. 115) that if a, <1< f, for n =1,2,...,fh—a, >0 as n - oo, and
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f'(t) exists and is finite, then
[f(Bn)—F(an)]/[Bn—an]l = f'(}) a8 n — oo;

and hence if F'(t) exists and is finite we must have that (7) converges.

Remark 1. For b, = 2™ ', Theorem 3 was previously proved for
several special cases such as ¢, = 1([3], p. 115)and a,, = 1form = 2n+1,
n=0,1,2,... and 0 otherwise ([7], p. 38). Series of this type were first
considered by G. Faber ([16], pp. 546-554) and hence may be called
Faber series. In fact, the case a, = 10-"2", for m =2",n =1,2,...,
and 0 otherwise was given by Faber ([56], p. 538) in 1907 before the Rade-
macher functions were invented! The case b, = 10™ and a, =1 was
given by B. van der Waerden in 1930 ([17], p. 353).

By a slight modification of the proof of Thecrem 3 we now prove
the stronger

THEOREM 4. If Y'|anbn'l < oo and a, +# o(1), then F is continuous
but has neither a finite right- or left-hand derivative at any point.

Proof. If p/by <t < (p+1)/bx, then

k—1

(8)  {FLUp+2)/5]—Fl(p+1)/bltbe = D anri[bm(p+1)/b]

cannot converge for a fixed ¢ as k¥ — oco. But it follows easily (cf. [3],
p. 115) that if t < @, < B, for n = 1,2, ..., f,—t — 0, and the sequence
{(Ba—1)/(fn— az)} is bounded, then

[f(Bn)—f(an)l/[Bn—an] = f(t+) as n — oo

whenever f'(t4) exists and is finite; and thus (8) approaches F'(t-+)
whenever the right-hand derivative exists and is finite. A similar argument
shows that the left-hand derivative exists nowhere.

Remark 2. McShane and Botts proved Theorem 4 ([14], p. 116)
for the case b, = 12" and a, = 6""',m =1,2,...

Remark 3. We may not omit the condition of finiteness in Theorem 4.
o
To verify this we may consider the function F#,(t) = 3 [ru(v)de.
m=10
Choose now 0 < h <1 and 27%!' < h < 27%. Then

k-1 3 k—1
[#1(0)—=F2 01k > 3 17 [ru(@de = Y 1.
m=1 0 m=1
Thus #,(0+) = -+oo; similarly #;(0—) = —oo. From these results

it follows that #,(¢) has at all dyadic rationals (i.e., numbers of the form

p/2%) a right-hand derivative equal to +oco and a left-hand derivative
equal to —oo.
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THEOREM 5. If a, # o(1),a, = O(1), then F has neither a finite
right- nor left-hand derivative at any point and

o(F,h) = O[hlogh],

where w(F, h) denotes the modulus of continuity of F.
Proof. By Lemma 3, if 27" ' < h 2™

|F(t+h)— F(t)] = O[hn+2""] = O[hlogh].
Remark 4. By Theorem 2, 3, 4 and 5 and Remark 3 we see that

oo t
Fo(t) = Yo [ 1,(b")dw,
m=1 0

where b is an even positive integer and 0 < a <1, is quite similar to
the Weierstrass function ([18], pp. 44-48; [9], p. 170)

) 4 oo
Zb”‘“)’” f sinb"wdr = 1— Zb“’mcosbmt.
m=1 0 m=1
However, F,(t) ¢4, (cf. [18], p. 47) since
o bT 0
F, (0™ + F,(—b")—2F,(0) = 2[ r(b" ) do— [ rl(bmw)dw]
m=1 0 _p—n
n—-1

— 2 B~"4+b"] =2(n—1)b"" 0~ ").

We now proceed to
THEOREM 6. If 3 |anbn'| < co and

k-1
(9) limsup{]ak|3“— 2 |am|} = oo,
m=1

then F(t) is continuous and has upper and lower derivates of + oo and — oo,
respectively, for every t.

Proof (cf. [14], pp. 113-115). Fix ¢ and choose t, = p[br,; <t <
(P+1)/bryr = tgy 8y = (P—1) [bryy, and ¥, = (p+2)/br,,, Where p is an
integer. Then

F(i,)— F(t k k-1
o) TETTE S but) = aenet) Y awra(bmd),
F(t)—F(@t) 1 IR o
(11) - = [ak t;f Tl(bkw)dw-l-m_gz amx! rl(bmw)dw] b3

k—1
= —ak'rk(bkt)S‘l—l— [2] bk3~1.
m=1
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Suppose now that a7.(bxt) = |ax|. Then by (10) and (11) we have

F(ts)— F(ty) ~
12 > - m
(12) Pa— |ax| %EML
Fit)—F(t) _ e
13 3~
(13) P— | +£D%'
Now since
F)—F() t—t, FO)—F(t) t—t F(,)-F(@)
t4—t1 t4—t1 t—tl t4—'t1 t4—t !

we must have either
FO—F(t)  Ft)—F()
t—t, t,—1
less than or equal to the right-hand side of (13). Similarly either

F(t)— F(t,) or F(t)—F (1)
t—1t, t,—1
is greater than or equal to the right-hand side of (12).

An analogous argument holds for the case a7, (bixt) = — |ax].

Remark 5. The above result was proved for b, = 12™!, a, = 6™!
for m =1, 2, ... by McShane and Botts ([14], p. 113). Hobson essentially
proved Theorem 6 ([8], pp. 410-411) in its full generality by utilizing
a technique of Knopp.

Remark 6. A. S. Besicovitch has given an example of a continuous
function which has no unilateral derivative (infinite or finite) at any
point ([9], p. 172; [4], p. 39).

We now prove

THEOREM 7. If am = o(1) and }|an| = oo, then for every ¢ >0,
(a, b) = [0,1], and real number d, there exists t,,t,¢(a, b) satisfying

I[F () — F (8)1/[fa— 8] —d] < &.
Proof. If b, = 2™, a, = 0(1), and )'|an| = oo, then in every

interval the Rademacher series 2 G T (1) assumes every real number

m=1

([10], p. 234, Théoréme 2). Assume now that Z amTm(t,) = d and choose
2" <ty < (p+1)/2” Then

{Fl(p+1)/2"1—F[p/2"]}2" = 2 OmTm(te) > @& a8 m — oo,

m=1

The general case, for b,/b,_, even, is obtained by observing that
series of the form (2) also assume in every interval every real number.



RADEMACHER SERIES 283

THEOREM 8. If 3 |ambn'| < co and Y aj, = oo, then F is continuous
and has a finite derivative almost nowhere.

Proof. If b, = 2™ ' and ) aj = oo, then the Rademacher series
D anTm(t) diverges for almost every te[0,1) ([1], p. 54) and thus our
result follows from Lemma 2.

The general case, when b,,/b,,_, is even, is obtained by generalizing
Theorem 1.7.4 in [1], p. b4, to orthogonal series of the form (2).

THEOREM 9. If }'ap < oo, then F is the primitive of a fumction
fel?,(}<ip<< oo.

Proof. If b, =2™"' and }as; < oo, then J an,rm(f) converges
almost everywhere and is the Fourier series of its sum feL”, 0 < p < oo
([18], pp. 212-213) Also by the Riesz-Fischer theorem ([18], p. 127)

f[f (x)— Zamrm(w ]da: -0 a8 n—> o0,

Mm=1

) t t o
F(t) = Zamfrm(w)dw = I[Zamrm(w)] dx.
M=1 0 0 m=1

The general case is obtained by generalizing Theorems (8.2) and
(8.4) in [18], p. 212-213, to sieries of the form (2).

THEOREM 10. If @y >0, Jan = co, and ) anby' < co, then F
18 & continuous function with a right-hand derivative of +oo and a left-
hand derivative of —oo at all numbers of the form {p|bi}, where p is any
integer and k =1, 2,

Proof (cf. [7], p. 29) If » >k and n+1 < h < bz, then

i.e.,

n—1 p%,+h

P(pbi* +1)=F(pb) > D am [ ralbmd)dt

m=1 pbk
1 k-1 n-1
£ 35 b 3k S,
M=k m=Fk

[F (pbic* +h)— F (pbi")]/h > Zam+ 2 Gm > +o0 a8 h 0.

M=

Similarly

[F(pbi' —h)—F(pbi))[h > — D am+ ) Gm— +oo as h—0.
m=l M=k
COROLLARY 4. If am >0, Yaj, < oo, and >am = oo, then F is an
absolutely continuous, everywhere osezllatmg function with a proper minimum
at all numbers of the form {p[by}.
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Remark 7. A function may be everywhere oscillating and have
a finite derivative at every point ([3], p. 61; [8], p. 412).

THEOREM 11. If }'|an| < oo, then Felipl and has a right- and
left-hand derivative everywhere.

Proof. If )'|as| < oo, then series (2) is uniformly absolutely con-
vergent and hence its sum f({) must have right- and left-hand limits
everywhere.

COROLLARY 5. If by = 2™, Ylan| < oo, and

o~ D an  for k=1,2,...,

m=k+1

then F ts continuous, has a symmetric derivative (defined in [4], p. 34)
everywhere, but is mot differentiable at dyadic rationals.
Proof. If a function has a right-and legt-hand derivative at a point,
then it has a symmetric derivative there.
Also, since 7, (p2 ¥ +1) = rn(t)if m > k+1,and rk(p2‘k+t) = —71%(%),
we have
k—1

(14)  f@2 4+ 0)—f(p2 " —1) = D anlrm(p2 "+ ) —ru (@27 — 1)1+

o[ =)+ r(— )1+ D) amlrm()—rm(— 1]
m=k+1
Hence for p odd, it follows that (14) approaches —2ax+2 > an
m=F41

as ¢t > 04, and so by our hypothesis f(f) must have unequal right- and
left-hand limits at all dyadic rationals. But this implies F(¢) will have
different right- and left-hand derivatives at these points.

Remark 8. Corollary 5 for the special case a, = (2/3)" for
m =1,2,... was recently proved by Mukhopadhyay [15]. Mukhopadhyay’s
theorem can also be obtained by considering the primitive of the func-
tion

gy = ) 27",

neE(l)

where E(t) = {n: t, <t} and {t,} is a dense denumerable set; thus making
g(t) monotone, bounded, and having at each ?, an essential jump discon-
tinuity. '

We now prove that no condition weaker than Lip 1 implies differen-
tiability anywhere.
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THEOREM 12. If w(h)} oo arbitrarily slowly as h | O, then there exists
a continuous function F, with a finite derivative mowhere, such that

o(F, h) = O[ho(h)],

where w(F, h) denotes the modulus of continuity of F.
Proof. Choose a non-null sequence {a,} satisfying
(i) an is either 0 or 1 for m =1, 2, ...,

(ii) mz_:l an = O[w(27™)].

Then, setting b, = 2™"! in (2), we have by Lemma 3

\F(t+h)— F(1)j = 0[hw(2‘”)—|— P 2—"] = O[hw(h)].

m=n+1

But since a,, # o(1), I has a finite derivative nowhere by Theorem 3
(or Theorem 4).

Remark 9. The last result was proved by Kahane [11] by a similar
method. In a previous paper of the author ([12], Theorem 3.7), by use
of trigonometric series, we constructed a function #, as in Theorem 12,
which was differentiable almost nowhere. However, by selecting {¢,}
in our previous paper as {a,} in Theorem 12 we could have obtained
differentiability nowhere by utilizing a result of Freud ([6], p. 261) on
lacunary trigonometric series.

Remark 10. For other intei'esting properties of Rademacher series
the reader is referred to [13] and its references.
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