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In this paper Cauchy’s problem for the equation

02z —f(m . 0z ﬁ)
d0xdy 143 "oz’ oy

is considered in the class of Banach space-valued functions z(z, y) having
Bochner integrable partial derivatives 0z/0x, 020y and 0%2/0xdy. The
reasonings are similar to those of [2], but results are slightly farther
going. Theorem 2.5 shows that a condition introduced in [3], sufficient
for the existence and uniqueness of solutions with continuous derivatives
in the case of continuous f and continuous boundary data, is also sufficient
for the existence and uniqueness of solutions with integrable derivatives
if f and boundary data are suitably less regular.

Let us mention that by establishing theorem 2.5 for Banach space-
valued functions a simple deduction of theorems on continuous depen-
dence of solutions on f and boundary data is possible, similarly to [2],
§9, p. 102-106.

1. THE FUNOTION OLASS Wi*(d4; E)

1.1. Assumptions. Let g be a function defined on (— oo, oo), with
values in (— oo, oo}, non-increasing, not equal identically to oo, and
such that lim g(2) = oo. For any ye(— oo, oo) put h,(y) = sup{z: g(x)

=»—00

>y}, h_(y) = inf{x: g(z) < y}, under the convention that inf & = 4 oo.
Let h be a function defined on (— oo, oo), with values in (— oo, oo],
and such that A _(y) < h(y) < h_(y) for any ye(— oo, oo).

1.2. LEMMA. Under the assumptions 1.1, h, and h_ are functions with
values in (— oo, oo}, non-increasing on (— oo, 0o), h_ is right-continuous,
and h_ is left-continuous. The set

D ={y: —oo<y< oo, g ({y}) is an interval of positive length}
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is denumerable, b, (y) < h_(y) for yeD, h,(y) = h(y) for ye(— oo, co)\D.
The function h is non-increasing, D is precisely the set of all points of discon-
tinuity of h, and h_(y) = h(y—0), b, (y) = h(y+0) for any ye(— oo, oo).
Furthermore, for any xe(— oo, co) and ye(— oo, o) the following equiva-
lences hold:

(1.2.1) y>g@—0)<2>h(y—0),

(1.2.2) y< g@+0)<2<hiy+0).

The proof is left to the reader.

1.3. LEMMA. Under the assumptions 1.1 let ae(— oo, oo) and
be(g(a—O), oo) be fixzed and suppose that g is continuous in the interval
(h(b—0), a) and h is continuous in the interval (g(a— 0), b). Put

o' =h(g(a—0)+0), b =g(h(b—0)+0).

Then we have

(1.3.1) h(b—0)<a' <a and ¢g(a—0)<bd' <b
or
(1.3.2) h(b—0) =a and g(a—0) =20

In each of these two cases if xe(a’, @), then g(x) = g(a—0), and if
ye(b'y b), then h(y) = h(b—0). Furthermore, in the case (1.3.1), g(x) strictly
decreases in the interval (h(b—O), a’) from b’ to g(a'—0) = g(a—0), and
the inverse function of g/(h(b—0), a’) i8 h/(g(a—0), ).

Proof. Putting # = a and y = g(a—0), we have y > g(x+ 0), which
by (1.2.2) implies that @ = x> h(y+0) = a’. Since g(a— 0) < b, we have
o’ = h(g(a—0)+-0) > h(b—0). Thus

(1.3.3) h(b—0)< a' < a.
Similarly,
(1.3.4) g(a—0) <b' <b.

Putting ¢ = o’ and y = g(a—0), we have # = h(y+0) and so, by
(1.2.2), g(a—0) =y > g(x+0) = g(a'+0). Thus

(1.3.5) g(a'+0) < g(a—0)
and so, since ¢ is non-increasing, if a’ < a, then

g(z) = g(a—0) for ze(a' a).
Similarly,
B(b'+0) < h(b—0),
and if b’ < b, then
h(y) = h(b—0) for ye(d', D).
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If ¢’ = h(b—0), then b’ = g(a’+0), and so, by (1.3.4) and (1.3.5),
b’ = g(a—0). Similarly, b’ = g(a— 0) implies a’ = h(b— 0). This together
with (1.3.3) and (1.3.4) shows that the alternative “(1.3.1) or (1.3.2)”
is true.

Suppose now that A(b—0) < a’ < a. In this case we have

(1.3.6) g(a’—0) =g(a—0).

Indeed, if a’ = a, then there is nothing to prove. If 2(b—0) < a’' < a,
then ¢ is continuous at # = a’, and so, by (1.3.5), g(a’'—0) = g(a’+0)
< g(a—0) and, on the other hand, g(a’'—0) > g(a—0) since a’' < a and
g is non-increasing. Furthermore, if A(b—0)< a’'<a and A(b—0)<
< a', then, by (1.2.1), h(b—0) <z implies g(z—0)< bd, and =z < a’
= h(g(a—0)+ 0) implies g(a—0) < g(z+ 0), so that

(1.3.7) g(h(b—0), a’) = (g(a—0), b).

According to (1.2.1) and (1.2.2), g(«) < g(#— 0) implies z < k(g (x)— 0)
and g¢(x) > g(#+0) implies & > h(g(x)+0) so that

h(g(@)+0) < o < h(g(x)—0)

for every x. If ze(h(b—0), a’), then, by (1.3.7), g(«)e(g(a—0),d) and
since % is continuous in (g(a—0),d), we have h(g(x)—0) = h(g(z)+ 0}
= h(g(x)). Consequently,

(1.3.8) h(g(x)) =« for ze(h(b—0), a').

This_implies that g strictly decreases in (k(b—0), ') and since g is.
continuous in this interval, we have by (1.3.6)

(1.3.9) g(h(b—0), a’) = (g(a’—0), g(k(b—0)+0)) = (g(a—0), b').

From (1.3.8) and (1.3.9) it follows :that the inverse function of
g9/(h(b—0), a,') is k/(g(a—0), b’).

1.4. Definition. Under the assumptions 1.1 we put, for any
ae(— oo, co) and be(g(a—O), oo),

dop ={(®,9): —co< @< @y g(z—0) <y < b},

Pa,b = {(@,y): —oo< <@, glz+0)<y< g(rx—0), y < b}.
According to (1.2.1) and (1.2.2), we then have

Agp ={(®,y): —oo<y<b, R(y—0)< v < a},

Pa,p = {(w’ Y): —oo< y< b, h(y+0) << h(y—0), z < a}.
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1.5. Convention. Everywhere in the sequel, if the notation 4, ,, or
®a,py Will be used, then it will be supposed (without writing this explici-
tely) that the assumption 1.1 holds and that b > g(a—O0).

1.6. Definition. Let # be a Banach space. We denote by Wi*(4,,; E)
the class of all the E-valued distributions z on 4,,, which distributional
partial derivatives dz/0x, 02/0y and 0%z[0x0y are represented by E-valued
functions Bochner integrable on 4, ,.

1.7. THEOREM. Every distribution ze Wy *(Aa »; B) 18 represented by
an E-valued function strongly continuous on A4,, and having strongly con-
tinuous extension onto A,, U @,p. For every ze Wy*(4,,; E) there are
E-valued functions o and v of one real variable, strongly measurable on
(h(b—0), a) or (g(a—0), b), respectively, and such that

(1.7.1) [ p—g@)lo(@)lde < oo,
h(b—0)
b

(1.7.2) [ (a—r@)i=@)ldy < oo,
g(a—0)

and that for every (x,y)ed, , and every (x4, ¥,) e(pa’b':we have

02
(1.7.3) z(w,y)_z(wo,yo)+fa(u)du+fz(v)dv+ ff m(:; ) dud.

Here z(z,y) and z(zy,y,) denote the values at (x,y) and (x,,Y,) of
the function strongly continuous on A,, U @,, and representing the given
distribution 2z, and the integrals are taken in the Bochner sense.

Proof. Let-ze Wy*(4,,; B) and let 0z2/0z, 02/0y and 02z/0xdy be
Bochner integrable on 4, , representants of corresponding distributional
derivatives of 2. Assume ¢e(Cy’(4,,) and consider the integral

v
0%z(x, v) ) P
I(p) = — f f dv| 2 (z, y) dwdy.
Aa’b G(z)

By Fubini’s theorem,

I(g) = _fff 0%z(z, v) Op(z,y) dodudy,
D

0xdv oy

where

D ={v,2,9):9(x—0)<v<y, (v, ?/)‘Aa.b}°
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But 4,, = {(#,y): — o< y< b, h(y—0) < # < a} and the inequali-
ty g(#—0) < y implies h(y—0) < x, so that

D ={v,z,y):2v<a, glz—0)<v<y< b}
= {(v, 2, ¥): (w"v)fda,b, v<y< b}

and, by changing the roles of v and v,

I(p) = — f f azzg’yy) (,,f b a"’(;;’ 2) d'v)dmd?l
ff 62z(w,y) o(x,y)dedy.

It means that the distributional derivative

0 (fy 0%z(x, v) v
oy 0z ov
9(x)

is represented by the Bochner integrable function 0%z(z, y)/0xdy. But
this implies that the distributional partial derivative with respect to
y of the function

0z(z, y) 0'“’2(96,?/)
ox —f 0z 0v v

9(z)

vanishes on 4,, and so this function is equal almost everywhere on 4,,
to a function depending only on z. Denote the former function by ¢. Then
o is strongly measurable on (k(b—0), a) and

f (b—g(@) lo (@)l dw = f [ llo(@)lldzdy < oo.

h(b=0) dgb
Similarly,

0z(2,y) f 0%2(u, y)
—— | ——1Zdu

dy ») oudy

is equal almost everywhere on 4,, to a function v depending only on
y, strongly measurable on (g(a—0),d), and satisfying (1.7.2). Now fix
an arbitrary point (2,, ¥,) € ¢, and consider the E-valued function Zz0,vo
strongly continuous on 4,;, U ¢, , defined by the equality

e 9) = f o(u) du+ f w(o)dv-+ f f P20 gua
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Let ¢eCy’(4,,). By Fubini’s theorem we have

o9 (2, Y)
— ffzxo'yo(x,y)—gé——’——dmd
Aa,b y

=Ugjmm+ﬂf%%?wﬂﬁ%&m

Yo 9(x) "h(v)

. & g b
= — T e, 0 du —————dy|dzdv
JIlro+ [ S o[ ) =5 o]

h(v)
— ff[r(y)-l-f G dulq)(w,y Ydedy = ff el ,y) ¢(z,y)dwdy.

It follows that the distributional derlvatlve 0( 20,00 )/0y vanishes
on 4,,. Similarly, the distributional derivative 0(z— 2,,,,)/0 vanishes
on 4, ,. It follows that z is represented by a function strongly continuous
on 4,5, YV ¢,5, equal to z, , plus a constant. Since 2,y (o) Yo) = 0,
this constant equals z(z,, ¥,) and so (1.7.3) follows.

1.8. THEOREM. An E-valued function 2z strongly continuous on 4, , U ¢,

belongs to WY*(4,4,,; E) if and only if there are E-valued functions o, v and
8 with the following properties:

1° o is strongly measurable on (h(b—0), a) and satisfies (1.7.1),
2° 1 is strongly measurable on (g(a—0), b) and satisfies (1.7.2),
3° s is Bochner integrable on A, ,,

4° for every (x,y)ed,, and (&4, Yo) €@,,, we have

(1.8.1) 2(z,y) = 2(xy, Yo)+ fa(u)du—l— f v)dv+ ffs(u v)dudv.

If ze Wy™*(4,4; B) is gwen by formula (1.8.1) with o‘, T and 8 satisfying
1°-3°% then the distributional derivatives 0z/0x, 0z/0y and 0%*z[0z0y are
E-valued functions Bochner integrable on A4, , defined by the equalities

(1.8.2) ¢ —(2,y) = o(2)+ fs(a: v)dv
0z g(x)
and
(1.8.3) —(w,w = 7(y)+ fs(u,y )du,
h
and (¥)
22
(1.8.4) 90y = 8(x, ¥)

almost everywhere on A4, ;.
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Proof. The “only if” part follows from theorem 1.7. The “if” part
may be proved by arguments based on Fubini’s theorem, similar
to those used in the proof of theorem 1.7.

1.9. THEOREM. If an E-valued function =z strongly continuous on
A, Y @y i8 defined by formula (1.8.1) with o, v and s satisfying 1°-3°,
then

(1.9.1) Lim Aot 9, 9(@)—2(, 9(2)) — ()| dw = 0
30 45 0)te ¢
for every ee(O, ﬂ(zb—_?—)), and
b—e
(1.92) lim z(h(y), y+ dg—z(h(y),y) _T(y)” dy =0
340 a(a—0)+s'
for every ee(O, W)

Proof. Fixed c¢(0, 3(a—h(b—0))), for ae(h(b—0)+e a—e) and
de(0, ¢) we have

z+6
%—(z(m—l— 6,g(m))—z(w,g(a:))) = %zf o(u)du- ff s(u, v)dudy.

Ax+0,9(z)
Since
a—e 1 z+d
lim —f o(w)du—o(@)||ds =0,
04040 20)+e 4.

equality (1.9.1) will be proved if we show that

a—e

1
(1.9.3) lim (— f f Is (s, v)lldud'v)da; —o0.
" 0—>+0 0
h(b—0) Az+8,9(x) ’
To prove (1.9.3) put
min(b, g(w) +7) b
Mw)= [ s, v)llde, N(u) = [ls(u,v)ldv
o(u) gu)

for almost every ue(h(b—0),a) and any 5 >0, and

x40 x+0

1
2.0(@) = —;— f hwdy, Ny@) = f N (u)du
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for xe(h(b—0), a—¢), 6¢(0,¢) and 5> 0. Then

a—s

(1.9.4) im [ |N,(2)—N(#)de =0
0-++0 5(5—0)
and, for any 46¢(0, ¢),
a—e 1 a—s a
(1.9.5) Ay o(@)dd = — ( 2.,,(w+u)du)dm
h(b’—f;) ’ 9 h(b!;) 6{
1 /] a—8 a
='a"f( f).,,(a;+u)dm)du< fz,,(w)da:
0 h(b=0) h(b=0)
= [[1s(u, vldoay,
n

where
7w, = {(%,9): B(b—0) < < a, g(#—0) < y < min(b, g(z—0)+1)}.
At last, for > 0 and d¢(0, &), put

6o ={@:h(0—-0)< < a—¢ g@+06) > g(@)—n}.
Then for any 5 > 0,
(1.9.6) lim meas((h(b—O), a— a)\eﬂ,o) =0.

8—>+0

For any 7 > 0, 3¢(0, ¢) and ze(h(b—0), a— &) we have

Ay s(®), if xee, 4,

5 [ 1t miauar < .
é N,(z), if w¢e,,,

A2+8,9(x)
and so, by (1.9.5),

a—s

(% f f ||s(u,®)||dud'v)dw

h(b—0) Az+d,g(x)

<ff I8 (@, y)| dedy -+ df- |V, () — N ()] dov+- f N (o) ds,

h(b—0) (rd—0),a—¢)\e, 3

from where, by (1.9.4) and (1.9.6), equality (1.9.3) follows. Hence (1.9.1)
is proved.
The proof of (1.9.2) is analogous.
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2. CAUCHY’S PROBLEM IN THE OLASS Wy*(d4; E)

2.1. Assumptions. Let E be a Banach space. Let f(x,y,2,p,q) be
an FE-valued function defined for (v, y)e4,, and z,p, geE, which for
every fixed point (z, y) e 4, ; is strongly continuous with respect to (2, p, q)
on E3 and for every fixed triple (z, p, q) e E® is Bochner integrable with
respect to (x, y) on 4, ,. Let o(x) and 7(y) be E-valued functions Bochner
integrable on (k(b— 0), a) or (g(a— 0), b), respectively. At last let (2o, ¥,) € @a,5
and z,¢F be given.

2.2, Definition. Under assumptions 2.1 we ask about a function,
ze Wy*(d44; E) satisfying the equation

0%z = f(e . 0z 0z
ordy (’y’ * 0z’ Oy

almost everywhere in 4, ,, such that
(2.2.2) 2(%oy Yo) = 2o

and that, furthermore,

(2.2.1)

(’}z(m,y) 0%2(x, v)
(2.2.3) o (@) + f L
and
0z(z,y) Ozz(u,y)
(2.2.4) e =T+ f ez

h(y)

almost everywhere in 4,,, the integrals taken in Bochner sense. Such
a function z, if it exists, will be called a solution of the class Wy*(4,4;E)
of the Cauchy’s problem for equation (2.2.1) under boundary conditions
(2.2.2)-(2.2.4).

'2.3. Connection with a problem considered in [2]. It follows from
Lemma 1.3 and theorems 1.7-1.9 that under assumptions of continuity
of g(x) and h(y) in open intervals A(b—0)< x<<a and g(a—0)<y<b
the Cauchy’s problem defined above reduces to Cauchy’s problem in
the class L;(4) considered in [2].

2.4. Assumptions. Let ¢, =inf{x+y:(x,y)ed,;} and let w(?,r)
be a function defined for te[ty, a+b) and r > 0, non-negative, for every
fixed te[ty, a-+b) continuous and non-decreasing in » on [0, co), for
every fixed r > 0 Lebesgue integrable in ¢ on [{y, a4 b), and such that

(2.4.1) o(t,r) < L{#)(147) for te[t,, a+b) and r> 0
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where L(t) is a non-negative function Lebesgue integrable on [t,, a-+ b),
(2.4.2) w(t,0) =0 for a.e. te[ty, a+b),

and for every ce(0,a+b—1%,] the unique non-negative function R(?),
continuous and satisfying the equation

t
R(1) =fw(1:,R(r))dr on [ty to+¢),
to
is R(t) =0 for te[t,, ty+ ¢).
2.5. THEOREM. Under assumptions 2.1 suppose that

(2.6.1) ”f(wv?hz’p’Q)_f(my?/’é"i’yé)”
< o(z+y, max(K|z—2], |lp—2l, llg—ql))

Jor every (®,y)ed,, and all 2,p,q,2,D, ] <E, where K = const >0 and
the function w(t,r) satisfies assumptions 2.4. Then the Cauchy’s problem
(2.2.1)-(2.2.4) has one and only one solution of the class W* (4455 E).

The following Lemmas 2.6-2.8 are needed. for the proof of this theorem.

2.6. LEMMA. Let B(x,y) be a non-negative function Lebesgue integrable
on 4,, and L(t) a non-negative function Lebesgue integrable on [t,, a--b),
where 1, = inf{x4-y: (v, y)ed,,}. Let K be the linear operator of the space
L,(4,,) of functions Lebesgue integrable on A,, into itself defined by the
equality

() (%, ) = B(z,y) [[s(u,v)dudo+

z, Y
Yy x
+L@+y) ( [ s@ v+ [ s(u,y)du)
9(z) h(v)
almost everywhere in A,, for every seL,(4,,). Then the speciral radius
of A equals zero.
Proof. Assuming that B(z,y) = 0 for (z,y)¢4,, put

t+7v t—=
2

9 ! ) dr, te[ty, a+b),

2(1) =2L(t)—{—% fB(

and for every A > 0 define in L,(4,,) the norm | |, equivalent to the
usual one, putting

t
—Af P(w)dw
Isl|; = sup e ‘o [[ 1s(@,y)ldady.
te[tg,a+b] (@,v)edg p
a+y<t
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We shall show that for every 4 >0
1
(2.6.1) “9{3”1<7”3”u seLy(4z),

whence the theorem follows immediately.
In order to prove (2.6.1) let seL,(4,,) and A> 0 be arbitrarily

fixed. Assuming that s(x,y) = 0 and (X7)(x,y) = 0 for (v, y)¢d,,, We
have for every T >,

ffl(f)(w,y )| de dy =%fT fw (“” t;’)drdt
RS

z+y<T
2 t—
B J;’ 2’) ff $(u, v)dudv+ L(f) X
A(t+)2,(t—7)/2
(t—17)/2 (t+7)/2
. t t
% f s(, _;T,'v)mH—L(t) s(u,—z—)du dvdt
g(¢+0/2) h(t—7)/2)
T @ Af 2 )d
1 t+t t—7 o)ao
<3 [ [ 3555 ate™ 4
to —00
oo (t—1)/2 oo (t+7)/2
i+ t— :
+L(t) f f s( : ,'v) dvdv+ L (1) f f s(u, 2’) dudr]dt.
We have
oo (t—7)/2
t
f (+T )dvdt—.‘z ff ( + u, v)‘dudv
—00 —00 u+o<t/2
lf.?(a)da
=2 [ [ ls(@, y)ldwdy <2lsllie’s
z+y<t
and, similarly,
% (t+7)/2 2f P(o)do

dudr < 28| e’

[+57)
s\ —

Consequently,
at f 2( o)da 1 A }f.?(a)da
[[ WHs)(@, y)ldedy < sl f ZWed At =7 lslhe®  —1)
z+y<T

for every T >1,, which implies (2.6.1).

Collocuium Mathematicum XXII.1 10
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2.7. LEMMA. Let t, = inf{w+y: (¥, y)edy,}, k = const > 0, and let
L(t) be a non-negative function Lebesgue integrable on [t,, a-+b).

Put
a+b

c = exp((q+b—to+2)f L(t)dt).
)

If a function s (x, y) Lebesgue integrable on A4, , satisfies almost everywhere
in A, the inequality

s(z,y) < L(w—}—y)(k-l— fs(u v)dudvo-+ fs(m,'v)dfv+ fs(u,y)du),

gy o(x) W)
then
8(z,y) < keL(w+y)

almost everywhere in A, ,.
Proof. Put

t
r(t) = kL(f)exp ((a—l—b—to—]—Z) fL(t)dt),‘
b

d(z,y) = max(0, s(z, y)—r(z+y)).

We need only to prove that d(x,y) = 0 almost everywhere in 4, ,.
In this order observe that

L(z+1y) (k—l— ff'r(u—l-'v)dud'v+ f'r(w-i—'v)d'v+ fr(u—l—y)du)

h(v)
v

< L(z+vy) (k—i— f fr(u-l—'v)dudv+ fr(w—i—'v ydv+ fr(u—{—y)du)
to—yilg—u to—z ty—v
zt+y u z+y

—L(w—i—y)(k—l-f fr('v)dfvdu—{—Zf 'r('v)d'v)

z+v

L(w+y>(k+<a+b—to+2)f r(f)dt) = r(z+y)

almost everywhere in 4,,, Whence
<d(w,y) < L(w+y)(ffd(u v) dudo+- fd(w v)do+ jd(u,y)du)
z,y k()
almost everywhere in 4,,. The former mequahty may be written as
(2.7.1) 0< d(z,y) < (Xd)(z,Y)

almost everywhere in 4,,, where ¢ is the operator considered in Lemma
2.6 with B(z,y) = L(z+y).
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It follows from Lemma 2.6 that lim. #™d =0 on 4,,. On the
other hand, it follows from (2.7.1) and from the monotonity of ¢ that

0< d(z,y) < (X"d)(x,y)
almost everywhere in 4,, for n =1,2,... Consequently, d(z,y) =0

almost everywhere in 4, ;.

2.8. LeMmA. Under assumptions 2.4, if a non-negative function d(x, y)
Lebesgue integrable on A, , satisfies almost everywhere in A, , the inequality

(2.8.1)

dz,y) < w(w—l—y, max(K ffd(u,'v)dudfv, fd(w,'v)d'v, fd(u, y)du)),
4 g(z)

z.y h(v)
where K = const > 0, then d(x,y) = 0 almost everywhere in A,,.
Proof. Since by (2.4.1), (2.8.1) and Lemma 2.7 we have

d(x,y) < const-L(z+y)
for almost every (x,y)e4,;, the set

Z = {f: feLs(ty, a+b), f(@+y) > d(x, y) for almost every (2, y)ed,}

is non-void. Define the function reL,(?,, a+b) as the infimum of the
set Z with respect to the relation of inequality almost everywhere in
(to, @+ b). Since Z contains the infimum of every its countable subset,
it follows that r eZ (namely, it is easy to see that if f,eZ forn = 1,2, ...and
lim {|f,|| = int{||f||: feZ}, then r = inf{f,:n =1,2...}). Thus r has fol-

n-»00

lowing properties:

(2.8.2) r(x+y) > d(z,y) for almost every (v,y)ed,,,

(2.8.3) if peLy(ty, a+b)and o(x+y) > d(x, y) for almost every (z, y) e 4, p,
then ¢(t) > r(f) for almost every te[t,, a-+b).

In view of (2.8.2), our lemma will be proved if we show that r() = 0
for-almost every te[t,, a+ b). By (2.8.1) and (2.8.2) we have

Y x

d(w,y)<w(w+y,max(K ffr(u—l—'v)dudfv, fr(w—|—'v)d'v, fr(u+y)du))
Az,y g(z) h(v)
z+y n z+vy

< w(w+y, ma.x(K f fr('v)dfvdu, f r(fv)d'v))
th t
almost everywhere in 4, ,, whence by (2.8.3) it follows that

t u t
(2.8.4) 0<r(t) < ot,max(K [ [ r(x)drau, [ () dr))
o % to
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for almost every te[ty,, a+b). Put -
t

R(t) = [r(v)dr,

t
t, = max{t: te[ty, a+b], RB(r) =0 for ve[t,, t]}.
The former definition is correct, since R(to) = 0. The proof will
be complete if we show that E(f) = 0 for te[ty, a+b], i.e. if we show

that ¢, = a+b. Suppose that this is not true, so that ¢, <?, < a+0b,
and let ¢, = min(a+b,t,+1/K). We then have

R(t1) =0
and, by (2.8.4),

aR (1)
dt

< oft, R(?)) for almost every te[t,, t,].

By a theorem on differential inequalities [1] it follows that E(t)
is not greater than the maximal absolutely continuous solution E(¢) of
the Cauchy’s problem

dR (t
dt( ) - w(t, R(t)) for almost every te[t,,t,+ €],
R(t1) =0 '

in every interval [t,,t,+¢], 0 < ¢ <t,—t,, in which E(t) exists.

Since, by (2.4.2), R(t) exists and equals zero in the whole [i,,?,],
we infer, that R(f) =0 for te[f,,?,] in contradiction to the definition
of ¢t,. The proof is completed.

2.9. Proof of theorem 2.5. It follows from Theorem 1.8 that a function
ze Wy*(4,,; E) is a solution of the Cauchy’s problem (2.2.1)-(2.2.4)
if and only if it is given by formula (1.8.1), where s belongs to the space
L,(4,; E) of E-valued functions Bochner integrable on 4, , and satisfies
almost everywhere in 4,, the equality

x Yy
@2.9.1)  s(@,9) =f(e,y, 2+ [ o(dut [ <(v)dv+
To Yo

+ ffs(u,'v)dudv, o(x)+ fs(w, v)dv, 7(y)+ fs(u,~y)du).
a4

ey o(x) h{v)

Hence we have to prove that there exists an seL, (4, ,; K) satisfying

(2.9.1) almost everywhere in 4,, and that it is determined uniquely up
to the equality almost everywhere in 4,,.
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The uniqueness of s follows at once from Lemma 2.8. Indeed, if
s and § belong to L,(4,,; E) and satisfy (2.9.1), then d(z, y) = ||s(z, y)—
—38(w, y)|| is a real non-negative function Lebesgue integrable on 4, ,,
which, by (2.5.1), satisfies inequality (2.8.1) almost everywhere in 4, ,,
and so, by Lemma 2.8, d(x, y) = 0 almost everywhere in 4, ,.
. For the proof of the existence of s let A be an arbitrary but fixed
real non-negative function Lebesgue integrable on 4, , satisfying almost
everywhere in 4, ;, the inequality

(2.9.2)  A(2,9) > [f(2,9,0,0,0]+ Lie+y) (1+ K|zt [ owdut

+ [ @doll+lo @)+l @)),

and let M be a real non-negative function Lebesgue integrable on 4,
satisfying almost everywhere in 4,, the equality

(2.9.3) M(z,y) =A@, y)+EL(+y) [[ M(u,v)dudv+

zly

+L@+y)( [ M@, 0)dv+ [ M(u,y)du).

9(x) h(y)

The existence of M follows from Lemma 2.6. Namely, M = Y} ™4,
n=0

where ¢ is the operator considered in Lemma 2.6 with B(x,y) = KL(x+Yy).
For any seL,(4,,; E) let ¥, be the E-valued function defined by the
equality

(2.9.4) (Fs)(2,y) =f(o,y, 2%+ [o(wdut [r(v)do+

+ ffs(u,'v)dudv, o(x)+ fys(m,v)dfv, (y)+ fzs(u,y)du)

z,y g(x) My)

almost everywhere in 4,,. Then, as follows from assumption 2.1, Fs is
strongly measurable on 4, ,. Furthermore, it follows from (2.5.1), (2.4.1),
(2.9.2) and (2.9.3) that if ||s(x, y)|| < M (x, y) almost everywhere in 4, ,,
then ||(Fs)(x, y)|| < M(z,y) almost everywhere in 4, ,.

Let sgeL,(4,; E) satisfy the inequality ||s,(xz, y)| < M (x,y) almost
everywhere in 4,,. For every n =1,2,... put s, = Fs,_,. Then by
the preceding remark we have

(2.9.5) lI$n (2, Il < M (2, y)
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almost everywhere in 4,, for every n =1,2,... We shall show that
the sequence s,(z,¥), » =1, 2, ..., converges almost everywhere in 4, ,.
Put

d(z,y) = limsup s, (#, y)—s.(2, ).

n, M—>00

Then, by (2.9.5), d is Lebesgﬁe integrable on 4,, and, by (2.9.5)
and the Fatou Lemma,

(2.9.6) limsup ff |18, (%4 ©)— 8 (w0, D)||dudv < ffd(u,v)dudv

n, m—-00 A Az,u

for (v,y)ed,, and, furthermore.
. v

(2.9.7) lim sup f I8, (2, ) — 8\, 0)||dv < fd(a; v)dv
™M= g(z) g(x)

and

(2.9.8) lim sup f I, (% ) — 8m (0, W)l du < [ d(u, y)du
M= p(y) h(v)

for almost every (x,y)ed,,. by (2.9.4) and (2.5.1) for every =n,m
=1,2,... we have

l18n (2 ¥)— 8m (2, Y| = (F85_1) (@, Y) —(F8m—1) (, Y)I

< o (2+y, max(K ff 1801 (%, D) — 8y (1, )| dudo,
CUT/
X

v
[ lsnes (@, 0)— 8y (@, D)l d0, [ 8oy (s Y)— Sty ¥ ) Cu
g(x) My)
almost everywhere in 4, ,. Since (¢, r) is non-decreasing and continuous
in r, it follows from (2.9.6)-(2.9.9) that d satisfies almost everywhere in
A,, inequality (2.8.1), and thus, by Lemma 2.8, d(z,y) = 0 almost
everywhere in 4,,. This shows that the sequence s,(z,y), n =1, 2, ...,
strongly converges almost everywhere in 4, ,.
Put

(2.9.10) s(x,y) = lims,(z, y).

n—-»o0o

Then, by (2.9.5), seL,(4,,; F) and by the Lebesgue bounded con-
vergence theorem we have

(2.9.11) hm ffs (w, v)dudv = ffs(u v) du dv

1‘1/



for (,y)ed,, and

v v

Iim fsn(w, v)dy = fs(m,fv)_dfv,
N> g(x) g()

(2.9.12) - .
lim fs,,(u,y)du . fs(u, y)du
=0 hy) h(v)

for almost every (z,y)ed,,. By (2.9.4) for every n =1,2,... we have

x y
(2.9.13)  s,(z,¥) =f(a7,y,zo+ [owdu+ [ z(v)dv+
To Yo

4 x
+ [[ tas(u, v)dudv, o(@)+ [ 801(@, 0)d0, v@)+ [ 80 ( 9) du)
Az_y_ g(x) h(y)
almost everywhere in 4, ,. Since f(z, ¥, 2, p, q) is continuous with respect
to (2, P, q), equalities (2.9.10)-(2.9.13) imply that s satisfies almost every-
where in 4,, equality (2.9.1), which completes the proof.
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