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On the asymptotic behaviour
of some sequences built of iterates

by, J. DREWNIAK. and M. Kvozma (Katowice)

1. Let » be a real or complex variable and let f be a function ful-
filling the following conditions:

(H) f() is defined and continuous for |v—a| < R, 0 < |f(@w)—al
< |r—a| for 0 < |[x—a| <R, and there exists the derivative s = f'(a).

Several authors (cf. [1], [2] and [4]) have studied the behaviour
of the sequence

lmn+1—wn|
1 = e— = 2 ces
( ) yﬂ- I$n_wn_ll H 7 1’ H )
where
(2) oy =f@,), n=0,1,2,..,

and x, is an arbitraiy point such that
(3) 0 <|mg—oal <R.

In particular, the following results have been established:

(i) (Hamilton [2]) If s # 1, then for every x, fulfilling (3)limy, = |s| ().
(ii) (Kuezma [4]) If s = 1, then the limit limy, need not exist.
However,

(iii) (Kuezma [4]) If s = 1 and the limit limy,, exists, then limy, = 1.

B. Choczewski [1] investigated the possible asymptotic behaviour
of sequence (1) in the divergence case. Let w,, n =1,2,..., be an
arbitrary sequence with positive terms and let us write

7
(4) Po=[]w, n=1,2,..

i=1
(iv) (Choczewski [1]) If 0 < limsupp, < oo, then

() Hore and in the sequel, unless otherwise stated, lim and limsup always
refer to # —+ oq,
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(%) there exists a function [ fulfilling conditions (H) with 8 =1, and
a point x, fulfilling (3) such that for the corresponding sequence (1)
we have ¥, ~ u,.
Here y, ~ u, means that the sequences ¥, and u, are asymptoti-
cally equal, i.e., limy,/u, = 1.
In order to prove (iv) B. Choczewski used a device an essential part
of which was the following observation.
OBsERVATION I. Let w, and v, be sequences of positive terms and
let us define p, and ¢, by (4) and

(5) =[]0y n=1,2,..,

regpectively. Then u, ~ v, does not imply p, ~ g¢,.
Thus, if %, does not fulfil the assumptions of (iv), we may try to
find another sequence v, such that u, ~ v, and for sequence (5) we have

(6) 0 < limsupg, < oo.

If we succeed, assertion (*) results from the transitivity of the rela-
tion, ~.

Thus B. Choczewski, though in fact has not gone so far, has almost
proved

(v) (Almost Choczewski 1)) If there ewists a sequence p,, n = 1,2, ...,
with positive terms, such that ‘

(7) limﬁn+1/§n =1
and
(8) 0 < limsupp,/p, < oo,

where p, 18 given by (4), then (*) holds.

In fact, it is enough to put v, = w,p, ,/P,, where P, = 1. Then
by (7) %, ~ v, and we have g, = p,/D, so that (6) results from (8).

Theorem (v) has the disadvantage that it involves another sequence,
P., Whose existence must be postulated. It would be nicer to have a con-
dition expressed in terms of the sequence p, itself. For it is clear from
the investigations of B. Choczewski that sequence (4) plays an impor-
tant rdle here. But any condition based on the asymptotic behaviour
of the sequence p,, itself must turn out to be inadequate, since the asymy-
totic behaviour of sequence (4) is not invariant under the asymptotic
equality for the sequence u,. And here we come to & next observation.

OBsErRvATION II. Let w,, v, be sequences of positive terms and let

n___ n__
Pny Gy be defined by (4) resp. (5). Then Uy, ~ ,, implies l/pn ~ l/q,,.
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Observation II follows from the well-known fact that if a sequence
of positive terms converges to a positive limit, then the sequence of its
geometric means also converges to the same limit.

Observation IT suggests that the condition for (*) should be expressed

n__
in terms of Vp, rather than of p, iteelf. Now, condition (7) implies that

n_.
lim ¥p, = 1, whence by (8)
n

(9) limsup l/p_,,, = 1.
It turns out that condition (9) is characteristic for those sequences 1,
for which (*) holds. Namely, in section 2 we ghall prove

(vi) Let u, be a sequence of positive terms and let p,, be defined by (4).
Then (») holds if and only if the sequence p,, fulfils condition (9).

One may ask how wildly can behave sequence (1) in the case s = 1.
The following result gives a certain answer to this question.

(vil) A set E is the set of the points of accumulation of sequea.we (1)
generated by a function f fulfilling (H) with s = 1 and by a point x, fulfilling
(8) if and only if B < {0, o>, F is closed and

(10) infh<1<<supk.

.

The purpose of the present paper is to prove assertions (vi) and (vii)-
The proofs will be supplied in sections 2 and 3.

Finally let us note that either of assertions (vi) and (vii) implies both
(ii) and (iii). Since the present paper does not rely on [4], it yields new
proofs of (ii) and (iii).

In fact, assertion (vi) implies (ii), (iii), (iv) and (v).

2. In this section we prove assertion (vi).

LeMmMA 1. If f fulfils (H), then for every sequence x, defined by (2)
with (3) we have

(11) limz, = a.

Proof. The sequence |z,— a| is decreasing and bounded below (by
zero) and hence converges to a limit p, 0 < ¢ < R. Further, there exists
& subsequence x,, of x, convergent to an x* and, of course, |[#*—al = o.
By the continuity of f the sequence Byl = f(=,,) converges to f(v*)
and again we have |f(#*)—a| = p. But according to (IT) this is not possible
unless ¢ = 0, which is equivalent to (11).

LeMMA 2. If f fulfils (H), s = 1, and the sequonce vy, ts given by (1)
with (2) and (3), then

n n
lim sup ]/n y; = 1.
=1
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Proof. By (1)

"
(12) ]/ Ilyi = ] Iwn+1 nl/]/lml—'mol .

The denominator on the left-hand side of (12) tends to 1 and, since
by Lemma 1 lim|s,,,—a,| =0, we have

no____ ...
limsup 14 |$n.|-1 | 1.

If we had limsup 1/ |, 41— ,,I < 1, then there would exist positive
constants M and ¢ <1 such that

(13) |, — 2, < Me™  for n =0,1,2,...

According to Lemma 1

whence by (13)

(14) |z, — a <M20" -
k=n

On the other hand, since ¢ =1, we may find positive constants
¢t <1l—o0 and ¢ such that

(16) lfm _“|a[ >c+e for |[v—a| < 0.

n=20,1,2,...

Further, there exists an N such that |#,—a| <& for # > N. Hence
we get by (15)

%y — al > (¢+ &) |2,—a] for n= N,
or
(16) @, —a| > K (¢c+e" form =0,1,2,

with a suitable constant XK > 0. Relations (14) and (16) yield

n M 0 :
(¢c+e) <m0, n=20,1,2,...,

which ig impossible, since & > 0. Thus necessarily

n__
linlsup 1/1wn+1— mfn,l = 1’

which in view of (12) implies the assertion of the lemma,.
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LuemMA 3. Let r,,n = 1,2, ..., be & sequence of real numbers such that
(17) limgupr, = 0.

Then there ecxisls a sequence m,, m = 1,2, ..., fulfilling the following
conditions:

(18) m, 18 monotonic,
(19) My1— My, 18 MoOnotonio,
(20) limm,, =0,

(21) Ty < m, for large m,

(22) e =m, for infinitely many n.

Proof. We shall distinguish three cases.

I. For infinitely many » we have », > 0.

Condition (17) implies that for every seft S of positive integers
containing at least one index j with », > 0 there exists sup r; and this

tes
supremum is attained for a finite number of indices 7. Making use of this
remark we shall define two ‘auxiliary sequences a,,n,. We put
(23) @, =supr;,, a, =supr;, @, =supr;, k=2,3,..,
izl 1>ny teSg

and

(24) n, =max{é: 1, =a,}, k=1,2,...,
where for & > 2

. Qp_,—ay _ Qp— 7
(25) S,,={z>nk: kot Rk ‘}.
W’k— 'nk__l 41— '"/k

In order to prove that the above definitions are correct we must
show that for every & > 2 the set §, contains indices 4 such that r; > 0.
We shall do thig, proving at the same time by induction the inequalities

(26) a,c_|_1<ak, 70=1,2,...,
(27) Mpeer = Moy k=1,2,

Suppose that we have already defined the sequences a; and
for j =1,...,%, k> 2, where a; decrease and #; increase (?). Thus
(@p_1—ap)/(n,—m,, ) 18 & fixed positive number, and therefore
(@ — ag) /(g —ny ) > a/(i—ny) for 4 sufficiently large. Hence

Gp_— 4y, Op—7;
- > -
g — Mgy b Ny,

(%) Inequalities (26) and (27) for k= 1 are casily checked.
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for large ¢ such that r, >0, and in the present case thete are infinitely
many such 7. Thus we may define a, ., by (23) and n,, as max {i : r; = a;,,}
(cf. (24)).

Since the supremum supr; is realized, we have a,,, = r; for some
'ii;gk ' 7

ieS,, i.e. i >m,. Hence (27) follows. To prove the inequality a,, < a,
for k>3 we shall show that 8, = §,_,; for & = 2 it similarly "results
from the obvious inclusion 8, = {i: 4 > n}.

Let 1¢8;, k> 3. Then ¢ >n, >n, _, and

(e —73) (Pge— My} < (O — ) (8 — M)

= (G — ) (b~—Np_y) — (@ — &) (N — 10y ),

whence
(Gp_y—7) (N — 'n’k-:l) < (@p_y—ay) (—my_ ),
i.e.
Gy — @ @y — 7T
1 1] 2 .Ic 1 [ .
9%k— nk_l b— 'nk__l

By the definition of a, and n, we have in view of the above relation

Ap_g— Gy < Bpe—y— O, > Ay 1 — 75

= =z '
LS S 1 O O O 'S

which means that ¢e8,_,. Thus 8§, < 8,_,, whence a,., < a,. But the
equality is impossible in view of (24) and (27). Hence a,,, < @, which
completes the induction.

Relation (24) implies also that

(28) Top = Qe k=1,2,
Further, it follows from (23), (25) and (28)

ap_1— @ ;. — Ay,
(29) k—1 k> k ’i‘-l-_!.

= ) ]G = 2, 3’
My — Nog_q Mgy — My

Now we put

G;— Gy
m, = “”H”'*_”)TT;,' for 1 < n<n,y,
2 My
(30)
ak—ak_i_l -
My = Qg+ (N, —0) — formy<n<<n,, k=2,3,..
g1 — N

We have by (30) for 1<n<n+1<n, (k=1 and N <N <nt1
<My (k> 2)

a,— a
(31) Mgy — My = — —~PEL 2

Py — N,
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(ef. (26) and (27)). Hence for 1<n—l <n<n+1<m, (k=1) and
My <N—1<n<n+1<<n,, (k=2)
(32) (m'»n-!-l"—mn)'_(mn_mn—l) =0.

On. the other hand, for n = n,, k> 2, we have

Gp— Ay Q. _—a
(33) My 41— m, = — e Tkl , My— My, = — k=1 Tk s
Py — T g — N
whence by (29)
(34) ('m’n-lv-l - mn) - (mn_ m, ) =0,

Now, (18) results from (31) and (33), and (19) follows from (32) and
(34). Further, relations (30) and (28) yield

(36) My, = =Tpy, kb =1,2,...,

and since evidently a, > 0, relations (17), (18) and (35) imply condition
(20). Condition (22) is a consequence of (35). It remains to prove (21).
Let us take an m, n, <n < n,q, k> 2 (%). In view of (30) we have

(36) My > Gy
If neS,, then the inequality
(37) T < My,

results from (23) and (36). If n¢S,, then according to (26) and (29)

Gy — Ty > 1~ O B G
==

)

whence by (30)

Gy — B a Ap— Qg
Ty < Qp— (%_nk) —_ = a]¢.|.1+ (‘n,‘+1—'n/)———- = My, .

Prppg1— Mg Mg — Mg

II. For almost all » (i.e., possibly with an exception of a finite number
of indices n) we have r, < 0, and for infinitely many » we have », = 0.

Then the sequence m, =0, n =1,2, ..., evidently fulfils condi-
tiony (18) through (22).

III. We have r, < 0 for n > N.

Condition (17) implies that for arbitrary fixed n >N and a <0
the supremum

(38) sup ————

(*) A similar argument shows that (37) holds also for 1< n# < ny. Thus in case I
relation (37) is valid for all =.
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exists and is attained for a finite set of indices j. In fact, by (17) there
are j >m such that ; —a >0, whereas lim sup (r;,—a)/(j—n) = 0.
J00

Now we define sequences a, and n, by (28) and

n]_:N,
(39) — r
e % —-sup—j———} k=1,2,...
T— My geng J— M

M1 = sup{

(note that in view of (28) a;, < 0), and we define the sequence m, by (30).
Relation (27) evidently holds. Moreover, since in view of the pre-
vious remarks supremum (38) is attained by 7, > a, it follows from (39) that

(40) Oy = Tpppy > G

Further, we have in view of (39), (27) and (28)

Opg1— Ok—1 Vappr— L < sup Yy— @1 Topg ™ S—1 B Oy
= : = = ,
Nppy1— Nge—1 '”'k+1—""'rc— i>np_1 ] — Mg—1 Mg Mrg—1 Np— Mgy
and since
e S T [ Gy — Qg3 g1 1 ] g1 — M1
- - - b
M1 — M N — Mgy Np— Mgy N1 — N1 N1 — N
we get
[ P— By — Gy,
(41) J-|-1 k < % k—1 .

_—~
N1 — Ty Np— My

Relations (40), (41) and (30) imply that conditions (31)-(35) are
fulfilled, with the inequalities in (31) and (34) turned into opposite ones.
Uonsequently the sequence m, fulfils conditions (18), (19), (20) and (22).
Further, we have for # > N, say n, <n <1, £>1,

" T % oy % Taan % Gke1 T B

~= .
N—Ny  gonp J— Ny N1 — Ny Mg g1 — N,
(cf. (39) and (28)), whence by (30)

S o+ (n— Ny) ——-~ — =+ ('n'k-l-l —n) - = m,.
q?lk_'_l_qbk 'nk }-l—ﬂ'k

Consequently condition (21) is fulfilled, too.
This completes the proof.

CorROLLARY. The sequence m, fulfils the condition

(42) imn(m,,,—m,) = 0.
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Proof. By (20) the series 3'(m,,,—m,) converges and hence ([3],
§ 14, Theorem 80) relation (42) results in view of (19).

Let us note also the following consequence of the mean-value theorem.

LEMMA 4. 4d,0 < d <1, being fized, there exists a positive constant C
such that the inequality

holds for arbitrary w,ye(—d, dD,
Now we proceed to give
Proof of assertion (vi). It follows from Lemma 2 and Observa-

tion IT that (*) implies (9). Conversely, let us assume that relation (9)
holds, Then the sequence

n_"
Py = '/pn._' 1
fulfils (17) and we put
f’n = (1+mn)n)

where m, is the sequence fulfilling conditions (18)-(22) of Lemma 3.
(It follows from (20) that p, > 0 for large n and we may change, if neces-
sary, & finite number of values of p, to make 5, >0 for all #.) Then by
(21) and (22)

limsup Pv _ jim sup (

n

147, )”__ L
-

=+ m,

and thus condition (8) is fulfilled. On the other hand,

__én-l—] _ (1+ M1
.p'n ~1+mﬂ,

and since by (20) m, ., m,e{—d, @) for large n, we obtain by Lemma 4
and by (42)

(43) ) (1+my, 1),

n
(44) limlog (1—+M) =0.

1+m,

Now, relation (7) results from (43), (44) and (20) and consequently
(*) follows in virtue of (v).

3. In the present section we are going to prove assertion (vii). If ¥
iy the set of the points of accumulation of sequence (1) generated by
a function f fulfilling (H) with s =1, and by a point @, fulfilling (3),
then obviously E is a closed set contained in {0, oo}, and relation (10)
results from Lemma 2. To prove the converse implication, we shall make
use of the following
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LEMMA B. If we are given numbers A, u such thai

I<i<l<pu<oo
and
XBu 1 for all positive integers 1, j,

then for am arbitrary mon-empty interval (a,bd) < (0, o) and arbitrary
number M (0, oo) there exist positive integers k, 1 such that

o< Myt <b.

The above lemma is a consequence of the well-known fact that if
the numbers w,, w, are positive and incommeasurable, then the set of
the numbers of the form nw,— mw,, where n, m run over the set of posi-
tive integers, is dense on the real axis.

Now let I be an arbitrary closed set contained in {0, co) and, fulfil-
ling condition (10). Let E, be a finite or countable subset of B, densge
in E:

(45) E,=1.

In order to prove (vii) it is enough to construct & sequence u, fulfil-
ling (9) (where p, is given by (4)) and such that its set of the points of
accumulation containg F, and is contained in ®. (Note that asympto-
tically equal sequences have equal sets of the points of accumulation.,)

We may write E, = {w,, w,, ...}. Let us form the triangular table

W,
(46) Wy W,
W, Wy Wy

(If the set F, ix finite, table (46) has a finite number of columns, but the
number of rows is always infinite.) If & w; is 0 or oo, then we replace the
corresponding column by the sequence 1/n resp. n, # being the number
of the row. Next we number the elements of table (46) in the order of
rows, thus arriving at a sequence 2, such that 0 <z, < oo, and the set
of the points of accumulation of the sequence 2, contains ¥, and is con-
tained in E (and hence, in view of (45), in fact equaly ).

By (10) there exist 4, ue¢E such that 0 < A< 1< u < oo, We choose
two sequences, 1, and u,, in such a manner that limi, = 1, limu, = u,

(47) 0 <l <1<y < o0,
and the sets of integral (3 0) powers of 1, and u, are disjoint:

(48) {A:m=1,2,..5%=+41,42,...} n
N{ugin =1,2,..5%x = +1, 4+2,...} =0.
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The last condition may be achieved, for instance, if we choose A,
rational and u, transcendental,

Conditions (47) and (48) guarantee that for A, and u, the assump-
tions of Lemma 6 are fulfilled. Let a,, b, be monotonic sequences such
that

I<ea,<1l<bdh, < o
and
(49) lima, =lmb, =1.

If we are given a sequence M, of positive numbers, then by Lemma 5
we may find sequences k,, !, of positive integers such that

(60) Oy < AP M < by,
We ghall define a sequence M ,, and at the same time a sequence ¢, ,
by induction. We put
M, =z, 0, = LM, pui,
M, = 0,12y G, = MrM, ulr,

n

(61)

where the positive integers k,,!, are chosen according to (50). Finally
we define m, as the number of factors of ¢,, i.e.,

n
(62) m, =n+ D (h+l), n=1,2,..

=1

(which may be proved by induction) and we assume m, = 0.
Now we put

by for m, , <i<m, +k,
(B3) u; =1 2, fori=m, +k,+1,
Hn for M1+ k’n+ 1<i< My

n=1,2,... Since the sequences 4, and u, converge to elements of ¥,
we have not introduced any new points of accumulation, and thus
the set of the points of accumulation of the sequence u,, like that of the
sequence z,, coincides with the set F. In order to complete the proof we
need only to show that the sequence u, fulfils condition (9).

Let nus define p, by (4). We have

iy

(54) Py, = n Uy = Cp-

ie=l

4 — Annales Polonlel Mathematicl XXV
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Indeed, for # = 1 we have in view of (53), (52) and (51)

e
: k k L __
Pm, =l ]'“i = e ul =AMyt =
1=1

Assuming (54) true for n—1, we have by (53), (52) and (61)
My,
Py, = Pony_, n Uy = Gn—llgnzn F’)i‘ = )']'nMnruzn = Cp
i=tipy Z 141
and consequently (64) is valid for all n» = 1, 2, ... Hence we get in virtue
of (60) and (49)
(55) ].il’ll_pmn = 1.

Now let us take an arbitrary »;. We distinguish two cakes.

(¢) J =My +%0<k<hk, for a certain #>1. Then by (64)
and (53)

1
p; = Py, _, I-] Uy = cn-—lzﬁ <l < by,
=My _ 141

since 2, < 1.

BYj=my_+k,+1+1, 0<I<],, for a certain n>1. Then by
(54) and (53)

i
Py = pmy_,y ” Uy = €, lln “n /"u o lli‘t “n /"'n =, < bn < bn—n
M1

since u, >1 and the sequence b, is monotonic. Thus in either cage we
arrive at the estimation

(66) Py <b,, form, ,<j<<m, n=1,2,
Conditions (65) and (56) with (49) prove that
limsupp, =1,
which implies (9) and completes the proof.

4. It follows from (H) that f(a) = a; in other words, a is a root of
the equation

(67) f(@)—

By Lemma 1 we have
(58) a =&, + 2 (mn_mn--l)7

and formula (58) may be regarded as an algorithm for the approximate
solution of equation (37). Now Hamilton’s theorem (i) says that in the
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case § # 1 the convergence of the series in (58) is geometrical with the
ratio |s|. Our results show that, in general, no such estimation of the
rapidity of convergence of the series in (58) is possible in the case s = 1.

On the other hand, B. Choczewski [1] has given some additional condi-
tions which assure that in the case s = 1 the limit limy, exists (and then,
necessarily, limy, = 1).
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