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On some classes of holomorphic vector functions

by Tapeusz Porepa (L6dZ)

Abstract. In the article we consider some classes of analytic functions transforming the
unit circle into a Banach space. The idea of construction of such classes arose from a deep
analysis of works of Globevnik and Vidav [3] and of Suffridge [6].

Function spaces that are considered in this work are generalizations of Carathéodory’s
classes.

There are used, among others, the following denotations: K (p, r) denotes the open ball
with the centre p and radius r in a metric space, K(r) = {zeC: |z| <r}, # denotes the class of
Carathéodory functions and M, the class of functions of the form

an
Jo=1 5 et % du(),

where ;: is a non-decreasing simple function with the number of steps not greater than n+1 and
#(0)=0, u(2r) = 1. X* denotes the conjugate space to a given linear topological space X,

1. Definition of the class C(X, *P, a;) and examples. Let (X, || ||> be
complex Banach space. The set *P < X* will be called normable, if there exist
two positive numbers ¢, C such that the inequality

sup {Ix*(x); x*e*P, |x*¥| < C} = cllx]|

is true for every xeX.
If a set *P is normable, then the functional || j|; defined by the equality

(1) lixlly = sup{|x*(x): x*e*P, |ix*|| < C}
is a norm equivalent to the norm || || and
sup {|x*(x): x*e*P, ||x*|; <1} =|lx|;.

In the space X with the norm || ||, the set *P is also normable, but with
constants equal to 1.

In this work every considered Banach space with a given normable set
will be treated as a space with the norm defined by (1). '

DEerFINITION 1. Let X be a complex Banach space, *P a normable set in

it and g, a fixed point from X such that {jag] =1 and for every x*e*P
x*(a) > 0. We shall denote by C(X, *P, a;) the set of all holomorphic
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functions f in K (1) with values in the space X such that f(0) = a, and for
every functional x*e*P, rex*(f(z)) > 0 for e K(1).
ExampLE 1. Let X = C", *P be the set of functionals of the form
x¥(x)=x; for x =(xy,...,x,)eC",
where i=1,2....,n and a, =(1, 1,...,1). This space C(X, *P, a;) will be
denoted by C(1).
ExampLE 2. Let X = m (the space of all bounded sequences with com-
plex terms) and *P be the set of functionals such that
x*(x)=x for x=!x)em,

where i=1,2,... Let ao={§;}, =1 for j=1,2,... By C(2) we shall
denote the space C(X, *P, ay) with the above defined X, *P and a,.

ExampLE 3. Let X =¢, (the set of all complex sequences converging to
0) and *P be the set of functionals of the form

xF(x)=x for x = |x;]€ecy,

i=1,2,..., and ao = [1/i]. We shall denote this space by C(3).
ExaMPLE 4. Let X = ¢ (the space of all converging complex sequences)
and *P be the set of functionals of the form

x¥(x)=x, for x=xlec,
i=1,2,... Let ap = (&), where {;=1for j=1,2,...
We shall denote this space by C(4).

ExampLE 5. Let X = C([a, b]) (the space of all continuous complex
functions defined on [a, b]), and let *P be the set [x*: re(a, b]' of
functionals defined by

xF(x) =x(r) for xeC([a, b)).

Let a, be the constant function equal to 1. We shall denote this space by
C(5).

2. Basic properties of the class C(X, *P, a,).

TheoreM 1. If feC(X, *P, ap) and zeK (1), then

1+r2 2r
f(z)eK(l_rzao, 1_'_2), where r = |z|.

Proof. For every functional x*e*P fulfilling the condition ||x*|| <1
and every feC(X, *P, a,) the function x*(f)/x*(a,) belongs to #. Hence

follows the inequality
x* (f(z))_1+r2| < 2r
X*(ap) 1-r3 " 1—r?

where r = |z].
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Next, we have

' 1+r?
x* (f(z)—ao I _:2)

Using the fact that *P is a normable set with constants equal to 1 we
infer that

Theorem 2. If feC(X,*P,ay) and f(z)= ) a,z" for zeK(l), then
el <2 for n=1,2,... o
Proof. For every functional x* e *P fulfilling the inequality [|x*|| < 1 we

1—#%

' 2r
'sl 5, where r=|z].

—

1472
f(z)‘ﬂol_

r2

can write
- x*(f)
x*(f(z2))= ) x*(a,)z" and X
@) r.;o ()2 x* (ao)
Hence
x*(a,)
< * 3 = e
(ag) 2 and |x*(@)|<2 forn=1,2, ~

Thus gl <2 for n=1,2,.., because of a,=sup||x*(a,): x*e*P,
Ix*ll < 13, |

THEOREM 3. The set C(X, *P, a,) is convex and closed in the space of
continuous functions of K (1) into a Banach space X with the topology of
almost uniform convergence.

Proof. We omit the proof of convexity because of its simplicity.

Let {f,} be an almost uniformly convergent sequence of functions from
C(X, *P, ay). According to Theorem 1, this sequence is almost uniformly
bounded in K(1). The limit f of {f,} is a holomorphic function in K(1) in
view of the Vitali theorem for holomorphic vector functions (see [1], p. 250).

Let x* be an arbitrary functional from *P. The sequence {f,} is almost
uniformly convergent, and so is the sequence {x*(f,)/x*(ap)}. The terms of
this sequence are Carathéodory functions; thus, according to the com-
pactness of the class of Carathéodory functions, the limit x*(f)/x*(a,) is
also a Carathéodory function. Hence

re (x* (f(z))) >0 for zeK(l).

x* (ao)

Thus re(x*(f(2))) > 0 for zeK(1) and x*€*P because of x*(ao) > 0.
It is obvious that f(0)=a, and, according to Definition 1,
feC(X, *P, ap). This shows that the set C(X, *P, ag) is closed.
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Basing on theorems included in the article [4] one can prove
THEOREM 4. Let Ag, A,..., 4, be arbitrary complex numbers different from

0. Conclude the functional G(f) =|| Y. 4S% (0)|| defined on C(X, *P, a,). Then
i=0

there exists a function foe C(X, *P,—ao) of the form f, = a, ¢*, where ¢*eM,,
and such that
G (fo) = sup{ {G(N): feC(X, *P, ao)} -

3. Characterization of extremal points in C (X, *P, a,). At the beginning,
let us introduce the following notation:

E(A) will denote the set of all extremal points in a convex set
AcC(X, *P, ap), and & the set of extremal points in 2.

THEOREM 5. Let [ be from a convex set A< C(X,*P,a,). If
x*(f)/x*(ap)e & for every functional x*e*P, then feE(A).

Proof. Suppose that f¢ E(A). There exist different functions f, f, €4
such that /= Af;+(1—-4)f, for some Ae(0, 1).

Since for some z, e K (1) we have f (zo) # f3 (20), then there exists x¥ e *P
such that

x3 (f1(z0)) # x¥ (f2(z0)),
and hence x§(f;) # x§(f;). This relation and the equality
x(0) _ 40 X8 (/2
x§(ag)  x3(ao) x§ (ao)

imply that x¥(f)/x%(ao) is not an extremal point in 2.
The contradiction ends the proof.

DeFmNniTION 2. We shall say that a convex set 4 = C(X, *P, ao) has the
property W if for each function feA and functional x*e*P the equality

x*(f)

x*(ao)

implies that there exist two functions fi, f, in 4 such that
f=+{1-1f;

*)

x* (ao)

+(1-4)

=Ap;+(1—A) @, for ¢, p,e? and 0<i <1

and

=¢ fori=1,2.

THeOREM 6. If f belongs to a convex set A = C(X,*P, a,) having the
property W', then feE(A) if and only if

x*(f)
x*(ag)

Proof. The sufficiency follows immediately from Theorem 5. The necess-

€&  for every functional x*e*P.
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ity can be proved in a similar way to that used in the proof of Theorem 5.
One can easily prove the following theorem.

THEOREM 7. The spaces C(1), C(2), C(3), C(4) have the property # .

DerINITION 3. We shall say that a mapping f from K (1) into ¢ belongs
to Acg il it has the form

Znei8+z
S=f)= {Ie_-_ n(a)}

where {u,} is a convergent sequence of non-decreasing functions on the
interval [0, 2n] which are left continuous and fulfil the conditions p,(0) = 0,
tn(2m) =1 for neN.

Remark. The set Ag,, is a convex subset of C(4).

This is a consequence of Helly’s second theorem. Moreover, one can
prove that Agyg, has the property #°

DerFiniTION 4. We shall say that a map f from K (1) into C([a, b])
belongs to Acs, iff it can be represented in the form
2n i9
+-

f f(Z t)—jfg Hf)

where u= u(6,t) is a function defined on [0, 2n] x[a, b] fulfilling the
following conditions:

for every fixed re[a, b] p is non-decreasing, left continuous and u(f, )
=0, u@2n, 1) =1;

for every fixed 8€[0, 2r], u is continuous in [a, b].

Remark. The set Ags, is a proper convex subset of C(5).

This fact follows immediately from Helly’s second theorem.

TueOREM 8. The set Acsy has the property W'

Before we prove this theorem we shall give three lemmas.

LemMma 1. Let 6,, 6,€[0, 2], 6, < 0, and 85 €(8,, 0,). If there are given
continuous functions defined on [a, b]:

f(ela t): f(st t)a f(93’ t)s fl (91’ t)s f2(91: t)s fl (623 t): f2(023 t)
Julfilling the following conditions:

0,0 =3(/16;, 0+6,0), f1(6;, 1) <f(6, ) <20, 0),
0<f(6;, ) <S03, ) <SS (B, 0)<1, 0</i(0,,0)<fi(6,,0)<1
for i =1, 2, then there exist functions f, (03, t), f2(03, t) such that
fOs, 1) =4(f1 85, 0 +£85,9), fiB1, ) < SB35, 1) <62, 1),

fl (93’ t) <f(93, t) <f2(83s t)
for all te[a,b] and i=1, 2.
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Proof. Let us denote
Ay =11 f2(8,, 1) = f(03, 1) A [1005, 1) = (05, ) A 201, ) 2 £,(0, 1)),
Ay =115 102, 02 f(03. 1) A (2005, 1) S S03,0 v 201, 0 < f1(02, 0},
Ay ={t; (0, )< [(03, 1) A 1005, ) < f(03, 1) A f2(85, 1) < f1(02, 1)),
Ay =115 f2(0,, 1) < f(03, ) A f1(0,, 1) < f(0s, )/\ S102, 1) < £f2(0,, 1)),
As = (t: f1(02, ) < (05, ) A f2(01, 1) 2 f(05, 1)

It is easy to show that U A;=[a, b]. Let f,(0;,t) be defined in the
following way: i=1

[fZ(Hla t) for teA,,

J1(02,0) for teA,,

(03,00 £{ 21 (05, 0=11(05, 1) for teds,

2f (03, t)=f2(0,, 1) for teA,,

(04, 1) for teAs,

and £, (83, £) = 21 (85, )—f (65, 1)

We show by an elementary calculation that the functions f; (0,, 1),
f5(05, t) defined above fulfil all required conditions.

Lemma 2. Let f,,f, be real functions defined in some neighbourhood
Ulte, ) of toeR. If f,, f, are lower semi-continuous at to and if the function

S =3(fi(+f2(1) for teU(to, )

is continuous at t,, then the functions f; and f, are also continuous at i,.
LemMA 3. Let u(0,t) be a real function defined on the set [0, 2n]x
x [a, b], fulfilling the following conditions:
for every te[a, b] the function u(0, t) is non-decreasmq, left continuous
and u(0,) =0, u(2r, 6)=1;
for every 0€(0, 2n) the function u(0,t) is continuous in [a, b].
Moreover, suppose that for some ty€[a, b] there are two different left
continuous functions [, (0, to), H,(0, ty) defined on [0, 2n] such that [i;(0, ty)
=0, (2r, to)=1for i=1,2 and

(B, to) = (A, (0, to)+ 72 (0, to)) for 0[O, 2n].

Under these assumptions there are two different functions u, (0, t), u, (0, t)
defined on [0, 2rt] x [a, b] fulfilling the two conditions corresponding to those
imposed on the function (0, t) and

u(0, 1) = 3(p 0, )+ (8, 1))  for (8, ne[0, 2n] x[a, b].
Proof. Since [, # [i,, there exists a point 8,€[0, 2n] such that
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0 < u(8y, to) < 1. The function u is continuous with respect to t, and so there
exists é > 0 such that

0<u(@,t)<1l for te(to—3, to+9).
Thus there exists a positive number ¢ such that
e< o, ) <1—¢ for te(to—90, to+96).
Let 1, (8o, t) be a continuous function defined in [a, b] and fulfilling the

conditions: A

p2(@0, 1) = (00, 1) for 1€[a, t—5] U [to+3, bl,

0< (0, Y—u(@y,t) <e for te(ty—2, to+9),
and let

#: (B0, 1) = 2p1(80, )—p2 (B, 1)  for tela, b).
One can easily prove that these functions [ulfil the following conditions:
0< py (0o, ) < (0o, ) < p2(Bp, ) <1 for refa, b],

ty (8o, to) < (B, to) <zl to),  u(Uq. 1) = % (py (0o, 1)+ g2 (Bg, 1)).

Using Lemma 1 we shall construct the inquired functions (6, t)

(i =1, 2) defined on the set Q x[a, b], where Q consists of 0, and all rational

numbers from the interval [0, 2x]. Let 0, 2=, 0,, q,, g2,... be the sequence of
all different elements of Q. Let

w0, 1) = (0, ) = (0, ) =0, (27, ) = p (21, 1) = p(2m, 1) =1

for te[a, b].
We first define the functions u,, u, at the points (gy, ), te[a, b].
Assume that g, €(0, 6,). Then, taking in Lemma 1, 0; =0, 8, =0,,
03 =q,,f=u f, = Wy, f2 = Uy, we see that all assumptions of this lemma are
fulfilled. Now we define

uy(gy, 1) =filgs, 1), ma(qy, t) =fi(q,, 1) [or re(a, b),

where f; (9, t), f2(q,, t) are functions from the assertion of Lemma 1.

Next assume that we have defined the functions y, and u, on the set
{0, 2, 09, q1,..1 9, X[a, b]. Write: q_,=0, gq_, =271 ¢o=48,. Then
denote

(2)

01 = max {QI: 4i—4qn+1 <0a i= —25 -1, 0’ 1;---:"}"
0, =min{g: ¢—¢q,4, >0, i=-2,-1,0,1,...,n}.

Let us apply Lemma 1 to the points 6,, 65, q,+,, taking f=p, f; = ta,
J2 = ;. Assume

U1 (Gns1s ) =S1(@ps15 )y B2(@ns1, 1) =S2(Gn+1, D)
for te[a, b].
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By induction we have defined the functions u,, u, on the set Q x[a, b].
The functions just constructed are non-decreasing and left continuous on Q
for every fixed te[a, b] and they are continuous on [a, b] for every fixed
6eQ.

Now extend the functions gu,, u, onto [0, 2n] x [a, b] in the following
way: let

u‘(x, t) E—-‘-r hmlul(q3 T), i=1,2,
0
for an arbitrary xe[0, 2r]. We obtain functions p(0,t) defined on
[0, 2n] x[a, b] with the following properties:
(@) 40, t) (i=1,2) is left continuous and non-decreasing function on
[0, 2r] for every te[a, b], and

m©, =0, wQ2m1)=1;

(b) w; @, 1) i=1,2) is a continuous function on [a, b] for every
0el0, 2n];
(©) u(0, t) = §(x1, (8, )+ p15(6, 1)) for (0, )e[0, 2n] x [a, b].

Properties (a), (c) follow immediately from the construction of those
functions. We need only show (b).

Let # be an arbitrary number from [0, 2n] and let {g,} be a non-
decreasing sequence of numbers from Q which is convergent to 6. Then

w0, 1) = lim y(q,, ) for tefa, b].
L > &

The sequences [j4(qn, 1)} (i =1, 2) are non-decreasing sequences of con-
tinuous (with respect to t) functions. In view of Theorem 9 from [5] (p. 388)
the limit functions are lower semicontinuous. From property (¢) and Lemma
2 it follows that functions u;, jt, are continuous with respect to t. Since
#1 (0, to) # 2 (0o, 1), then py # .

Hence the functions y;, p, defined above have the asserted properties.

Proof of Theorem 8. Assume that f is extremal in Ags, and that for
some ty€[a, b] the function f(z)(t,) is not extremal in Z. Then, according to
the definition of Ags),

f@)() = g——du(& t)

20,

L

and

(3) u(0, to) = Auy (8, to)+(1=2) 150, to)
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for some A€(0, 1) and 6€[0, 2n], where u is defined on [0, 2n] x [a, b] and
fulfils the following conditions:

u(0, t) is non-decreasing, left continuous in [0, 2x] and

#(0,1) =0, u(2r, 1) =1 for each fixed te[a, b];

1(0, t) is continuous in [a b] for every fixed 8€[0, 2n], and " @, to),
112(0, ty) are left continuous in [0, 2x] and

(0, tg) =0, 4, (2m, ty) =1 for i =1, 2,

Modifying the functions (6, t,), uz(G, ty) we can obtain functions
I (0, to), (8, ty) such that equality (3) holds for them with A = 1.

Hence the assumptions of Lemma 3 are fulfilled; therefore there exist
functions v, (0, 1), v,(6, t) defined on [0, 2r] x [a, b] and fulfilling the asser-
tion of the lemma.

The functions

2n il
T l +

fl fl(z (t)— I 10 dV1 0 t)

and

Znel0+z

fa fz(z)(f)—f T d“z(e 7)

belong to Acs) and the equality f = 1(f, +/5) holds, but f; # f,. Thus the
function f is not extremal in Ags), which contradicts the assumption.

Remark. In this part of the work we have proved that, the spaces C (1),
C(2), C(3), C(4), Aci) Acesy having the property #7, the extremal points in
them are completely characterized by Theorem 6.

4. On a certain subclass of C(X, *P, a,).

DerFiNiTION 5. Let W, be a fixed convex compact subset of X. By
C(W,,, X, *P, a) we shall denote the set of those mappings /e C(X, *P, ay)

for which f(K (rs)) < W,,, where rg is a fixed number from (0, 1).

We shall consider thc space C(W, , X, *P, ao) as a topological space
with the topology of almost uniform convergence.

TueoreM 9. The space C(W, , X, *P, ao) is a convex and compact set in
the space of continuous mappings of K(1) into X with the topology of almost
uniform convergence.

Proof. The convexity of C(W,, X, *P, a,) follows from the convexity
of the sets W, and C(X, *P, ay).

Let {f,} be a sequence of elements from C(W,, X, *P, ao) almost
uniform convergent to f. In virtue of the closedness of C(X, *P, a,) in the
space of continuous mappings of K (1) into the Banach space X, f belongs to
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C(X, *P, ao). Let z be an arbitrary point in K (ro). Since f(z) = "ll_.rrg Sfu(2) and

w. is a closed set, then f(z)eW,, and hence feC(W,, X, *P, ao). This
proves that the set C(W, , X, *P, a,) is closed.

It is yet necessary to prove that this set is compact. Assume then the
folldwing notation:

Crxwgr = {[(K(r)): f€C(W,, X, *P, ag)}.

It follows by Theorem 9.13.1 from [2] that the set Crgpoy is @ family of
equicontinuous functions. In view of the Ascoli theorem (see for example [2],
p. 164) the set Crgp is conditionally compact in the space of continuous
mappings of K(ro) into the space X. The set C(W, , X, *P, a,) being closed,
so is the set Ciggg 18, and hence it is compact.

In virtue of the principle of analytic extensions (see [2], p. 236) it follows
that the transformation

C(W,,, X, *P, ag)3f—>fIK (ro) € Crrirgy

roi

is a bijection from C(W, , X, *P, ay) onto Cgpy- According to the Vitali

(rg)
theorem (see [1], p. 250), uniform convergence of elements of

C(W,,, X, *P, ap) in K(ro) is equivalent to almost uniform convergence in
K(1).

This proves that C(W, , X, *P, a,) is compact.

ExampLE 6. Consider the space C(4) and the set

1+r
W, = {x= () ec: |Ix]| < l—ro and /\ sup |p,—@u <s},
(4]

e>0nm> uu(s)

where ny(€) is some fixed non-increasing function defined on R* and such
that ny(e) = c0 when ¢ -0 and 0 <ry < 1.

The set W, is a convex and compact in the space of convergent complex
sequences. We shall denote this space C(W X, *P, ao) by C(4).

TueoreMm 10. Let
- a>0n,m>n°(z)
If f(K(ro)) = V,, and f={Y} is an extremal point in C(4), then Y, ed& for
every positive integer k.
Proof. Let f = {¥,} be an extremal point in C(4) and let f(K (r,)) = ¥, ;

moreover, suppose that there exists a positive integer i, such that y; is not
an extremal point in 2. Then there exist Ae(0, 1) and two different
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Carathéod‘ory functions ;. , Y2 such that
Vi, = Wiy +(1 =) 2.
It is not difficult to prove that the function
hz(z) = SuP( )lwn(z)ﬁwm (Z)l
n,m>noe

is continuous in K(1). Hence

sup [ sup |¢,(2)—¥n(2)]] <& for every &> 0.

st(rD) n.m>n0(a)
Let us introduce an auxiliary function

s(e) =e— sup h(z) for e>0.
..'-'EK(ro)

It is easy to see that s{z) > 0.

Let e = inf {e: ng(g) < ip). Then s(e) assumes a finite numbers of differ-
ent values for ¢ > ¢, and this implies that

59 = inf s(e) > 0.

>
B/&o

Let A,, 4,€[0, 1) be numbers such that
sup |;,(z) =i, (@) < 80/2

zeK(ry)
for the functions ¥, = Ay +(1—-A)¥l, j=1, 2.
Now define f; = [f;'}, f» = [f;}} in the following way:
Ya(z)  for nm # iy,
Jilo (Z) for n = iOl

£ (z)={

Ww.(2) for n# i,

Ui(2)  for n=1ip.

o]

One can easily verify that f;, f,€C(4) and f = 1'f, +(1 - X)f, for some
A'e(0,1). This proves that f is not an extremal point in C(4), which
contradicts our assumptions.
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